Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = phased arrays antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1489 KB  
Article
Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism
by Qiuli Wu, Yufei Zhao, Shicheng Li, Yiqi Li, Deyu Lin and Xuefeng Jiang
Network 2025, 5(4), 48; https://doi.org/10.3390/network5040048 - 30 Oct 2025
Abstract
Orbital angular momentum (OAM) beams exhibit divergence during transmission, which constrains the capacity of communication system channels. To address these challenges, intelligent reflecting surfaces (IRSs), which can independently manipulate incident electromagnetic waves by adjustment of their amplitude and phase, are employed to construct [...] Read more.
Orbital angular momentum (OAM) beams exhibit divergence during transmission, which constrains the capacity of communication system channels. To address these challenges, intelligent reflecting surfaces (IRSs), which can independently manipulate incident electromagnetic waves by adjustment of their amplitude and phase, are employed to construct IRS-assisted OAM communication systems. By introducing additional information pathways, IRSs enhance diversity gain. We studied the simulations of two placement methods for an IRS: arbitrary placement and standard placement. In the case of arbitrary placement, the beam reflected by the IRS can be decomposed into different OAM modes, producing various reception powers corresponding to each OAM mode component. This improves the signal-to-noise ratio (SNR) at the receiver, thereby enhancing channel capacity. In particular, when the IRS is symmetrically and uniformly positioned at the center of the main transmission axis, its elements can be approximated as a uniform circular array (UCA). This configuration not only achieves optimal reception along the direction of the maximum gain of the orbital angular momentum beam but also reduces the antenna radius required at the receiver to half or even less. Full article
24 pages, 4193 KB  
Article
Reconfigurable Circularly Polarized Phased Array
by Eduardo S. Silveira, Fúlvio F. Oliveira, Bernardo M. Fabiani, Juner M. Vieira, Daniel B. Ferreira and Daniel C. Nascimento
Electronics 2025, 14(21), 4159; https://doi.org/10.3390/electronics14214159 - 24 Oct 2025
Viewed by 324
Abstract
This paper presents the design, construction, and tests of a polarization-reconfigurable phased array antenna. The proposed array allows the polarization at the main lobe maximum direction to be electronically reconfigured between right-hand (RHCP) and left-hand circular polarization (LHCP). Single-fed microstrip antennas, each with [...] Read more.
This paper presents the design, construction, and tests of a polarization-reconfigurable phased array antenna. The proposed array allows the polarization at the main lobe maximum direction to be electronically reconfigured between right-hand (RHCP) and left-hand circular polarization (LHCP). Single-fed microstrip antennas, each with four tunable varicap diodes, are employed in the phased array to achieve a low axial ratio (AR) at the steering angles. Special attention is given to the microstrip antenna design and varicap modeling, which involves the use of measured data and search algorithms running in an electromagnetic/circuit co-simulation environment. To illustrate the proposed approach, a six-element linear phased array at 2.2 GHz has been built and tested in an anechoic chamber. The experimental results demonstrate an AR below 1 dB in both RHCP and LHCP states over a wide range of steering angles, and even in a multibeam configuration, validating our design method. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 10507 KB  
Article
Transmit–Receive Module Diagnostic of Active Phased Array Antenna Using Side-Lobe Blanking Channel
by Hongwoo Park, Wonjin Lee, Hyun Seok Oh, Seunghee Seo, Shin Young Cho and Hongjoon Kim
Sensors 2025, 25(21), 6527; https://doi.org/10.3390/s25216527 - 23 Oct 2025
Viewed by 287
Abstract
This article presents a diagnostic method for transmit–receive modules (TRMs) in an airborne active phased array antenna (APAA). Given the spatial constraints of airborne radar systems, the diagnostic functionality was implemented using the peripheral probe method. To minimize the space, cost, and time [...] Read more.
This article presents a diagnostic method for transmit–receive modules (TRMs) in an airborne active phased array antenna (APAA). Given the spatial constraints of airborne radar systems, the diagnostic functionality was implemented using the peripheral probe method. To minimize the space, cost, and time required for modifications to the existing APAA, the side-lobe blanking (SLB) channel was employed as the probe. To prevent TRM saturation and to determine the fault detection threshold, an APAA-level test was performed using a movable anechoic chamber. The coupling level between the SLB antenna and TRM was maintained between −70 dB and −20 dB. With the result of the APAA-level test, a budget analysis on the signal path was performed, and the input attenuation level was determined. The received signal power was estimated at −40 dBm to −20 dBm. Based on the estimation, the detection threshold was determined as −50 dBm. For the operation of the diagnostic function, simple detection logic and associated control timing is implemented in the radar processor. The effectiveness of the proposed diagnostic method was validated by several test activities, including an anechoic chamber, a rooflab facility, and an actual fighter. The test result shows good agreement with the expectations. Full article
Show Figures

Figure 1

16 pages, 4886 KB  
Article
Fibonacci Tessellation for Optimizing Planar Phased Arrays in Satellite Communications
by Juan L. Valle, Marco A. Panduro, Carlos A. Brizuela, Roberto Conte, Carlos del Río Bocio and David H. Covarrubias
Technologies 2025, 13(10), 478; https://doi.org/10.3390/technologies13100478 - 21 Oct 2025
Viewed by 232
Abstract
This article presents a novel strategy for the design of planar phased arrays using Fibonacci-based partitioning combined with a random multi-objective search. This approach intends to minimize the number of phase shifters used by the system while maintaining the radiation characteristics required for [...] Read more.
This article presents a novel strategy for the design of planar phased arrays using Fibonacci-based partitioning combined with a random multi-objective search. This approach intends to minimize the number of phase shifters used by the system while maintaining the radiation characteristics required for Ku-band user terminals in Low Earth Orbit (LEO) satellite communications. This methodology efficiently tessellates a 16×16 antenna array, reducing the solution search space size and improving algorithmic computational time. From a total of 409,600 possible configurations, an optimal candidate solution was obtained in 2 h. This configuration achieves a balanced trade-off between radiation performance metrics, including side lobe level (SLL), first null beamwidth (FNBW), and the number of phase shifters. This optimal design maintains a value of SLL below 15 dB across all the azimuth scanning angles, with a beam steering capability of θ=40 and 0ϕ360. These results demonstrate the suitability of this novel approach regarding Ku-band satellite communications, providing efficient and practical solutions for high-demand internet services via LEO satellite systems. Full article
(This article belongs to the Special Issue Technologies Based on Antenna Arrays and Applications)
Show Figures

Figure 1

12 pages, 1308 KB  
Article
Pattern Synthesis for Uniform Linear and Concentric Elliptical Antenna Arrays Using Kepler Optimization Algorithm
by Yi Tang, Jiaxin Wan, Yixin Sun, Xiao Wang, Guoqing Ma and Chuan Liu
Symmetry 2025, 17(10), 1680; https://doi.org/10.3390/sym17101680 - 8 Oct 2025
Viewed by 251
Abstract
In this paper, a pattern synthesis method of uniform linear and concentric elliptical antenna arrays using the Kepler optimization algorithm (KOA) is proposed. The KOA, which utilizes Kepler’s laws to predict the position and velocity of planets at arbitrary times, is first applied [...] Read more.
In this paper, a pattern synthesis method of uniform linear and concentric elliptical antenna arrays using the Kepler optimization algorithm (KOA) is proposed. The KOA, which utilizes Kepler’s laws to predict the position and velocity of planets at arbitrary times, is first applied to deal with the optimization problems of linear and elliptical antenna arrays. Radiation patterns with high gain and low sidelobe levels (SLLs) are synthesized by optimizing the critical parameters (amplitude, phase, and rotation) of the linear arrays. Moreover, a concentric elliptical array is designed to demonstrate the capability of the KOA framework to solve complex problems and achieve the desired performance. In order to accurately consider mutual coupling between the elements, the full-wave method of moments (MoM) is used to calculate the radiation characteristics of the arrays in the optimization method. The effectiveness of the proposed method is proved by four typical examples. The results show that, compared with the butterfly optimization algorithm (BOA), Harris hawks optimization (HHO), and crayfish optimization algorithm (COA), the proposed method possesses high gain and SLL suppression capabilities, which makes it suitable for various array types. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

58 pages, 4362 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Viewed by 536
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQC). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 572
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

37 pages, 3630 KB  
Review
Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience
by Martine Lyimo, Bonny Mgawe, Judith Leo, Mussa Dida and Kisangiri Michael
Sensors 2025, 25(19), 6110; https://doi.org/10.3390/s25196110 - 3 Oct 2025
Viewed by 855
Abstract
Long Range Wide Area Network (LoRaWAN) has become an attractive option for maritime communication because it is low-cost, long-range, and energy-efficient. Yet its performance at sea is often limited by fading, interference, and the strict energy budgets of maritime Internet of Things (IoT) [...] Read more.
Long Range Wide Area Network (LoRaWAN) has become an attractive option for maritime communication because it is low-cost, long-range, and energy-efficient. Yet its performance at sea is often limited by fading, interference, and the strict energy budgets of maritime Internet of Things (IoT) devices. This review, prepared in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, examines 23 peer-reviewed studies published between 2019 and 2025 that explore adaptive antenna solutions for LoRaWAN in marine environments. The work covered four main categories: switched-beam, phased array, reconfigurable, and Artificial Intelligence or Machine Learning (AI/ML)-enabled antennas. Results across studies show that adaptive approaches improve gain, beam agility, and signal reliability even under unstable conditions. Switched-beam antennas dominate the literature (45%), followed by phased arrays (30%), reconfigurable designs (20%), and AI/ML-enabled systems (5%). Unlike previous reviews, this study emphasizes maritime propagation, environmental resilience, and energy use. Despite encouraging results in signal-to-noise ratio (SNR), packet delivery, and coverage range, clear gaps remain in protocol-level integration, lightweight AI for constrained nodes, and large-scale trials at sea. Research on reconfigurable intelligent surfaces (RIS) in maritime environments remains limited. However, these technologies could play an important role in enhancing spectral efficiency, coverage, and the scalability of maritime IoT networks. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications—2nd Edition)
Show Figures

Figure 1

22 pages, 33266 KB  
Article
Deep Analysis of Imaging Characteristics of Spaceborne SAR Systems as Affected by Antennas Using 3D Antenna Pattern
by Wei Shi, Heqing Huang, Wenjun Gao, Huaian Zhou and Hua Jiang
Sensors 2025, 25(19), 5969; https://doi.org/10.3390/s25195969 - 25 Sep 2025
Viewed by 500
Abstract
Spaceborne Synthetic Aperture Radar (SAR) has become an indispensable tool for environmental monitoring, offering all-weather, day-and-night imaging capabilities. Before the launch, accurately analyzing the imaging characteristics of spaceborne SAR systems on the ground is crucial, and the antenna system is a very important [...] Read more.
Spaceborne Synthetic Aperture Radar (SAR) has become an indispensable tool for environmental monitoring, offering all-weather, day-and-night imaging capabilities. Before the launch, accurately analyzing the imaging characteristics of spaceborne SAR systems on the ground is crucial, and the antenna system is a very important part of SAR system simulation. This paper investigates the impact of antenna configuration on SAR imaging characteristics by using 3D antenna pattern, focusing on resolution consistency, coverage uniformity, and system adaptability under varying observation geometries. Different from the traditional SAR simulation with 2D antenna pattern (range direction and azimuth direction antenna pattern), we provide a novel simulation method by using 3D antenna pattern, which increases the simulation accuracy and realism. The two mainstream spaceborne SAR antennas (phased array antenna (PAA) and reflector antenna (RA)) are used to illustrate the differences between 2D antenna pattern and 3D antenna pattern. We provide a comparative analysis in the context of high-resolution and wide-swath imaging missions. Additionally, the importance of integrating 3D antenna pattern into SAR system simulation is emphasized, as it improves simulation fidelity, reduces development risk, and supports design validation. This study provides insights for the design and optimization of future SAR system simulation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

26 pages, 7979 KB  
Article
Machine Learning-Driven Inspired MTM and Parasitic Ring Optimization for Enhanced Isolation and Gain in 26 GHz MIMO Antenna Arrays
by Linda Chouikhi, Chaker Essid, Bassem Ben Salah, Mongi Ben Moussa and Hedi Sakli
Micromachines 2025, 16(10), 1082; https://doi.org/10.3390/mi16101082 - 25 Sep 2025
Viewed by 389
Abstract
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an [...] Read more.
This paper presents an intelligent design framework for a high-performance 26 GHz MIMO antenna array tailored to 5G applications, built upon a compact single-element patch. The 11.5 mm × 11.5 mm × 1.6 mm microstrip patch on FR4 exhibits near-unity electrical length, an ultra-deep return loss (S11 < −40 dB at 26 GHz), and a wide operational bandwidth from 24.4 to 31.2 GHz (6.8 GHz, ~26.2%). A two-element array, spaced at λ/2, is first augmented with a inspired metamaterial (MTM) unit cell whose dimensions are optimized via a Multi-Layer Perceptron (MLP) model to maximize gain (+2 dB) while preserving S11. In the second phase, a closed-square parasitic ring is introduced between the elements; its side length, thickness, and position are predicted by a Random Forest (RF) model with Bayesian optimization to minimize mutual coupling (S12) from −25 dB to −58 dB at 26 GHz without significantly degrading S11 (remains below −25 dB). Full-wave simulations and anechoic chamber measurements confirm the ML predictions. The close agreement among predicted, simulated, and measured S-parameters validates the efficacy of the proposed AI-assisted optimization methodology, offering a rapid and reliable route to next-generation millimeter-wave MIMO antenna systems. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

16 pages, 3905 KB  
Article
4 × 4 Active Antenna Array with Digital Phase Shifting for WiFi 6E Applications
by Wen-Piao Lin and Chang-Yang Lin
Electronics 2025, 14(19), 3772; https://doi.org/10.3390/electronics14193772 - 24 Sep 2025
Viewed by 576
Abstract
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving [...] Read more.
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving a resonant frequency of 5.96 GHz with a measured return loss of −17.5 dB and stable broadside radiation. Building on this element, a corporate-fed 4 × 4 array was implemented on an FR4 substrate, incorporating stepped-impedance transmission lines and λ/4 transformers to ensure equal power division and impedance matching across all ports. A 4-bit digital phase shifter, controlled by an ATmega328p microcontroller, was integrated to enable electronic beam steering. Simulated results demonstrated accurate beam control within ±28°, with directional gains above 13 dBi and minimal degradation compared to the broadside case. Over-the-air measurements validated these findings, showing main lobe steering at 0°, ±15°, +33° and −30° with peak gains between 7.8 and 11.5 dBi. The proposed design demonstrates a cost-effective and practical solution for Wi-Fi 6E phased array antennas, offering enhanced beamforming, improved spatial coverage, and reliable performance in next-generation wireless networks. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

23 pages, 5106 KB  
Article
Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing
by Kuang-Hsuan Huang and Yen-Sheng Chen
Sensors 2025, 25(18), 5904; https://doi.org/10.3390/s25185904 - 21 Sep 2025
Viewed by 387
Abstract
Radar-based water-level monitoring requires antennas with narrow beams, high gain, and low sidelobes. Existing horn and series-fed microstrip arrays either lack compactness or suffer from frequency-dependent beam deviation that reduces sensing accuracy. This paper presents a 256-element slot-coupled planar microstrip array operating in [...] Read more.
Radar-based water-level monitoring requires antennas with narrow beams, high gain, and low sidelobes. Existing horn and series-fed microstrip arrays either lack compactness or suffer from frequency-dependent beam deviation that reduces sensing accuracy. This paper presents a 256-element slot-coupled planar microstrip array operating in the K-band for water-level radar. The array combines large-scale integration with slot-coupled feeding, which provides inherent 180° phase correction and stabilizes the main beam across frequency. The fabricated array has overall dimensions of 140 mm × 160 mm × 1.12 mm. Simulated results show a peak gain of 22.8 dBi with beamwidths of 5.2° (E-plane) and 4.2° (H-plane), while beam deviation remains within 0.5° across 25.9–27.0 GHz. In comparison, a series-fed array of identical aperture exhibits up to 7.5° deviation and only 15.8 dBi broadside gain. These results demonstrate that the proposed slot-coupled array provides a compact antenna solution meeting regulatory requirements and improving the accuracy of radar-based water-level monitoring systems. Full article
Show Figures

Figure 1

24 pages, 4356 KB  
Article
Benchmarking Overlapped Subarrays in Direct Radiating Arrays for GEO Broadband Satellite Communication Systems
by Margaux Pellet, Hervé Legay, George Goussetis, Joao Mota, Giovanni Toso and Piero Angeletti
Appl. Sci. 2025, 15(18), 10216; https://doi.org/10.3390/app151810216 - 19 Sep 2025
Viewed by 444
Abstract
Direct radiating arrays (DRAs) present favorable solutions for high-throughput flexible coverage in geostationary (GEO) broadband satellite missions. The ultimate constraint in these architectures is the high number of digitally controlled antenna ports, which renders fully digital architectures impractical for the immediate future. Instead, [...] Read more.
Direct radiating arrays (DRAs) present favorable solutions for high-throughput flexible coverage in geostationary (GEO) broadband satellite missions. The ultimate constraint in these architectures is the high number of digitally controlled antenna ports, which renders fully digital architectures impractical for the immediate future. Instead, hybrid analog–digital DRAs are being considered as a promising trade-off in terms of performance/flexibility and digital processing demands. These architectures commonly involve subarrays with analog beamforming, which form broad (regional) beams, which are then digitally beamformed at a second level to produce a multitude of narrow beams used for broadband connectivity. Due to the large size of the subarrays, these architectures are subject to undesired grating lobes that can lead to interference and reduce the gain of the main beam, thereby compromising overall performance. Partial mitigation of the grating lobes is attainable by subarray overlapping. This paper presents a comparative assessment of three different hybrid analog–digital DRA architectures in terms of the coverage characteristics and discusses their practical implementation. It is demonstrated that improved performance can be achieved by subarray overlapping with some additional analog hardware complexity but otherwise maintaining the number of digitally controlled antenna ports. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

12 pages, 9031 KB  
Article
A Novel Wideband 1 × 8 Array Dual-Polarized Reconfigurable Beam-Scanning Antenna
by Jie Wu, Zihan Zhang, Yang Hong and Guoda Xie
Electronics 2025, 14(18), 3689; https://doi.org/10.3390/electronics14183689 - 18 Sep 2025
Viewed by 1593
Abstract
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations [...] Read more.
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations (LP). The parasitic patch layer loaded directly above the VCBF can effectively enhance the operating frequency bandwidth of the antenna. In the array design, by controlling the amplitude and phase input at each port, scanning angles of ±45°, ±40°, and ±30° can be achieved under two LP at 3.0, 3.5, and 4.0 GHz. The simulation and measurement results indicate that the designed antenna has a wideband characteristic with a relative bandwidth of 28.6% and stable polarization reconfigurability. Benefiting from the advantages of polarization reconfigurability and beam-scanning capabilities, the antenna is highly suitable for applications in wireless communication systems that require polarization anti-interference. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 1227 KB  
Article
Hierarchical Sectorized ANN Model for DoA Estimation in Smart Textile Wearable Antenna Array Under Strong Noise Conditions
by Zoran Stanković, Olivera Pronić-Rančić and Nebojša Dončov
Sensors 2025, 25(18), 5704; https://doi.org/10.3390/s25185704 - 12 Sep 2025
Viewed by 364
Abstract
A novel hierarchical sectorized neural network module for a fast direction of arrival (DoA) estimation (HSNN-DoA) of the signal received by a textile wearable antenna array (TWAA) under strong noise conditions is presented. The developed DoA module accounts for variations in antenna element [...] Read more.
A novel hierarchical sectorized neural network module for a fast direction of arrival (DoA) estimation (HSNN-DoA) of the signal received by a textile wearable antenna array (TWAA) under strong noise conditions is presented. The developed DoA module accounts for variations in antenna element gain, inter-element spacing, and resonant frequencies under the conditions of textile crumpling caused by the motion of the TWAA wearer. The proposed model consists of a sector identification phase, which aims to determine the spatial sector in which the radio gateway (RG) is currently located based on the elements of the spatial correlation matrix of the signal sampled by the TWAA, and a DoA estimation phase, which aims to accurately determine the angular position of the RG in the azimuthal plane. The architecture of the HSNN-DoA module, with different time window lengths in which angular position of RG is recorded, is investigated and compared with the DoA module based on a stand-alone MLP network and the corresponding Root-MUSIC DoA module in terms of accuracy and speed of DoA estimation under variable noise conditions. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

Back to TopTop