Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience
Abstract
1. Introduction
2. Background on Maritime LoRaWAN
2.1. LoRaWAN Architecture Overview
2.2. Related Studies
2.3. Multi-Gateway Reception in LoRaWAN
2.4. Maritime-Specific Requirements
2.5. LoRaWAN Network Configuration
2.6. Maritime Propagation Characteristics and Models
2.7. Adaptive Antennas
2.7.1. Switched-Beam Antenna
2.7.2. Phased Array Antenna
2.7.3. Reconfigurable Antennas
2.7.4. Smart Antennas with AI/ML Control
2.7.5. Adaptive Antenna Integration in LoRaWAN
2.8. Reconfigurable Intelligent Surfaces (RISs) for Maritime LoRaWAN
2.9. Design Trade-Offs of Adaptive Antenna Techniques in Maritime LoRaWAN Networks
3. Methodology
3.1. Motivation and Objectives of Systematic Review
3.2. Scope of Study and Research Questions
- RQ1: What are the adaptive antenna techniques that contribute most to the energy efficiency and performance in maritime LoRaWAN?
- RQ2: What are the effects of marine environmental conditions on adaptive antenna response?
- RQ3: What are the key antenna parameters that affect reliable maritime LoRaWAN communication?
- RQ4: Which antenna designs are the best in terms of performance, energy efficiency, and complexity?
- RQ5: What research gaps exist, and in which directions should future studies be directed?
3.3. Eligibility Criteria
3.3.1. Inclusion Criteria
- The research has to include LoRaWAN with adaptive, smart, beamforming, or reconfigurable antenna systems.
- Investigations should address the development, deployment, and testing of these antenna technologies in marine-relevant environments and scenarios such as offshore, coastal, shipboard, and open-water scenarios where over-water propagation properties are significant.
- Papers related to LPWAN and with a focus on antenna adaptation were additionally taken into account if the connection was evident in a maritime scenario.
- Studies that investigated general LoRaWAN and adaptive antenna were included if they provided transferable insights into maritime deployments.
- Publications should have been published between 2019 and 2025 in peer-reviewed journals or well-known conference proceedings.
3.3.2. Exclusion Criteria
- Works that only dealt with LoRaWAN or LPWAN technologies without mentioning or integrating adaptive, reconfigurable or smart antenna systems.
- Papers with abstracts that are irrelevant or nontechnical and that do not contain enough information about antenna design, performance, or implementation in the maritime field.
- Chapters, books, editorial notes, white papers, and patents.
- Research papers that focus solely on terrestrial applications and have no indication of any relevance/transferability to design considerations for maritime, offshore, or aquatic deployment.
- Papers elsewhere in the range of 2019 to May 2025.
3.4. Information Sources
3.5. Research Strategy
3.6. Selection Process
3.7. Data Collection Process
3.8. Study Risk of Bias Assessment
3.9. Study Characteristics
3.10. Data Items
3.11. Risk of Bias in Studies
3.12. Effect Measures
3.13. Synthesis Methods
3.14. Reporting Bias Assessment
3.15. Certainty Assessment
3.16. Results
3.17. Systematic Review Contributions
- Classification of adaptive antenna systems according to their use at the gateway and end-node layers, and discussion of their impact on maritime services.
- An investigation into how marine factors like multipath propagation, ship motion, and atmospheric loss affect antenna performance and signal reliability.
- The interrelation of adaptive antenna systems with LoRaWAN protocol layers is studied, specifically focusing on link quality, scalability, and system performance.
- A comparison is performed between gateway and end-node realizations concerning power consumption, design complexity, and computational demands.
- Based on the review, the primary challenges and future work, such as intelligent control, miniaturization, and environment adaptation on the next-generation maritime IoT networks, are highlighted.
4. Properties and Characteristics of Adaptive Antennas in Maritime LoRaWAN
4.1. Principles of Maritime Adaptive Antennas
4.2. Beamforming Techniques for Maritime Applications
4.3. Implementation Architectures
4.3.1. Phased Array Systems
4.3.2. Parasitic Array Antennas
4.3.3. Mechanically Steerable Platforms
4.3.4. Hybrid Mechanical–Electronic Beam Steering
4.4. Energy Efficiency in Maritime Adaptive Antennas
4.5. Maritime Channel Modeling
4.6. Maritime Interference Mitigation
5. Adaptive Antenna and LoRaWAN
5.1. Adaptive Antennas at Gateway and End-Node Levels
5.2. Medium Access Control (MAC) and Physical Layer (PHY) Considerations
5.3. LoRaWAN Parameter Optimization
5.3.1. Spreading Factor
5.3.2. Transmission Power
5.3.3. Bandwidth
5.3.4. Coding Rate
5.3.5. Adaptive Data Rate
5.4. Challenges in Integration
6. Results and Discussion
6.1. Thematic Analysis
6.2. RQ1: What Are the Adaptive Antenna Techniques That Contribute Most to the Energy Efficiency and Performance on Maritime LoRaWAN?
6.3. RQ2: What Are the Effects of Marine Environmental Conditions on Adaptive Antenna Response?
6.4. RQ3: What Are the Key Antenna Parameters That Affect Reliable Maritime LoRaWAN Communication?
6.5. RQ4: Which Antenna Designs Are the Best Interns in Terms of Performance, Energy Efficiency, and Complexity?
6.6. RQ5: What Are the Research Gaps and Future Directions?
6.7. Synthesis of the Findings
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinis, H.; Rocha, J.; Matos, T.; Gonçalves, L.M.; Martins, M. The Challenge of Long-Distance Over-the-Air Wireless Links in the Ocean: A Survey on Water-to-Water and Water-to-Land MIoT Communication. Appl. Sci. 2022, 12, 6439. [Google Scholar] [CrossRef]
- Patriti, T.; Mirri, S.; Girau, R. A LoRa-Mesh Based System for Marine Social IoT. In Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2023; pp. 329–332. [Google Scholar] [CrossRef]
- Habib, A.; Moh, S. Wireless Channel Models for Over-the-Sea Communication: A Comparative Study. Appl. Sci. 2019, 9, 443. [Google Scholar] [CrossRef]
- Pal, A.; Rahman, R. Communication for Underwater Sensor Networks: A Comprehensive Summary; Association for Computing Machinery, New York, United States. ACM Trans. Sens. Netw. 2022, 19, 22. [Google Scholar] [CrossRef]
- Alexiou, A.; Haardt, M. Smart Antenna Technologies for Future Systems: Trends and Challenges. IEEE Commun. Mag. 2004, 42, 90–97. [Google Scholar] [CrossRef]
- Samantaray, B.; Das, K.K.; Roy, J.S. Designing Smart Antennas Using Machine Learning Algorithms. J. Telecommun. Inf. Technol. 2023, 4, 46–52. [Google Scholar] [CrossRef]
- Mohammad, A.; Mousa, H. Comparative Study of Adaptive Beamforming for Smart Antenna Applications. In Proceedings of the 2020 International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 16–18 March 2021. [Google Scholar] [CrossRef]
- Pedro, C.; Rodrigues, J. LoRa Networks for Sea Communications Using the NMEA Standard. Master’s Thesis, Electrical and Computer Engineering. NOVA University, Lisbon, Portugal, 2022. Available online: https://run.unl.pt/handle/10362/159097 (accessed on 10 May 2025).
- Obiri, N.M.; Shikunzi, H. Long-Range Wide Area Network (LoRa-WAN) Connectivity and Range Evaluation in a Rural Setting. Int. J. Comput. Appl. 2023, 185, 61–67. [Google Scholar] [CrossRef]
- Döníz, B.; Lajos, B. Challenges of LoRaWAN Technology in Smart City Solutions. Interdiscip. Descr. Complex Syst. 2022, 20, 1–10. [Google Scholar] [CrossRef]
- Wei, T.; Feng, W.; Ge, N.; Lu, J. Environment-Aware Coverage Optimization for Space-Ground Integrated Maritime Communications. IEEE Access 2020, 8, 89205–89214. [Google Scholar] [CrossRef]
- Wang, D.; Mei, W.; Ning, B.; Chen, Z. Flexible Beam Coverage Optimization for Movable-Antenna Array. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Cape Town, South Africa, 8–12 December 2024. [Google Scholar] [CrossRef]
- Wei, T.; Feng, W.; Chen, Y.; Wang, C.-X.; Ge, N.; Lu, J. Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2021, 8, 8910–8934. [Google Scholar] [CrossRef]
- Kufakunesu, R.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors 2020, 20, 5044. [Google Scholar] [CrossRef]
- Lykov, Y.V.; Gorelov, D.Y.; Lykova, A.A.; Savenko, S.O. Energy Efficiency Research of LPWAN Technologies. Radio Electron. Comput. Sci. Control. 2023, 3, 27. [Google Scholar] [CrossRef]
- Pinelo, J.; Rocha, A.D.; Arvana, M.; Gonçalves, J.; Cota, N.; Silva, P. Unveiling LoRa’s Oceanic Reach: Assessing the Coverage of the Azores LoRaWAN Network from an Island. Sensors 2023, 23, 7394. [Google Scholar] [CrossRef]
- Shilpa, B.; Gupta, H.P.; Jha, R.K.; Hashmi, S.S. LoRa Interference Issues and Solution Approaches in Dense IoT Networks: A Review. Telecommun. Syst. 2024, 87, 517–539. [Google Scholar] [CrossRef]
- Jouhari, M.; Saeed, N.; Alouini, M.-S.; Amhoud, E.M. A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances, Potentials, and Challenges. IEEE Commun. Surv. Tutor. 2022, 25, 1841–1876. [Google Scholar] [CrossRef]
- Almuhaya, M.A.M.; Jabbar, W.A.; Sulaiman, N.; Abdulmalek, S. A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Future Directions. Electronics 2022, 11, 164. [Google Scholar] [CrossRef]
- Ahmed, A.; Elaasar, M.; Abdelhady, G. IoT LoRaWAN-Based Tracking System in Egypt. Preprints 2023. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Varela-Barbeito, J.; Fernandez-Carames, T.M. Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry. IEEE Access 2021, 9, 140700–140730. [Google Scholar] [CrossRef]
- LoRa Alliance. LoRaWAN® L2 1.0.4 Specification (TS001-1.0.4); LoRa Alliance: Fremont, CA, USA, 2020; Available online: https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification (accessed on 21 May 2025).
- Alkhayyal, M.; Mostafa, A. Recent Developments in AI and ML for IoT: A Systematic Literature Review on LoRaWAN Energy Efficiency and Performance Optimization. Sensors 2024, 24, 4482. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, P.; Bankov, D.; Khorov, E.; Lyakhov, A. Performance Comparison of NB-Fi, Sigfox, and LoRaWAN. Sensors 2022, 22, 9633. [Google Scholar] [CrossRef] [PubMed]
- Device Classes|The Things Network. Available online: https://www.thethingsnetwork.org/docs/lorawan/classes/?utm_source=chatgpt.com (accessed on 21 August 2025).
- Cheikh, I.; Aouami, R.; Sabir, E.; Sadik, M.; Roy, S. Multi-Layered Energy Efficiency in LoRa-WAN Networks: A Tutorial. IEEE Access 2022, 10, 9198–9231. [Google Scholar] [CrossRef]
- Bates, H.; Pierce, M.; Benter, A. Real-Time Environmental Monitoring for Aquaculture Using a LoRaWAN-Based IoT Sensor Network. Sensors 2021, 21, 7963. [Google Scholar] [CrossRef]
- Kong, L.; Tan, J.; Huang, J.; Chen, G.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.; Das, S.K. Edge-Computing-Driven Internet of Things: A Survey. ACM Comput. Surv. 2022, 55, 174. [Google Scholar] [CrossRef]
- Weber, R.; Sentpali, S.; Hübelt, J. Acoustic Location Detection of Animals in Rural Areas Using Acoustic Monitoring and Multilateration. Master’s Thesis, Hochschule Mittweida, Munich, Germany, 2024. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:mit1-opus4-153679 (accessed on 11 May 2025).
- Banti, K.; Karampelia, I.; Dimakis, T.; Boulogeorgos, A.A.A.; Kyriakidis, T.; Louta, M. LoRaWAN Communication Protocols: A Comprehensive Survey under an Energy Efficiency Perspective. Telecom 2022, 3, 322–357. [Google Scholar] [CrossRef]
- Parri, L.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Low Power Wide Area Networks (LPWAN) at Sea: Performance Analysis of Offshore Data Transmission by Means of LoRaWAN Connectivity for Marine Applications. Sensors 2019, 19, 3239. [Google Scholar] [CrossRef] [PubMed]
- Rohde, J.; Helms, D.; Neudert, M.; Betz, M.; Arndt, S.; Haas, C.; Förster, A. Vision Paper: LoRa on Ice—Live Sea Ice Monitoring Using IoT Technologies. In Proceedings of the 21st International Conference on Embedded Wireless Systems and Networks (EWSN 2024), Abu Dhabi, United Arab Emirates, 10–13 March 2024; Volume 1, pp. 1–6. Available online: https://ewsn.org/file-repository/ewsn2024/ewsn24-final159.pdf (accessed on 11 May 2025).
- Elgharbi, S.E.; Iturralde, M.; Dupuis, Y.; Gaugue, A. OSR: Advancing Multi-Hop Routing for LoRaWAN Mesh Networks in Maritime Scenarios. In Proceedings of the 2024 20th International Conference on Network and Service Management: AI-Powered Network and Service Management for Tomorrow’s Digital World, CNSM 2024, Prague, Czech Republic, 28–31 October 2024. [Google Scholar] [CrossRef]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Pensieri, S.; Viti, F.; Moser, G.; Serpico, S.B.; Maggiolo, L.; Pastorino, M.; Solarna, D.; Cambiaso, A.; Carraro, C.; Degano, C.; et al. Evaluating LoRaWAN Connectivity in a Marine Scenario. J. Mar. Sci. Eng. 2021, 9, 1218. [Google Scholar] [CrossRef]
- Sagala, A.; Hutapea, S.; Sinaga, R.; Lubis, R. Implementing Interoperable Multigateway Lorawan for Efficient Maritime Tracking Systems. EUREKA Phys. Eng. 2024, 3, 159–168. [Google Scholar] [CrossRef]
- Lahoud, S.; David, L. Fragment-Level Macro-Diversity Reception in LoRaWAN Networks with LR-FHSS. arXiv 2025, arXiv:2505.01689. Available online: https://arxiv.org/abs/2505.01689 (accessed on 10 May 2025).
- Ameloot, T.; Moeneclaey, M.; Van Torre, P.; Rogier, H. Characterizing the Impact of Doppler Effects on Body-Centric Lora Links with Sdr. Sensors 2021, 21, 4049. [Google Scholar] [CrossRef]
- Faye, I.; Fam, P.A.; Ndiaye, M.L. Energy Consumption of IoT Devices: An Accurate Evaluation to Better Predict Battery Lifetime. Radio Sci. 2022, 57, e2021RS007423. [Google Scholar] [CrossRef]
- Deploying LoRaWAN® Gateways in Extreme Conditions. Available online: https://tektelic.com/expertise/lorawan-gateways-for-extreme-conditions/?utm_source=chatgpt.com (accessed on 10 May 2025).
- Elijah, O.; Rahim, S.K.A.; Sittakul, V.; Al-Samman, A.M.; Cheffena, M.; Din, J.B.; Tharek, A.R. Effect of Weather Condition on LoRa IoT Communication Technology in a Tropical Region: Malaysia. IEEE Access 2021, 9, 72835–72843. [Google Scholar] [CrossRef]
- Antennas for Harsh Environmental Conditions: Selection Guide. Available online: https://www.data-alliance.net/blog/antennas-for-harsh-environmental-conditions-selection-guide?utm_source=chatgpt.com (accessed on 10 May 2025).
- LoRa Frequency and Regulations: A Global Guideline—Arshon Inc. Blog. Available online: https://arshon.com/blog/lora-frequency-and-regulations-a-global-guide/?utm_source=chatgpt.com (accessed on 10 May 2025).
- Coutaud, U.; Heusse, M.; Tourancheau, B. LoRa Channel Characterization for Flexible and High Reliability Adaptive Data Rate in Multiple Gateways Networks. Computers 2021, 10, 44. [Google Scholar] [CrossRef]
- González-Palacio, M.; Tobón-Vallejo, D.; Sepúlveda-Cano, L.M.; Rúa, S.; Pau, G.; Le, L.B. LoRaWAN Path Loss Measurements in an Urban Scenario Including Environmental Effects. Data 2023, 8, 4. [Google Scholar] [CrossRef]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Parrino, S.; Pozzebon, A. Underwater to above Water LoRaWAN Networking: Theoretical Analysis and Field Tests. Measurement 2022, 196, 111140. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, S. Multilink and AUV-Assisted Energy-Efficient Underwater Emergency Communications. IEEE Internet Things J. 2023, 10, 8068–8082. [Google Scholar] [CrossRef]
- Fattah, S.; Gani, A.; Ahmedy, I.; Idris, M.Y.I.; Hashem, I.A.T. A Survey on Underwater Wireless Sensor Networks: Requirements, Taxonomy, Recent Advances, and Open Research Challenges. Sensors 2020, 20, 5393. [Google Scholar] [CrossRef]
- Elgharbi, S.E.; Iturralde, M.; Dupuis, Y.; Gaugue, A. Maritime Monitoring through LoRaWAN: Resilient Decentralised Mesh Networks for Enhanced Data Transmission. Comput. Commun. 2025, 241, 108276. [Google Scholar] [CrossRef]
- Ravi, K.M.; Sarvagya, M.; Prasad, S.N.; Kavya, B.S. Design and Implementation of Collaborative Energy Efficient IoT-Based LoRaWAN. Power Syst. Technol. 2024, 48, 1398–1411. [Google Scholar] [CrossRef]
- Muteba, K.F.; Djouani, K.; Olwal, T. 5G NB-IoT: Design, Considerations, Solutions and Challenges. Procedia Comput. Sci. 2021, 198, 86–93. [Google Scholar] [CrossRef]
- Siemuri, A.; Glocker, T.; Mekkanen, M.; Kauhaniemi, K.; Mantere, T.; Elmusrati, M. Design and Implementation of a Wireless CAN Module for Marine Engines Using ZigBee Protocol. IET Commun. 2023, 17, 1541–1552. [Google Scholar] [CrossRef]
- Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area Applications: From the Aspect of Architecture and Security. Sensors 2022, 22, 6313. [Google Scholar] [CrossRef]
- Elia, E.; Mauri, M. Performance Analysis of Bluetooth Low Energy Networks for Wireless Sensors. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2022. Available online: https://www.politesi.polimi.it/retrieve/f8dddd9b-9a46-4f55-8a46-e29ee5d98ffe/Tesi_Epis_1.4.pdf (accessed on 22 May 2025).
- Lindenbergs, A.; Muehleisen, M.; Payaró, M.; Kõrbe Kaare, K.; Zaglauer, H.W.; Scholliers, J.; Sadam, A.; Kuhi, K.; Nykanen, L. Seamless 5G Multi-Hop Connectivity Architecture and Trials for Maritime Applications. Sensors 2023, 23, 4203. [Google Scholar] [CrossRef]
- Monzon Baeza, V.; Ortiz, F.; Herrero Garcia, S.; Lagunas, E. Enhanced Communications on Satellite-Based IoT Systems to Support Maritime Transportation Services. Sensors 2022, 22, 6450. [Google Scholar] [CrossRef]
- Alqurashi, F.S.; Trichili, A.; Saeed, N.; Ooi, B.S.; Alouini, M.-S. Maritime Communications: A Survey on Enabling Technologies, Opportunities, and Challenges. IEEE Internet Things J. 2022, 10, 3525–3547. [Google Scholar] [CrossRef]
- Kress, M.M. Automatic Identification System (AIS) Data Case Study: Identifying Unofficial Mooring Areas Along the Upper Mississippi River; Technical Note (ERDC/TN DOTS-23-2); US Army Engineer Research and Development Center: Vicksburg, MS, USA, 2023. [Google Scholar] [CrossRef]
- Gajewski, S.; Czapiewska, A.; Gajewska, M. Evaluation of the Use of M2M-Type NB-IoT and LTE Technologies for Maritime Communication Systems. Pol. Marit. Res. 2023, 30, 126–134. [Google Scholar] [CrossRef]
- Adam, N.; Ali, M.; Naeem, F.; Ghazy, A.S.; Kaddoum, G. State-of-the-Art Security Schemes for the Internet of Underwater Things: A Holistic Survey. IEEE Open J. Commun. Soc. 2024, 5, 6561–6592. [Google Scholar] [CrossRef]
- Li, F.; Shui, Y.; Liang, J.; Yang, K.; Yu, J. Ship-to-Ship Maritime Wireless Channel Modeling under Various Sea State Conditions Based on REL Model. Front. Mar. Sci. 2023, 10, 1134286. [Google Scholar] [CrossRef]
- Duangsuwan, S.; Jamjareegulgarn, P. Exploring Ground Reflection Effects on Received Signal Strength Indicator and Path Loss in Far-Field Air-to-Air for Unmanned Aerial Vehicle-Enabled Wireless Communication. Drones 2024, 8, 677. [Google Scholar] [CrossRef]
- Pozzebon, A.; Cappelli, I.; Campagnaro, F.; Francescon, R.; Zorzi, M. LoRaWAN Transmissions in Salt Water for Superficial Marine Sensor Networking: Laboratory and Field Tests. Sensors 2023, 23, 4726. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Ahmed, T.; Raza, A.; Naeem, H. Design of Shrewd Underwater Routing Synergy Using Porous Energy Shells. Smart Cities 2020, 3, 74–93. [Google Scholar] [CrossRef]
- Dempsey, R.G.; Ethier, J.; Yanikomeroglu, H. Map-Based Path Loss Prediction in Multiple Cities Using Convolutional Neural Networks. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 1989–1993. [Google Scholar] [CrossRef]
- What Are the Factors Affecting LoRaWAN Range in IoT—Lansitec. Available online: https://www.lansitec.com/blogs/what-are-the-factors-affecting-lorawan-range-in-iot/?utm_source=chatgpt.com (accessed on 10 May 2025).
- Ajewole, M.O.; Owolawi, P.A.; Adetunji, R.M. Assessment of FOG and Rain Induced-Attenuation on Terrestrial FSO Links. APTIKOM J. Comput. Sci. Inf. Technol. 2019, 4, 37–44. [Google Scholar] [CrossRef]
- What Is Tropospheric Ducting?—ISCO. Available online: https://iscointl.com/what-is-tropospheric-ducting/ (accessed on 10 May 2025).
- Yang, C.; Shi, Y.; Wang, J. The Preliminary Investigation of Communication Characteristics Using Evaporation Duct across the Taiwan Strait. J. Mar. Sci. Eng. 2022, 10, 1493. [Google Scholar] [CrossRef]
- Hamza, E.K.; Aziez, S.A.; Reja, A.H.; Sabry, A.H. Identifying Some Regularities of Radio Frequency Propagation of a Radar System by Analyzing Different Environmental Effects. E. Eur. J. Enterp. Technol. 2022, 5, 61–67. [Google Scholar] [CrossRef]
- Gaitan, M.G.; D’Orey, P.M.; Cecilio, J.; Rodrigues, M.; Santos, P.M.; Pinto, L.; Oliveira, A.; Casimiro, A.; Almeida, L. Modeling LoRa Communications in Estuaries for IoT Environmental Monitoring Systems. IEEE Sens. J. 2022, 22, 21312–21325. [Google Scholar] [CrossRef]
- International Telecommunication Union—Radiocommunication Bureau. Recommendation ITU-R P.526-15: Propagation by Diffraction; ITU: Geneva, Switzerland, 2019; Available online: https://www.itu.int/rec/R-REC-P.526 (accessed on 12 May 2025).
- Branch, P. Measurements and Models of 915 MHz LoRa Radio Propagation in an Underground Gold Mine. Sensors 2022, 22, 8653. [Google Scholar] [CrossRef]
- Banafaa, M.; Muqaibel, A.H. Tropospheric Ducting: A Comprehensive Review and Machine Learning Based Classification Advancements. IEEE Access 2025, 13, 22510–22534. [Google Scholar] [CrossRef]
- Azevedo, J.A.; Mendonça, F. A Critical Review of the Propagation Models Employed in LoRa Systems. Sensors 2024, 24, 3877. [Google Scholar] [CrossRef]
- Ojo, M.O.; Viola, I.; Miretti, S.; Martignani, E.; Giordano, S.; Baratta, M. A Deep Learning Approach for Accurate Path Loss Prediction in LoRaWAN Livestock Monitoring. Sensors 2024, 24, 2991. [Google Scholar] [CrossRef]
- Breinbjerg, O.; Sierra Castañer, M.; Gregson, S.F.; Eibert, T.F.; Capozzoli, A.; D’Agostino, F.; Ericsson, A.; Vecchi, G.; Granich, A.; Loh, T.H.; et al. Antenna Measurement Challenges and Opportunities. Rev. Electromagn. 2023, 2, 1–49. [Google Scholar] [CrossRef]
- Wnuk, M. Adaptive Antenna Array Control Algorithm in Radiocommunication Systems. Algorithms 2024, 17, 81. [Google Scholar] [CrossRef]
- Kodgirwar, V.P.; Deosarkar, S.B.; Joshi, K.R. Design of Adaptive Array with E-Shape Slot Radiator for Smart Antenna System. Prog. Electromagn. Res. M 2020, 90, 137–146. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Yu, J.; Zhang, J.; Chang, F. A Survey of Maritime Communications: From the Wireless Channel Measurements and Modeling Perspective. Reg. Stud. Mar. Sci. 2021, 48, 102031. [Google Scholar] [CrossRef]
- Mira, F.; Artiga, X.; Llamas-Garro, I.; Vázquez-Gallego, F.; Velázquez-González, J.S. Circularly Polarized Dual-Band Lora/Gps Antenna for a Uav-Assisted Hazardous Gas and Aerosol Sensor. Micromachines 2021, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Micro-Ant Develops Switched-Beam Electronically Steerable Antennas for Maritime, Aviation, and Defense. Available online: https://www.everythingrf.com/news/details/18241-micro-ant-develops-switched-beam-electronically-steerable-antennas-for-maritime-aviation-and-defense?utm_source=chatgpt.com (accessed on 10 May 2025).
- What Are Switched Beam Antennas? Available online: https://www.cyntony.com/blog/what-are-switched-beam-antennas?utm_source=chatgpt.com (accessed on 8 May 2025).
- Apergis, N.G.; Inglesis, I.P.; Vasileiadis, S.; Mitilineos, S.A. Development of a small form factor switched-beam antenna for IoT applications at the 868 MHZ ISM band. In Proceedings of the Antennas and Propagation Conference (APC-2019), Birmingham, UK, 11–12 November 2019. [Google Scholar] [CrossRef]
- Nsalo Kong, D.F.; Shen, C.; Tian, C.; Zhang, K. A New Low-Cost Acoustic Beamforming Architecture for Real-Time Marine Sensing: Evaluation and Design. J. Mar. Sci. Eng. 2021, 9, 868. [Google Scholar] [CrossRef]
- Merino-Fernandez, I.; Khemchandani, S.L.; del Pino, J.; Saiz-Perez, J. Phased Array Antenna Analysis Workflow Applied to Gateways for LEO Satellite Communications. Sensors 2022, 22, 9406. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.S.; Soeung, S.; Abdul Rahim, S.K.; Musa, U.; Ba Hashwan, S.S.; Yunusa, Z.; Hamzah, S.A. LoRa Microstrip Patch Antenna: A Comprehensive Review. Alex. Eng. J. 2024, 103, 197–221. [Google Scholar] [CrossRef]
- Yahya, M.S.; Soeung, S.; Chinda, F.E.; Rahim, S.K.A.; Musa, U.; Nor, N.B.M.; Sovuthy, C. A Compact Reconfigurable Multi-Frequency Patch Antenna for LoRa IoT Applications. Prog. Electromagn. Res. M 2023, 116, 77–89. [Google Scholar] [CrossRef]
- García, E.; Andújar, A.; Anguera, J. Overview of Reconfigurable Antenna Systems for IoT Devices. Electronics 2024, 13, 3988. [Google Scholar] [CrossRef]
- Yahya, M.S.; Soeung, S.; Singh, N.S.S.; Yunusa, Z.; Chinda, F.E.; Rahim, S.K.A.; Musa, U.; Nor, N.B.M.; Sovuthy, C.; Abro, G.E.M. Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications. Sensors 2023, 23, 5359. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems. Electronics 2019, 8, 128. [Google Scholar] [CrossRef]
- Gade, P.K.; Sridharlakshmi, N.R.B.; Allam, A.R.; Koehler, S. Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC J. Adv. Res. 2021, 10, 207–220. [Google Scholar] [CrossRef]
- da Brilhante, D.S.; Manjarres, J.C.; Moreira, R.; de Oliveira Veiga, L.; de Rezende, J.F.; Müller, F.; Klautau, A.; Leonel Mendes, L.; Felipe, F.A. A Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G Systems. Sensors 2023, 23, 4359. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Jamshed, M.A.; Abbasi, Q.; Imran, M.A.; Ur-Rehman, M. Leveraging the Role of Dynamic Reconfigurable Antennas in Viewpoint of Industry 4.0 and Beyond. Research 2023, 6, 0110. [Google Scholar] [CrossRef]
- Bo, P.; Tu, W.; Tu, X.; Qu, F.; Wang, F.Y. Dual RIS-Aided Parallel Intelligence Surface for IoAMVSs: A Co-Design Approach for 3C Problems. IEEE Trans. Intell. Veh. 2024. [Google Scholar] [CrossRef]
- Gong, B.; Huang, G.; Tu, W. Minimize BER without CSI for Dynamic RIS-Assisted Wireless Broadcast Communication Systems. Comput. Netw. 2024, 253, 110729. [Google Scholar] [CrossRef]
- Salim, M.M.; Rabie, K.M.; Muqaibel, A.H. Energy-Efficient UAV-Mounted RIS for IoT: A Hybrid Energy Harvesting and DRL Approach. arXiv 2025. [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Loubany, A.; Lahoud, S.; Samhat, A.E.; El Helou, M. Improving Energy Efficiency in LoRaWAN Networks with Multiple Gateways. Sensors 2023, 23, 5315. [Google Scholar] [CrossRef]
- Pirayesh, H.; Zhang, S.; Sangdeh, P.K.; Zeng, H. MaLoRaGW: Multi-User MIMO Transmission for LoRa. In Proceedings of the SenSys 2022—Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 6–9 November 2022; Association for Computing Machinery, Inc.: New York, NY, USA, 2023; pp. 179–192. [Google Scholar] [CrossRef]
- 2J6915Ba 2 × 868/915 MHz ISM MIMO Screw Mount Antenna|2J Antennas. Available online: https://www.2j-antennas.com/antennas/combination-external-antennas/2j6915ba-phoenix-2-868-915-mhz-ism-mimo-screw-mount-antenna/744 (accessed on 8 May 2025).
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Liu, C.-T.; Pan, J.-Y. Joint Mechanical-Electrical Beam Steering for Maritime-LEO Communications: Optimizing Performance Through ESPRIT-Based DOA Estimation. TechRxiv 2025. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Y.; Xiao, H.; Chen, Y. The Study of Marine Intelligent Antenna Technology Based on Beamforming Algorithm. In Proceedings of the 2022 7th International Conference on Computer and Communication Systems, ICCCS 2022, Wuhan, China, 22–25 April 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 442–446. [Google Scholar] [CrossRef]
- Talpur, H.; Muneer, B.; Shaikh, F.K.; Korai, U.A. Design of Phased Array Antenna System for LoRa Applications. In Proceedings of the IMTIC 2023—7th International Multi-Topic ICT Conference 2023: AI Convergence Towards Sustainable Communications, Jamshoro, Pakistan, 10–12 May 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Dala, A.; Arslan, T. Design, Implementation, and Measurement Procedure of Underwater and Water Surface Antenna for LoRa Communication. Sensors 2021, 21, 1337. [Google Scholar] [CrossRef]
- Majumder, A.; Losito, M.; Paramasivam, S.; Kumar, A.; Gatto, G. Buoys for Marine Weather Data Monitoring and LoRaWAN Communication. Ocean Eng. 2024, 313, 119521. [Google Scholar] [CrossRef]
- Saputra, D.; Gaol, F.L.; Abdurachman, E.; Sensuse, D.I.; Matsuo, T. Architectural Model and Modified Long Range Wide Area Network (LoRaWAN) for Boat Traffic Monitoring and Transport Detection Systems in Shallow Waters. Emerg. Sci. J. 2023, 7, 1188–1205. [Google Scholar] [CrossRef]
- Elgharbi, S.E.; Iturralde, M.; Dupuis, Y.; Coulombier, T.; Menard, M.; Gaugue, A. Multi-Hop Wireless Transmission for Maritime Scenarios. In Proceedings of the OCEANS 2023—Limerick, OCEANS Limerick 2023, Limerick, Ireland, 5–8 June 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Bouyedda, A.; Barelaud, B.; Gineste, L. Design and Realization of a UHF Frequency Reconfigurable Antenna for Hybrid Connectivity LPWAN and LEO Satellite Networks. Sensors 2021, 21, 5466. [Google Scholar] [CrossRef]
- Bogdan, G.; Godziszewski, K.; Yashchyshyn, Y. Time-Modulated Antenna Array with Beam-Steering for Low-Power Wide-Area Network Receivers. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1876–1880. [Google Scholar] [CrossRef]
- Alset, U.; Kulkarni, A.; Mehta, H. Performance Analysis of Various LoRaWAN Frequencies for Optimal Data Transmission of Water Quality Parameter Measurement. In Proceedings of the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020. [Google Scholar] [CrossRef]
- Nordvik, K.; Johansen, T.A. On Compensation for Wave-Induced Roll in Dynamic Positioning Control. J. Mar. Sci. Technol. 2022, 27, 1268–1280. [Google Scholar] [CrossRef]
- Xue, X.; Yang, J.; Zhao, Q.; Wang, S.; Zhao, R.; Shao, H. Sea Surface Height Measurements Based on Multi-Antenna GNSS Buoys. Sensors 2024, 24, 3451. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, Y.; Zhang, C.; Niu, Y.; Wang, Z.; Zhang, H. A Multi-Sensor Fusion Approach for Maritime Autonomous Surface Ships Berthing Navigation Perception. Ocean Eng. 2025, 316, 119965. [Google Scholar] [CrossRef]
- Powell, D.J. Comprehensive Approaches to Enhance Maritime Wireless Networks: A Survey. In Proceedings of the International Ship Control Systems Symposium (iSCSS), Liverpool, UK, 5–7 November 2024. [Google Scholar] [CrossRef]
- Appel, M.; Iliopoulos, A.; Fohlmeister, F.; Pérez Marcos, E.; Cuntz, M.; Konovaltsev, A.; Antreich, F.; Meurer, M. Interference and Multipath Suppression with Space-Time Adaptive Beamforming for Safety-of-Life Maritime Applications. CEAS Space J. 2019, 11, 21–34. [Google Scholar] [CrossRef]
- Goetz, K. Advanced Materials in Antenna Design: Exploring Novel Sub-Strates and Coatings. J. Telecommun. Syst. Manag. 2024, 13, 422. Available online: https://www.hilarispublisher.com/open-access/advanced-materials-in-antenna-design-exploring-novel-substrates-and-coatings-104997.html (accessed on 14 May 2025).
- Jia, X. Influence of Marine Climate on Corrosion of Common Materials for Electronic Equipment. In Proceedings of the CIE International Conference on Radar (RADAR), Guangzhou, China, 14–17 November 2021; pp. 3331–3335. [Google Scholar] [CrossRef]
- Submersible Enclosures NEMA 6P/IP68 for Naval Applications|SLAYSON. Available online: https://slayson.com/navy/?utm_source=chatgpt.com (accessed on 14 May 2025).
- Marine Mounts: Marine Anti-Vibration Products—GMT Rubber. Available online: https://www.gmtrubber.com/marine/ (accessed on 14 May 2025).
- Ilcev, D.S. Introduction to Coastal HF Maritime Surveillance Radars. Pol. Marit. Res. 2019, 26, 153–162. [Google Scholar] [CrossRef]
- Tang, M.; Qi, D.; Liu, C.; Zhao, Y. New Robust Adaptive Beamforming Method for Multipath Coherent Signal Reception. Prog. Electromagn. Res. M 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Amador, A.; Merrifield, S.T.; Terrill, E.J. Assessment of Atmospheric and Oceanographic Measurements from an Autonomous Surface Vehicle. J. Atmos. Ocean Technol. 2023, 40, 305–326. [Google Scholar] [CrossRef]
- Sabilwala, M.A.; Pathak, A.; Hiwale, A.; Raj, A.A.B. A Comprehensive Review of Antenna Technologies for Foliage Penetration Radar Systems. Int. J. Eng. Res. Rev. 2024, 12, 7–33. [Google Scholar] [CrossRef]
- Kebe, M.; Yagoub, M.C.E.; Amaya, R.E. A Survey of Phase Shifters for Microwave Phased Array Systems. Int. J. Circuit Theory Appl. 2024, 53, 3719–3739. [Google Scholar] [CrossRef]
- Farran, M.; Al-Husseini, M.; Kabalan, K.; Capobianco, A.; Boscolo, S. Electronically Reconfigurable Parasitic Antenna Array for Pattern Selectivity. J. Eng. 2019, 2019, 1–5. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, G.; Pan, L.; Liu, Z.; Luan, Y.; Liu, F.; Guo, J. Dual-Polarized Antenna with 2D Beam Steering Using Reconfigurable Double Square Loops. Electronics 2025, 14, 1228. [Google Scholar] [CrossRef]
- Qu, Z.; Zhou, Y.; Alkaraki, S.; Kelly, J.R.; Gao, Y. Continuous Beam Steering Realized by Tunable Ground in a Patch Antenna. IEEE Access 2023, 11, 4095–4104. [Google Scholar] [CrossRef]
- Mirmozafari, M.; Zhang, Z.; Gao, M.; Zhao, J.; Honari, M.M.; Booske, J.H.; Behdad, N. Mechanically Reconfigurable, Beam-Scanning Reflectarray and Transmitarray Antennas: A Review. Appl. Sci. 2021, 11, 6890. [Google Scholar] [CrossRef]
- Chaloun, T.; Boccia, L.; Arnieri, E.; Fischer, M.; Valenta, V.; Fonseca, N.J.G.; Waldschmidt, C. Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives. IEEE J. Microw. 2022, 2, 545–581. [Google Scholar] [CrossRef]
- Chen, R.; Tian, Z.; Long, W.-X.; Wang, X.; Zhang, W. Hybrid Mechanical and Electronic Beam Steering for Maximizing OAM Channel Capacity. IEEE Trans. Wirel. Commun. 2023, 22, 534–549. [Google Scholar] [CrossRef]
- Benoît, L.; Fabien, P.; Anaël, L.; Alain, K.; Romain, C. Hybrid Mechanical/Electronical Steering Antenna: Concept, Design and First Mockup. In Proceedings of the European Radar Conference (EuRAD), Milan, Italy, 28–30 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Pereira, F.; Correia, R.; Pinho, P.; Lopes, S.I.; Carvalho, N.B. Challenges in Resource-Constrained Iot Devices: Energy and Communication as Critical Success Factors for Future Iot Deployment. Sensors 2020, 20, 6420. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Zhao, Y.; Wei, M.; Liu, A.; Lau, V.K.N. Sparse Hybrid Precoding for Power Minimization With an Adaptive Antenna Structure in Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2022, 21, 5279–5292. [Google Scholar] [CrossRef]
- Philip, M.S.; Singh, P. Adaptive Transmit Power Control Algorithm for Dynamic LoRa Nodes in Water Quality Monitoring System. Sustain. Comput. Inform. Syst. 2021, 32, 100613. [Google Scholar] [CrossRef]
- Fang, T.; Wang, J.H.; Cha, J.; Jeong, I.; Ahn, C.J. A Study on Performance Improvement of Maritime Wireless Communication Using Dynamic Power Control with Tethered Balloons. Electronics 2025, 14, 1277. [Google Scholar] [CrossRef]
- Wu, T.; Zou, Y. Energy Efficiency Optimization in Adaptive Transmit Antenna Selection Systems with Limited Feedback. IEEE Internet Things J. 2023, 10, 1248–1258. [Google Scholar] [CrossRef]
- Siamantas, G.; Rountos, D.; Kandris, D. Energy Saving in Wireless Sensor Networks via LEACH-Based, Energy-Efficient Routing Protocols. J. Low Power Electron. Appl. 2025, 15, 19. [Google Scholar] [CrossRef]
- Bronk, K.; Koncicki, P.; Lipka, A.; Niski, R.; Wereszko, B. Radio Channel Modelling for VHF System Operating in the Offshore Wind Farms Propagation Environment. Sensors 2023, 23, 7593. [Google Scholar] [CrossRef]
- Celades-Martínez, J.; Rodríguez, M.; Gaitán, M.G.; Almeida, L. Two-Ray Model Analysis for Overwater Communication at 28 GHz with Different Heights. In Proceedings of the 2023 IEEE MTT-S Latin America Microwave Conference, San Jose, Costa Rica, 6–8 December 2023; pp. 144–147. [Google Scholar] [CrossRef]
- Raulefs, R.; Bellido-Manganell, M.A.; Dammann, A.; Walter, M.; Wang, W. Verification and Modeling of the Maritime Channel for Maritime Communications and Navigation Networks. Front. Mar. Sci. 2023, 10, 1158524. [Google Scholar] [CrossRef]
- Ekman, T. Fading Distribution Model for the Maritime Radio Channel. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, Q.; Burkholder, R.J.; Yardim, C.; Xu, L.; Pozderac, J.; Christman, A.; Fernando, H.J.S.; Alappattu, D.P.; Wang, Q. Range and Height Measurement of X-Band Em Propagation in the Marine Atmospheric Boundary Layer. IEEE Trans. Antennas Propag. 2019, 67, 2063–2073. [Google Scholar] [CrossRef]
- Valčić, S.; Brčić, D. On Detection of Anomalous VHF Propagation over the Adriatic Sea Utilising a Software-Defined Automatic Identification System Receiver. J. Mar. Sci. Eng. 2023, 11, 1170. [Google Scholar] [CrossRef]
- Priya, I.L.; Meenakshi, M. Hybrid FSO/MmWave Wireless System: A Plausible Solution for 5G Backhaul Applications. Opto-Electron. Rev. 2022, 30, e141950. [Google Scholar] [CrossRef]
- Alozie, E.; Abdulkarim, A.; Abdullahi, I.; Usman, A.D.; Faruk, N.; Olayinka, I.F.Y.; Adewole, K.S.; Oloyede, A.A.; Chiroma, H.; Sowande, O.A.; et al. A Review on Rain Signal Attenuation Modeling, Analysis and Validation Techniques: Advances, Challenges and Future Direction. Sustainability 2022, 14, 11744. [Google Scholar] [CrossRef]
- Chen, P.; Wang, W.; Gao, J. Interference Suppression Using Adaptive Nulling Algorithm without Calibration Sources. In Proceedings of the 2021 IEEE International Conference on Autonomous Systems (ICAS 2021), Shenzhen, China, 11–13 August 2021. [Google Scholar] [CrossRef]
- Mohammed, J.R. Interference Mitigation in the Wireless Communication Systems Using Adaptive Filters. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1152, 012001. [Google Scholar] [CrossRef]
- Akdağ, M.; Solnør, P.; Johansen, T.A. Collaborative Collision Avoidance for Maritime Autonomous Surface Ships: A Review. Ocean Eng. 2022, 250, 110920. [Google Scholar] [CrossRef]
- Lázaro, F.; Raulefs, R.; Wang, W.; Clazzer, F.; Plass, S. VHF Data Exchange System (VDES): An Enabling Technology for Maritime Communications. CEAS Space J. 2019, 11, 55–63. [Google Scholar] [CrossRef]
- Goudosis, A.; Katsikas, S.K. Secure Ais with Identity-Based Authentication and Encryption. TransNav 2020, 14, 287–298. [Google Scholar] [CrossRef]
- Rodseth, O.J.; Froystad, C.; Meland, P.H.; Bernsmed, K.; Nesheim, D.A. The Need for a Public Key Infrastructure for Automated and Autonomous Ships. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Ulsan, Republic of Korea, 11–12 November 2020; Volume 929. [Google Scholar] [CrossRef]
- van der Merwe, J.R.; Garzia, F.; Rügamer, A.; Cortés Vidal, I.; Felber, W. Adaptive notch filtering against complex interference scenarios. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Leuchter, J.; Bloudicek, R.; Boril, J.; Bajer, J.; Blasch, E.; Ali, H. Influence of Aircraft Power Electronics Processing on Backup VHF Radio Systems. Electronics 2021, 10, 77. [Google Scholar] [CrossRef]
- Luo, K.; Wang, Q.; Yang, K.; Li, B. A Novel Optimization Method for Attenuating Multi-Interferences in Satellite Communication Earth Station. Int. J. Satell. Commun. Netw. 2024, 42, 273–285. [Google Scholar] [CrossRef]
- Saeidi, T.; Karamzadeh, S. Enhancing CubeSat Communication Through Beam-Steering Antennas: A Review of Technologies and Challenges. Electronics 2025, 14, 754. [Google Scholar] [CrossRef]
- Hou, N.; Wang, Y.; Xia, X.; Yu, S.; Zheng, Y.; Gu, T. MoLoRa: Intelligent Mobile Antenna System for Enhanced LoRa Reception in Urban Environments. In Proceedings of the 23rd ACM Conference on Embedded Networked Sensor Systems, Irvine, CA, USA, 6–9 May 2025; ACM: New York, NY, USA, 2025; pp. 424–436. [Google Scholar] [CrossRef]
- Rosado-Sanz, J.; Jarabo-Amores, M.P.; De la Mata-Moya, D.; Rey-Maestre, N. Adaptive Beamforming Approaches to Improve Passive Radar Performance in Sea and Wind Farms’ Clutter. Sensors 2022, 22, 6865. [Google Scholar] [CrossRef]
- Hou, N.; Xia, X.; Zheng, Y. Don’t Miss Weak Packets: Boosting LoRa Reception with Antenna Diversities. ACM Trans. Sens. Netw. 2023, 19, 41. [Google Scholar] [CrossRef]
- Sun, Z.; Ni, T.; Yang, H.; Liu, K.; Zhang, Y.; Gu, T.; Xu, W. FLoRa: Energy-Efficient, Reliable, and Beamforming-Assisted Over-The-Air Firmware Update in LoRa Networks. In Proceedings of the IPSN 2023—Proceedings of the 2023 22nd International Conference on Information Processing in Sensor Networks, San Antonio, TX, USA, 9–12 May 2023; Association for Computing Machinery, Inc.: New York, NY, USA, 2023; pp. 14–26. [Google Scholar] [CrossRef]
- Ruotsalainen, H.; Shen, G.; Zhang, J.; Fujdiak, R. LoRaWAN Physical Layer-Based Attacks and Countermeasures, A Review. Sensors 2022, 22, 3127. [Google Scholar] [CrossRef]
- XIAO, W.; Kaneko, M.; El Rachkidy, N.; Guitton, A. Integrating LoRa Collision Decoding and MAC Protocols for Enabling IoT Massive Connectivity. TechRxiv 2022. [Google Scholar] [CrossRef]
- Gang, W.; Qin, Y. MAC Protocols for Wireless Mesh Networks with-Beam Antennas: A Survey. In Advances in Information and Communication; Arai, K., Bhatia, R., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2020; Volume 69, pp. 117–142. [Google Scholar] [CrossRef]
- Mustafa, R.; Sarkar, N.I.; Mohaghegh, M.; Pervez, S. A Cross-Layer Secure and Energy-Efficient Framework for the Internet of Things: A Comprehensive Survey. Sensors 2024, 24, 7209. [Google Scholar] [CrossRef]
- Tsakmakis, A.; Valkanis, A.; Beletsioti, G.; Kantelis, K.; Nicopolitidis, P.; Papadimitriou, G. An Adaptive LoRaWAN MAC Protocol for Event Detection Applications. Sensors 2022, 22, 3538. [Google Scholar] [CrossRef]
- Zhou, W.; Tong, Z.; Dong, Z.Y.; Wang, Y. Lora-Hybrid: A LoRaWAN-Based Multihop Solution for Regional Microgrid. In Proceedings of the 2019 IEEE 4th International Conference on Computer and Communication Systems, ICCCS 2019, Singapore, 23–25 February 2019; pp. 650–654. [Google Scholar] [CrossRef]
- Silva, E.F.; Figueiredo, L.M.; de Oliveira, L.A.; Chaves, L.J.; de Oliveira, A.L.; Rosário, D.; Cerqueira, E. Adaptive Parameters for LoRa-Based Networks Physical-Layer. Sensors 2023, 23, 4597. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, B.; Khriji, S.; Chéour, R.; Lahoud, C.; Moessner, K.; Kanoun, O. Improving the Reliability of Long-Range Communication against Interference for Non-Line-of-Sight Conditions in Industrial Internet of Things Applications. Appl. Sci. 2024, 14, 868. [Google Scholar] [CrossRef]
- Casals, L.; Gomez, C.; Vidal, R. The Sf12 Well in Lorawan: Problem and End-Device-Based Solutions. Sensors 2021, 21, 6478. [Google Scholar] [CrossRef] [PubMed]
- Tugrul, Y.; Sema, O. Smart Spreading Factor Assignment for LoRaWANs. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019. [Google Scholar] [CrossRef]
- De Jesus, G.G.M.; Souza, R.D.; Montez, C.; Hoeller, A. Lorawan Adaptive Data Rate with Flexible Link Margin. IEEE Internet Things J. 2021, 8, 6053–6061. [Google Scholar] [CrossRef]
- Cho, J.S.; Hwang, D.Y.; Kim, K.-H. Improving TDoA-Based Positioning Accuracy Using Learning in a LoRaWAN Environment. In Proceedings of the International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019. [Google Scholar] [CrossRef]
- Milarokostas, C.; Tsolkas, D.; Passas, N.; Merakos, L. A Comprehensive Study on LPWANs with a Focus on the Potential of LoRa/LoRaWAN Systems. IEEE Commun. Surv. Tutor. 2023, 25, 825–867. [Google Scholar] [CrossRef]
- Gkotsiopoulos, P.; Zorbas, D.; Douligeris, C. Performance Determinants in LoRa Networks: A Literature Review. IEEE Commun. Surv. Tutor. 2021, 23, 1721–1758. [Google Scholar] [CrossRef]
- Peña Queralta, J.; Gia, T.N.; Zou, Z.; Tenhunen, H.; Westerlund, T. Comparative Study of LPWAN Technologies on Unlicensed Bands for M2M Communication in the IoT: Beyond Lora and LoRaWAN. Procedia Comput. Sci. 2019, 155, 343–350. [Google Scholar] [CrossRef]
- Norhane, B.; Hajer, T.; Mounir, F. Enhanced ADR for LoRaWAN Networks with; IEEE: Piscataway, NJ, USA, 2019; ISBN 9781538677476. [Google Scholar]
- Farhad, A.; Pyun, J.Y. AI-ERA: Artificial Intelligence-Empowered Resource Allocation for LoRa-Enabled IoT Applications. IEEE Trans. Industr. Inform. 2023, 19, 11640–11652. [Google Scholar] [CrossRef]
- Chilamkurthy, N.S.; Pandey, O.J.; Ghosh, A.; Cenkeramaddi, L.R.; Dai, H.N. Low-Power Wide-Area Networks: A Broad Overview of its Different Aspects. IEEE Access 2022, 10, 81926–81959. [Google Scholar] [CrossRef]
- LoRa Alliance. LoRaWAN® End-Device and Network Server Interoperability Test Plan, version 1.0.0; LoRa Alliance: Fremont, CA, USA, 2025; Available online: https://resources.lora-alliance.org/document/2025-04-03-lorawan-end-device-network-server-interoperability-test-plan-v1-0-0 (accessed on 1 July 2025).
- Huang, H.; Guo, S.; Gui, G.; Yang, Z.; Zhang, J.; Sari, H.; Adachi, F. Deep Learning for Physical-Layer 5g Wireless Techniques: Opportunities, Challenges and Solutions. IEEE Wirel. Commun. 2020, 27, 214–222. [Google Scholar] [CrossRef]
- Wu, C.H.; Lai, C.F. A Survey on Improving the Wireless Communication with Adaptive Antenna Selection by Intelligent Method. Comput. Commun. 2022, 181, 374–403. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, M.; Zhang, X.; Cheng, M. Deep Learning Aided Beam Vector Assignment for Massive MIMO Maritime Communication Considering Location Information and Handover Impact. Phys. Commun. 2022, 53, 101713. [Google Scholar] [CrossRef]
- Kisseleff, S.; Chatzinotas, S.; Ottersten, B. Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster. IEEE Access 2021, 9, 150214–150233. [Google Scholar] [CrossRef]
- Bartsiokas, I.A.; Avdikos, G.K.; Lyridis, D.V. Deep Learning-Based Beam Selection in RIS-Aided Maritime Next-Generation Networks with Application in Autonomous Vessel Mooring. J. Mar. Sci. Eng. 2025, 13, 754. [Google Scholar] [CrossRef]
- Kabanov, A.; Kramar, V. Marine Internet of Things Platforms for Interoperability of Marine Robotic Agents: An Overview of Concepts and Architectures. J. Mar. Sci. Eng. 2022, 10, 1279. [Google Scholar] [CrossRef]
Article | Technology | Frequency Band | Range (About) | Data Rate | Benefits of Marine Applications | Restrictions in Marine Applications |
---|---|---|---|---|---|---|
[19,50] | LoRaWAN | 868 MHz in Europe and 915 MHz in the USA | 50 km | 0.3 to 50 kbps | Low power, long range, and appropriate for remote monitoring (vessels, buoys, and sensors) | Data rate limitations and interference from marine obstacles |
[51] | Narrowband Internet of Things (NB-IoT) | Long-Term Evolution (LTE) Bands with Licenses (1800 MHz and 2100 MHz) | 35 km | 250 kbps | Reliable connectivity to LTE networks, suitable for offshore asset monitoring | Needs network coverage and potentially higher latency |
[52] | Zigbee | 2.4 GHz | 100 m | 20 to 250 kbps | Low power consumption is helpful for onboard vessel networks | Short range and impacted by interference in marine settings |
[53] | Wireless Fidelity (Wi-Fi) 802.11ah | Sub-GHz (750–950 MHz) | Several km (favorable conditions) | Up to ~78 Mbps | High data rates are beneficial for shipboard communications | High power usage and a short range over the water’s surface |
[54] | Bluetooth Low Energy (BLE) | 2.4 GHz | 100 m | 2 Mbps | Ideal for short-range Internet of Things applications on ships | Interference and short range in maritime settings |
[55] | Fifth Generation (5G)-SA/Private | Different (Sub-6 GHz, mm Wave) | 10 km (macro >10 km) | Maximum 10 Gbps | Analysis in real-time and high-speed data transfer for smart ships | Limited coverage offshore and high-power consumption |
[56] | Satellite Internet of Things (IoT) | GHz Bands | Global | Differs | Designed for deep-sea communication and emergency connectivity | Expensive, slower and weather-dependent |
[57] | High Frequency (HF) Radio | 3–30 MHz | 100s–1000s km | Low | Long-distance communication between ships and the shore | impacted by atmospheric circumstances, low data rate |
[57] | Very High Frequency (VHF) Radio | 30–300 MHz | 100 km | Low | For communication between ships and between ships and shore | Restricted bandwidth and license requirements |
[58] | Automatic Identification System (AIS) | 161.975 MHz & 162.025 MHz | 75 km | 9.6 kbps | Crucial for tracking vessels and preventing collisions | Not for general communication, only for maritime navigation |
[59] | LTE-M | Licensed LTE bands | 1–11 km | ≤1 Mbps | Supports mobility, voice, and low-latency IoT | Requires LTE infra, higher power than LoRa |
[60] | Acoustic/underwater | ~10 kHz to a few MHz | 10 km | Few kbps | Vital for AUVs and underwater sensor networks | High latency and restricted data rates |
Article | Model | Key Feature | Application | Limitations |
---|---|---|---|---|
[76] | FSPL | Ideal LoS attenuation | Benchmark and baseline coverage | Does not take into account reflections, diffraction and atmospheric effects. |
[62] | Two-ray ground | Reflective sea surface interference | Calm sea, low-height antenna deployments | Fails in rough seas; neglects atmospheric refraction |
[72] | ITU-R P.1546 | Practical long-range signal prediction | Regulatory considerations, wide-area LoRaWAN networks | Needs local calibration; conservative in variable seas |
[73] | Knife-edge diffraction | Bending of the signal around an obstacle with sharp edges | Nearshore facilities and vessels | Models exactly one ideal obstacle |
[74] | Tropospheric ducting | Long-range extension driven by the weather | Auxiliary considerations for expanded coverage | Unforeseen, based on passing circumstances |
[75] | Empirical measurement | Field-based, site-specific modelling | Fjords or offshore site small-scale optimization | Not portable: needs a measurement campaign |
Article | Antenna Type | Performance | Complexity | Power Consumption | Compatibility For Marine LoRaWAN |
---|---|---|---|---|---|
[81,84] | Switched-beam | Reasonable gain, unidirectional coverage | Low (simple switching logic) | Low | Good for low-cost power-limited setups |
[86] | Phased array | High gain, fast beam steering | High (phase control circuits are necessary) | Medium to high | Perfect for high-performance or dynamic maritime links |
[89] | Reconfigurable | Adaptable pattern, frequency agility | Medium (control circuits are required) | Medium | Flexible choice for active marine environments |
[92] | Smart AI/ML-controlled | Adaptive, self-learning pattern optimization | Quite high (needs AI/ML models) | Medium to High | Ideal for autonomous or intelligent ships with real-time channel adaptation |
[101] | MIMO | High-capacity, multipath robustness | Very high | High | Applicable to shoreside or shipside gateway |
[35] | Omnidirectional | Uniform coverage, no beamforming | Very low | Very low | Best for simple nodes with minimal complexity |
Article | Year | Focus | Key Findings |
---|---|---|---|
[26] | 2022 | Energy | Multi-layered energy efficiency strategies involving adaptive antenna control. |
[31] | 2019 | Performance | Offshore aquaculture data are transmitted by LoRaWAN with a range of 8.33 km (LoS), achieving a maximum of 87.33% packet reception at optimal SF7–10 with limited Fresnel clearance and harsh sea conditions. |
[35] | 2021 | Performance and energy | LoRaWAN coverage extended up to 40 km offshore; environmental factors strongly influenced link reliability. |
[41] | 2021 | Environment | Effects of tropical weather on LoRaWAN communications. |
[71] | 2022 | Performance | Validated LoRaWAN channel models for complex estuarine environments. |
[84] | 2019 | Performance | A small switched-beam antenna for 868 MHz IoT applications with beam steering capability to improve the range and reliability in low-power deployments is introduced. |
[87] | 2024 | Performance | Outlines microstrip designs for maritime adaptation. |
[88] | 2023 | Energy and performance | The study proves that reconfigurable antenna design enables higher coverage and energy efficiency. |
[89] | 2024 | Performance and energy | Highlights dynamic tuning for LoRaWAN efficiency. |
[81] | 2021 | Energy and Performance | Implemented a switched-beam array to enhance link margin and energy efficiency in mobile LoRa nodes. |
[100] | 2022 | Performance | Demonstrated that multi-antenna gateways using MIMO and beamforming can nearly double network throughput. |
[103] | 2025 | Performance | Triple-band reconfigurable monopole antenna adapted for maritime LoRaWAN. |
[46] | 2022 | Energy and Environment | Demonstrated feasibility of bridging underwater acoustic sensor networks with above-water LoRaWAN gateways for marine IoT. |
[104] | 2022 | Performance | Improvement of maritime link quality using beamforming. |
[105] | 2023 | Performance | Demonstrates an array design applicable to long-range LoRaWAN. |
[36] | 2024 | Performance and Environment | A multi-gateway LoRaWAN system tracked a boat over 16 km with gateway ranges up to 5.7 km. |
[106] | 2021 | Performance | Novel LoRa antenna with oil-paper buffer achieved 6 m underwater and 160 m surface range. |
[107] | 2024 | Energy and Environment | In Sardinia, solar-powered LoRaWAN buoys were used to keep track of marine weather and water quality, showing that sustainable energy can support continuous monitoring. |
[108] | 2023 | Performance and Environment | A system combining LoRaWAN with BLE and GPS made it possible to follow boat movements in real time, even in shallow waters where interference is common. |
[109] | 2023 | Environment and performance | By using multi-hop LoRa, researchers managed to push coverage beyond the usual single-hop range, which improved both the reliability and the overall data throughput. |
[110] | 2021 | Performance | Developed a compact PIN-diode reconfigurable antenna switching between UHF and LoRa bands. |
[111] | 2020 | Performance | Demonstrated beam-steering antenna array at 868 MHz tailored for LoRa/LPWAN gateways. |
[112] | 2022 | Performance | Frequency optimization for LoRaWAN using adaptive antenna tuning in maritime contexts. |
Article | Aspect | Gateway Level | End Node Level |
---|---|---|---|
[104,157] | Integration level | Centralized, supports multi-beam and multi-node handling | Distributed, constrained by energy and form factor, static, low power |
[104,157,160,161] | Antenna technologies | Phased Array, switched-Beam, multi-Beam antennas | Switched-beam, reconfigurable compact antennas |
[88,160] | Power constraints | Ample power from grid/solar/diesel sources | Battery or small solar, limited-duty cycles |
[92,161,182] | Computational requirements | Supports DSP, AI models, and real-time beam steering | Low-power MCUs, reconfiguration triggered by events |
[104,157] | Beamforming features | Supports dynamic steering and simultaneous beam formation | Supports basic beam direction switching, limited steering |
[78,79,84,111] | Signal quality impact | High SNR, reduced packet loss, supports mobile nodes | Moderate SNR gain, challenged by node drift/misalignment |
[87,88,94,161] | Environmental adaptability | Suited for fixed installations or large mobile platforms (e.g., ships) | Needs waterproofing, orientation control, and compact design |
[94,158,163,164] | MAC layer implications | Directional MAC extensions are needed to prevent beam conflicts | Standard MAC lacks support for directional scheduling |
[78,86,158,162] | PHY layer enhancements | Affects the link budget, requires CSI for beam alignment | Limited influence, needs PHY-level switch integration |
[112,172] | Parameter optimization | Real-time SF, TX, CR adjustment with adaptive feedback | gateway-assisted ADR optimization |
[78,182] | AI/ML capability | Supports inference-based beam selection and link prediction | Limited only to lightweight or gateway-driven models |
[88,104,161] | Deployment suitability | Coastal gateways, ship relays, offshore stations | Smart buoys, marine sensors, mobile aquatic UAVs |
[88,165,181] | Integration challenges | Protocol upgrades, real-time sync, and MAC–antenna coupling | Hardware–software co-design, waterproofing, energy balance |
Article | Antenna Type | Deployment Level | SNR Gain (dB) | Energy Cost | Maritime Suitability | Use Case |
---|---|---|---|---|---|---|
[86,105,182] | Phased array | Gateway | 8–10 | High | High (for fixed installations) | Shoreline gateways, ship relays |
[84,104,157] | Switched beam | Gateway/End-node | 4–8 | Moderate | Medium (variable performance on mobile platforms) | Ship antennas, smart buoys |
[87,88,89] | Reconfigurable Patch | End-node | 3–5 | Low | High (compact, suitable for mobile nodes) | Drifting sensors, remote buoys |
[87,89] | Polarization-reconfigurable | End-node | 2–4 | Very Low | High (low power and orientation-tolerant) | Wearable or onboard devices |
[93,94] | Parasitic array | End-node | 3–5 | Low | Medium (low-cost directional control) | Smart buoys, compact sensor platforms |
[79,94] | Mechanically steered | Gateway/Ship node | 4–6 | Moderate | High (robust under motion, coarse alignment) | Vessel-mounted tracking systems |
[94,103] | Hybrid Electro-Mechanical | Gateway/Ship node | 5–8 | Moderate | High (adaptive across wide marine dynamics) | Mobile relays with dynamic coverage need |
Article | Research Gap | Details | Future Direction |
---|---|---|---|
[22,31] | Standardization gaps | LoRaWAN lacks protocol support for adaptive features like beamforming; it risks non-compliance with strict antenna limits. | Update LoRaWAN standards to allow adaptive antenna integration. |
[36,49,103] | Hardware/Software co-design | Real-time synchronization of hardware and software is complex and power-intensive. | Develop efficient low-power co-design frameworks. |
[35,61] | Environmental variability | Vessel movement and sea-surface reflections cause fading; most current studies remain limited to simulations. | Carry out sea trials, refine channel models, and develop adaptive algorithms suited to maritime conditions. |
[104,105] | AI and data availability | Few open maritime datasets exist, and most AI models are too computationally heavy for real-time use. | Establish open datasets and create lightweight AI methods to enable efficient real-time beamforming. |
[46,71,109] | Cross-medium transmission | Air–sea and air–underwater impairments remain underexplored. | Investigate cross-media models for reliable links. |
[26,184,185] | RIS/Energy efficiency | Few studies have examined how RIS can be applied in maritime LoRaWAN, despite showing strong potential for improving coverage, energy use, and spectrum efficiency. | Investigate RIS deployment in sea-based LoRaWAN, for example, by integrating RIS on floating buoys to extend coverage, improve link reliability, and enhance energy efficiency. |
[87,186] | Interdisciplinary collaboration | Limited cooperation between engineers and maritime sciences slows progress. | Encourage cross-disciplinary collaboration to enable scalable IoT solutions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyimo, M.; Mgawe, B.; Leo, J.; Dida, M.; Michael, K. Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience. Sensors 2025, 25, 6110. https://doi.org/10.3390/s25196110
Lyimo M, Mgawe B, Leo J, Dida M, Michael K. Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience. Sensors. 2025; 25(19):6110. https://doi.org/10.3390/s25196110
Chicago/Turabian StyleLyimo, Martine, Bonny Mgawe, Judith Leo, Mussa Dida, and Kisangiri Michael. 2025. "Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience" Sensors 25, no. 19: 6110. https://doi.org/10.3390/s25196110
APA StyleLyimo, M., Mgawe, B., Leo, J., Dida, M., & Michael, K. (2025). Adaptive Antenna for Maritime LoRaWAN: A Systematic Review on Performance, Energy Efficiency, and Environmental Resilience. Sensors, 25(19), 6110. https://doi.org/10.3390/s25196110