Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism
Abstract
1. Introduction
- The performance gains of an OAM transmission system are analyzed under two scenarios: random placement and uniform placement of the IRS.
- The convergence performance of an IRS with OAM is verified through simulations. Further, it is demonstrated that the IRS can achieve performance gains in improving the channel capacity of the OAM transmission system and reducing the receiver size.
2. System Architecture
2.1. Channel Model with IRS
2.2. Capacity Optimization of OAM System with IRS
- The computational load of the gradient calculation part is ;
- The computational load of the surrogate function update part is ;
- The total complexity per iteration is .
2.3. Special Case of IRS-Aided OAM System
3. Simulation and Analysis
3.1. Simulation with Random IRS Placement
3.2. Simulation of Special Case with Symmetrical IRS Center
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, H.; Liang, Y.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wireless. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Liu, C.; Yang, F.; Xu, S.; Li, M. Reconfigurable metasurface: A systematic categorization and recent advances. Electromagn. Sci. 2023, 1, 0040021. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, Q.; Qu, K.; Yang, W.; Zheng, Y.; Chen, K. Reconfigurable intelligent surfaces: Design, implementation, and practical demonstration. Electromagn. Sci. 2023, 1, 0020111. [Google Scholar] [CrossRef]
- Micallef, T.; Hussain, I.; Wu, K. Multifunction transceiver for data communication, radar sensing and power transfer. Electromagn. Sci. 2025, 3, 0100491. [Google Scholar] [CrossRef]
- Oyesina, K.A.; Wong, A.M.H. Achieving many-fold reduction in active elements with a highly-directive beam-steerable Huygens box antenna. Electromagn. Sci. 2025, 3, 0100512. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Y.; Ismail, A.M.; Wang, Z.; Guan, Y.L.; Guo, Y.; Yuen, C. 2-Bit RIS prototyping enhancing rapid-response space-time wavefront manipulation for wireless communication: Experimental studies. IEEE Open J. Commun. Soc. 2024, 5, 4885–4901. [Google Scholar] [CrossRef]
- Zhao, Y.; Guan, Y.L.; Ismail, A.M.; Ju, G.; Lin, D.; Lu, Y.; Yuen, C. Holographic-inspired meta-surfaces exploiting vortex beams for low-interference multipair IoT communications: From theory to prototype. IEEE Internet Things J. 2024, 11, 12660–12675. [Google Scholar] [CrossRef]
- Nadi, M.; Sedighy, S.H.; Cheldavi, A. Multimode OAM beam generation through 1-bit programmable metasurface antenna. Sci. Rep. 2023, 13, 15603–15612. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Capacity characterization for intelligent reflecting surface aided MIMO communication. IEEE J. Sel. Areas Commun. 2020, 38, 1823–1838. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Z.N.; Zhou, Y.; Lou, Q.; Wang, J. Mouthaan, K. Improving radiation pattern roundness of henge-like metaring-loaded monopoles above a finite ground for MIMO systems. Electromagn. Sci. 2024, 2, 0060182. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, Q.; Guan, Y.L.; Ismail, A.M.; Feng, Y.; Wang, Z.; Lin, D.; Niu, H.; Chen, C.; Yuen, C. Free Space Spot-Beamforming for IoT Multi-User Near-Orthogonal Overlay Communications Enhanced by OAM Waves and Reconfigurable Meta-Surface. Electromagn. Sci. 2025, 3, 0110022. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photon. 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Dong, L.; Wang, H.-M. Enhancing secure MIMO transmission via intelligent reflecting surface. IEEE Trans. Wireless. Commun. 2020, 19, 7543–7556. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q. Extension of Hannan’s limit: Evaluation and enhancement of beam-scanning performance of planar phased arrays. Electromagn. Sci. 2024, 2, 0080312. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C. Orbital angular momentum beamforming for index modulation with partial arc reception. Electron. Lett. 2019, 55, 1271–1273. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, X.; Li, M.; Li, Z.; Ding, D. Wireless secure communication based on code domain space-time modulated metasurface. Electromagn. Sci. 2024, 2, 0080352. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Cui, S. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Trans. Wireless. Commun. 2020, 19, 6607–6620. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent reflecting surface-aided wireless communications: A tutorial. IEEE Trans. Wireless. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Zhao, Y.; Guan, Y.L.; Chen, D.; Ismail, A.M.; Ma, X.; Liu, X.; Yuen, C. Exploring RCS diversity with novel OAM beams without energy void: An experimental study. IEEE Trans. Veh. Technol. 2025, 74, 8321–8326. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Z.; Xu, B.; Zhang, J.; Xiao, H.; Sha, E.I.W.; Ai, B. Performance analysis of non-paraxial deployments continuous aperture MIMO for electromagnetic information theory. Electromagn. Sci. 2025, early access.
- Zhu, Q.B.; Jiang, T.; Qu, D.M.; Chen, D.; Zhou, N.R. Radio vortex multiple-input multiple-output communication systems with high capacity. IEEE Access 2015, 3, 2456–2464. [Google Scholar] [CrossRef]
- Yuri, K.; Honma, N.; Murata, K. Mode selection method suitable for dual-circular-polarized OAM transmission. IEEE Trans. Antennas Propag. 2019, 67, 4878–4882. [Google Scholar] [CrossRef]
- Zhao, N.; Li, X.; Li, G.; Kahn, J.M. Capacity limits of spatially multiplexed free-space communication. Nat. Photon. 2015, 9, 822–826. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, X.; Guan, Y.L.; Liu, Y.; Ismail, A.M.; Liu, X.; Yeo, S.Y.; Yuen, C. Near-orthogonal overlay communications in LoS channel enabled by novel OAM beams without central energy voids: An experimental study. IEEE Internet Things J. 2024, 11, 39697–39708. [Google Scholar] [CrossRef]
- Thidé, B.; Then, H.; Sjöholm, J.; Palmer, K.; Bergman, J.; Carozzi, T.D.; Istomin, Y.N.; Ibragimov, N.H.; Khamitova, R. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 2007, 99, 087701. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Daldorff, L.K.; Bergman, J.E.; Karlsson, R.L.; Thidé, B.; Forozesh, K.; Carozzi, T.D.; Isham, B. Orbital angular momentum in radio-A system study. IEEE Trans. Antennas Propag. 2010, 58, 565–572. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y. Orbital angular momentum nondegenerate index mapping for long distance transmission. IEEE Trans. Wireless. Commun. 2019, 18, 5027–5036. [Google Scholar] [CrossRef]
- Long, W.-X.; Chen, R.; Moretti, M.; Li, J. AoA estimation for OAM communication systems with mode-frequency multi-time ESPRIT method. IEEE Trans. Veh. Technol. 2021, 70, 5094–5098. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Pascal, O.; Sokoloff, J.; Chabory, A.; Palacin, B.; Capet, N. Antenna gain and link budget for waves carrying orbital angular momentum. Radio Sci. 2015, 50, 1165–1175. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Lu, Y.; Guan, Y.L. Multimode OAM convergent transmission with co-divergent angle tailored by Airy wavefront. IEEE Trans. Antennas Propag. 2023, 71, 5256–5265. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C. Compound angular lens for radio orbital angular momentum coaxial separation and convergence. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2160–2164. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C. Distributed antennas scheme for orbital angular momentum long-distance transmission. IEEE Antennas Wireless Propaga. Lett. 2020, 19, 332–336. [Google Scholar] [CrossRef]
- Chen, R.; Xu, H.; Moretti, M.; Li, J. Beam steering for the misalignment in UCA-based OAM systems. IEEE Wireless Commun. Lett. 2018, 7, 582–585. [Google Scholar] [CrossRef]
- Zhu, Y.; Dang, W.; Liu, X.; Chen, Y.; Zhou, X.; Lu, H. Generation of plane spiral orbital angular momentum using circular double-slot Vivaldi antenna array. Sci. Rep. 2020, 10, 18328–18336. [Google Scholar] [CrossRef]
- Song, J.; Zhang, X.; Chi, H.; Jin, X.; Hui, X. Design of orbital angular momentum antenna array for high-order modes. Electronics 2023, 12, 4891. [Google Scholar] [CrossRef]
- Dhanade, Y.B.; Patnaik, A. Generation of OAM beams with quasi omnidirectional pattern using simple slotted waveguide array. Sci. Rep. 2024, 14, 6514–6520. [Google Scholar] [CrossRef]
- Guo, Z.-G.; Yang, G.-M. Radial uniform circular antenna array for dual-mode OAM generation. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 404–407. [Google Scholar] [CrossRef]
- Xi, R.; Liu, H.; Li, L. Generation and Analysis of High-Gain Orbital Angular Momentum Vortex Wave Using Circular Array and Parasitic EBG with Oblique Incidence. Sci. Rep. 2017, 7, 17363–17370. [Google Scholar] [CrossRef]
- Marvasti, M.; Ghayekhloo, A.; Boutayeb, H. Parabolic reflector antenna design to generate pure high order vortex modes at 24 GHz. In Proceedings of the 2023 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkiye, 27–28 October 2023; pp. 1–3. [Google Scholar]
- Li, F.; Chen, H.; Zhou, Y.; You, J.; Panoiu, N.C.; Zhou, P.; Deng, L. Generation and Focusing of Orbital Angular Momentum Based on Polarized Reflectarray at Microwave Frequency. IEEE Trans. Microwave Theory Tech. 2020, 69, 1829–1837. [Google Scholar] [CrossRef]
- Barnett, S.M.; Allen, L. Orbital angular momentum and nonparaxial light beams. Opt. Commun. 1994, 110, 670–678. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef]
- Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 2005, 94, 153901–153904. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Mahmouli, F.E.; Walker, S.D. 4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wireless Commun. Lett. 2013, 2, 223–226. [Google Scholar] [CrossRef]
- Yan, Y.; Xie, G.D.; Lavery, M.P.J.; Huang, H.; Ahmed, N.; Bao, C.J.; Ren, Y.X.; Cao, Y.W.; Li, L.; Zhao, Z.; et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014, 5, 4876–4883. [Google Scholar] [CrossRef]
- Oldoni, M.; Spinello, F.; Mari, E.; Parisi, G.; Someda, C.G.; Tamburini, F.; Romanato, F.; Ravanelli, R.A.; Coassini, P.; Thidé, B. Space-Division Demultiplexing in Orbital-Angular-Momentum-Based MIMO Radio Systems. IEEE Trans. Antennas Propag. 2015, 63, 4582–4587. [Google Scholar] [CrossRef]
- Liu, K.; Cheng, Y.Q.; Yang, Z.C.; Wang, H.Q.; Qin, Y.L.; Li, X. Orbital-Angular-Momentum-Based Electromagnetic Vortex Imaging. IEEE Antennas Wireless Propag. Lett. 2015, 14, 711–714. [Google Scholar] [CrossRef]
- Lin, M.T.; Gao, Y.; Liu, P.G.; Liu, J.B. Improved OAM-based radar target detection using uniform concentric circular arrays. Int. J. Antennas Propag. 2016, 2016, 1852659–1852665. [Google Scholar] [CrossRef]
- Lin, M.T.; Gao, Y.; Liu, P.G.; Liu, J.B. Super-resolution orbital angular momentum based radar target detection. Electron. Lett. 2016, 52, 1168–1170. [Google Scholar] [CrossRef]
- Chen, R.; Xu, H.; Li, J.; Zhang, Y. Misalignment-Robust Receiving Scheme for UCA-Based OAM Communication Systems. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Chen, M.L.N.; Jiang, L.J.; Sha, W.E.I. Artificial perfect electric conductor–perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency. J. Appl. Phys. 2016, 119, 064506–064511. [Google Scholar] [CrossRef]
- Chen, M.L.N.; Jiang, L.J.; Sha, W.E.I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies. IEEE Trans. Antennas Propag. 2017, 65, 396–400. [Google Scholar] [CrossRef]
- Guo, Y.H.; Pu, M.B.; Zhao, Z.Y.; Wang, Y.Q.; Jin, J.J.; Gao, P.; Li, X.; Ma, X.L.; Luo, X.G. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 2016, 3, 2022–2029. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Chen, L.W.; Pu, M.B.; Jin, J.J.; Hong, M.H.; Luo, X.G. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Adv. Opt. Mater. 2017, 5, 1600689–1600695. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Wintz, D.; Oscurato, S.L.; Zhu, A.Y.; Khorasaninejad, M.; Oh, J.; Maddalena, P. Capasso, F. Spin-to-orbital angular momentum conversion in dielectric metasurfaces. Opt. Express 2017, 25, 377–393. [Google Scholar] [CrossRef]
- Chen, M.L.N.; Jiang, L.J.; Sha, W.E.I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces. Appl. Sci. 2018, 8, 362. [Google Scholar] [CrossRef]
- Edfors, O.; Johansson, A.J. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Trans. Antennas Propagat. 2012, 60, 1126–1131. [Google Scholar] [CrossRef]
- Byun, W.J.; Choi, H.D.; Cho, Y.H. Orbital Angular Momentum (OAM) Antennas via Mode Combining Using Reflectarrays/Dual-reflector designs. Sci. Rep. 2017, 7, 13125–13135. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Moretti, M.; Wang, X.; Li, J. Orbital Angular Momentum Waves: Generation, Detection, and Emerging Applications. IEEE Commun. Surv. Tutor. 2020, 22, 840–868. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, M.; Zhang, G.; Cui, M. Achievable rate maximization for intelligent reflecting surface-assisted orbital angular momentum-based communication systems. IEEE Trans. Veh. Technol. 2021, 70, 7277–7282. [Google Scholar] [CrossRef]
- An, Z.; Zhang, T.; Shen, M.; De Carvalho, E.; Ma, B.; Yi, C.; Song, T. Series-Constellation Feature Based Blind Modulation Recognition for Beyond 5G MIMO-OFDM Systems With Channel Fading. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 793–811. [Google Scholar] [CrossRef]
- He, Z.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wireless Commun. Lett. 2020, 9, 210–214. [Google Scholar] [CrossRef]
- Yan, W.; Yuan, X.; He, Z.Q.; Kuai, X. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems. IEEE J. Sel. Areas Commun. 2020, 38, 1793–1808. [Google Scholar] [CrossRef]
- Liu, K.; Liu, H.; Qin, Y.; Cheng, Y.; Wang, S.; Li, X.; Wang, H. Generation of OAM beams using phased array in the microwave band. IEEE Trans. Antennas Propag. 2016, 64, 3850–3857. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhao, Y.; Li, S.; Li, Y.; Lin, D.; Jiang, X. Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism. Network 2025, 5, 48. https://doi.org/10.3390/network5040048
Wu Q, Zhao Y, Li S, Li Y, Lin D, Jiang X. Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism. Network. 2025; 5(4):48. https://doi.org/10.3390/network5040048
Chicago/Turabian StyleWu, Qiuli, Yufei Zhao, Shicheng Li, Yiqi Li, Deyu Lin, and Xuefeng Jiang. 2025. "Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism" Network 5, no. 4: 48. https://doi.org/10.3390/network5040048
APA StyleWu, Q., Zhao, Y., Li, S., Li, Y., Lin, D., & Jiang, X. (2025). Intelligent Reflecting-Surface-Aided Orbital Angular Momentum Divergence-Alleviated Wireless Communication Mechanism. Network, 5(4), 48. https://doi.org/10.3390/network5040048

