Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = phase-field fracture model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2373 KB  
Article
Numerical Investigation of Fracture Behavior and Current-Carrying Capability Degradation in Bi2212/Ag Composite Superconducting Wires Subjected to Mechanical Loads Using Phase Field Method
by Feng Xue and Kexin Zhou
Modelling 2025, 6(4), 119; https://doi.org/10.3390/modelling6040119 - 1 Oct 2025
Viewed by 294
Abstract
Bi2Sr2CaCu2O8+x (Bi2212) high-temperature superconductor exhibits broad application prospects in strong magnetic fields, superconducting magnets, and power transmission due to its exceptional electrical properties. However, during practical applications, Bi2212 superconducting round wires are prone to mechanical [...] Read more.
Bi2Sr2CaCu2O8+x (Bi2212) high-temperature superconductor exhibits broad application prospects in strong magnetic fields, superconducting magnets, and power transmission due to its exceptional electrical properties. However, during practical applications, Bi2212 superconducting round wires are prone to mechanical loading effects, leading to crack propagation and degradation of superconducting performance, which severely compromises their reliability and service life. To elucidate the damage mechanisms under mechanical loading and their impact on critical current, this study establishes a two-dimensional model with existing cracks based on phase field fracture theory, simulating crack propagation behaviors under varying conditions. The results demonstrate that crack nucleation and propagation paths are predominantly governed by stress concentration zones. The transition zone width of cracks is controlled by the phase field length scale parameter. By incorporating electric fields into the phase field model, coupled mechanical-electrical simulations reveal that post-crack penetration causes significant current shunting, resulting in a marked decline in current density. The research quantitatively explains the mechanism of critical current degradation in Bi2212 round wires under tensile strain from a mechanical perspective. Full article
Show Figures

Graphical abstract

22 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Viewed by 268
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 4068 KB  
Article
Microscopic Phase-Field Modeling with Accurate Interface Thickness Representation: Applied to Ceramic Matrix Composites
by Tong Wang, Xiaofei Hu, Zhi Sun and Weian Yao
Materials 2025, 18(19), 4496; https://doi.org/10.3390/ma18194496 - 27 Sep 2025
Viewed by 373
Abstract
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are [...] Read more.
Ceramic matrix composites (CMCs) are promising candidates for high-temperature structural applications. However, their fracture toughness remains low due to strong chemical bonding between fibers and the matrix. To improve toughness, engineered interfaces such as pyrolytic carbon (PyC) and hexagonal boron nitride (h-BN) are commonly introduced. These interfaces promote crack deflection and fiber bridging, leading to improved damage tolerance and pseudo-ductile behavior. To investigate the influence of interface thickness on mechanical performance and to identify optimal thickness ranges, we propose a microscopic phase-field model that accurately resolves interface thickness and material contrast. This model overcomes the limitations of conventional smeared interface approaches, particularly in systems with variable interface thickness and closely packed fibers. We apply the model to simulate the fracture behavior of unidirectional SiC fiber reinforced SiC matrix (SiCf/SiCm) composites with PyC and h-BN interfaces of varying thickness. The numerical results show strong agreement with experimental findings from the literature and reveal optimal interface thicknesses that maximize toughening effects. These results demonstrate the model’s predictive capabilities and its potential as a tool for interface design in brittle composite systems. Full article
Show Figures

Graphical abstract

20 pages, 4707 KB  
Article
Safety Risk Identification of the Freezing Method for the Construction of a Subway Contact Channel Based on Bayesian Network
by Xu Guo, Lele Lei, Zhenhua Wang and Susu Huang
Appl. Sci. 2025, 15(18), 9959; https://doi.org/10.3390/app15189959 - 11 Sep 2025
Viewed by 431
Abstract
With the continuous expansion of urban rail transit networks, construction safety of connecting passages—as critical weak links in underground structural systems—has become pivotal for project success. Although artificial ground freezing technology effectively addresses adverse geological conditions (e.g., high permeability and weak self-stability), it [...] Read more.
With the continuous expansion of urban rail transit networks, construction safety of connecting passages—as critical weak links in underground structural systems—has become pivotal for project success. Although artificial ground freezing technology effectively addresses adverse geological conditions (e.g., high permeability and weak self-stability), it is influenced by multi-field coupling effects (temperature, stress, and seepage fields), which may trigger chain risks such as freezing pipe fractures and frozen curtain leakage during construction. This study deconstructed the freezing method workflow (‘drilling pipe-laying → active freezing → channel excavation → structural support’) and established a hierarchical evaluation index system incorporating geological characteristics, technological parameters, and environmental impacts by considering sandy soil phase-change features and hydro-thermal coupling effects. For weight calculation, the Analytic Hierarchy Process (AHP) was innovatively applied to balance subjective-objective assignment deviations, revealing that the excavation support stage (weight: 52.94%) and thawing-grouting stage (31.48%) most significantly influenced overall risk. Subsequently, a Bayesian network-based risk assessment model was constructed, with prior probabilities updated in real-time using construction monitoring data. Results indicated an overall construction risk probability of 46.3%, with the excavation stage exhibiting the highest sensitivity index (3.97%), identifying it as the core risk control link. These findings provide a quantitative basis for dynamically identifying construction risks and optimizing mitigation measures, offering substantial practical value for enhancing safety in subway connecting passage construction within water-rich sandy strata. Full article
Show Figures

Figure 1

19 pages, 23351 KB  
Article
Integrated Geomechanical Modeling of Multiscale Fracture Networks in the Longmaxi Shale Reservoir, Northern Luzhou Region, Sichuan Basin
by Guoyou Fu, Qun Zhao, Guiwen Wang, Caineng Zou and Qiqiang Ren
Appl. Sci. 2025, 15(17), 9528; https://doi.org/10.3390/app15179528 - 29 Aug 2025
Viewed by 469
Abstract
This study presents an integrated geomechanical modeling framework for predicting multi-scale fracture networks and their activity in the Longmaxi Formation shale reservoir, northern Luzhou region, southeastern Sichuan Basin—an area shaped by complex, multi-phase tectonic deformation that poses significant challenges for resource prospecting. The [...] Read more.
This study presents an integrated geomechanical modeling framework for predicting multi-scale fracture networks and their activity in the Longmaxi Formation shale reservoir, northern Luzhou region, southeastern Sichuan Basin—an area shaped by complex, multi-phase tectonic deformation that poses significant challenges for resource prospecting. The workflow begins with quantitative characterization of key mechanical parameters, including uniaxial compressive strength, Young’s modulus, Poisson’s ratio, and tensile strength, obtained from core experiments and log-based inversion. These parameters form the foundation for multi-phase finite element simulations that reconstruct paleo- and present-day stress fields associated with the Indosinian (NW–SE compression), Yanshanian (NWW–SEE compression), and Himalayan (near W–E compression) deformation phases. Optimized Mohr–Coulomb and tensile failure criteria, coupled with a multi-phase stress superposition algorithm, enable quantitative prediction of fracture density, aperture, and orientation through successive tectonic cycles. The results reveal that the Longmaxi Formation’s high brittleness and lithological heterogeneity interact with evolving stress regimes to produce fracture systems that are strongly anisotropic and phase-dependent: initial NE–SW-oriented domains established during the Indosinian phase were intensified during Yanshanian reactivation, while Himalayan uplift induced regional stress attenuation with limited new fracture formation. The cumulative stress effects yield fracture networks concentrated along NE–SW fold axes, fault zones, and intersection zones. By integrating geomechanical predictions with seismic attributes and borehole observations, the study constructs a discrete fracture network that captures both large-scale tectonic fractures and small-scale features beyond seismic resolution. Fracture activity is further assessed using friction coefficient analysis, delineating zones of high activity along fold–fault intersections and stress concentration areas. This principle-driven approach demonstrates how mechanical characterization, stress field evolution, and fracture mechanics can be combined into a unified predictive tool, offering a transferable methodology for structurally complex, multi-deformation reservoirs. Beyond its relevance to shale gas development, the framework exemplifies how advanced geomechanical modeling can enhance resource prospecting efficiency and accuracy in diverse geological settings. Full article
(This article belongs to the Special Issue Recent Advances in Prospecting Geology)
Show Figures

Figure 1

27 pages, 7417 KB  
Article
Simulation of Corrosion Cracking in Reinforced Concrete Based on Multi-Phase Multi-Species Electrochemical Phase Field Modeling
by Tianhao Yao, Houmin Li, Keyang Wu, Jie Chen, Zhengpeng Zhou and Yunlong Wu
Materials 2025, 18(16), 3742; https://doi.org/10.3390/ma18163742 - 10 Aug 2025
Viewed by 744
Abstract
Non-uniform corrosion cracking in reinforced concrete buildings constitutes a fundamental difficulty resulting in durability failure. This work develops a microscopic-scale multi-species electrochemical phase field model to tackle this issue. The model comprehensively examines the spatiotemporal coupling mechanisms of the full “corrosion-rust swelling-cracking” process [...] Read more.
Non-uniform corrosion cracking in reinforced concrete buildings constitutes a fundamental difficulty resulting in durability failure. This work develops a microscopic-scale multi-species electrochemical phase field model to tackle this issue. The model comprehensively examines the spatiotemporal coupling mechanisms of the full “corrosion-rust swelling-cracking” process by integrating electrochemical reaction kinetics, multi-ion transport processes, and a unified phase field fracture theory. The model uses local corrosion current density as the primary variable to accurately measure the dynamic interactions among electrochemical processes, ion transport, and rust product precipitation. It incorporates phase field method simulations of fracture initiation and propagation in concrete, establishing a bidirectional link between rust swelling stress and crack development. Experimental validation confirms that the model’s predictions about cracking duration, crack shape, and ion concentration distribution align well with empirical data, substantiating the efficacy of local corrosion current density as an indicator of electrochemical reaction rate. Parametric studies were performed to examine the effects of interface transition zone strength, oxygen diffusion coefficient, protective layer thickness, reinforcing bar diameter, and reinforcing bar configuration on cracking patterns. This model’s multi-physics field coupling framework, influenced by dynamic corrosion current density, facilitates cross-field interactions, offering sophisticated theoretical tools and technical support for the quantitative analysis, durability evaluation, and protective design of corrosion-induced cracking in reinforced concrete structures. Full article
Show Figures

Graphical abstract

22 pages, 9502 KB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 - 6 Aug 2025
Viewed by 732
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

32 pages, 7424 KB  
Review
Gas Migration in Low-Permeability Geological Media: A Review
by Yangyang Mo, Alfonso Rodriguez-Dono, Ivan Puig Damians, Sebastia Olivella and Rémi de La Vaissière
Geotechnics 2025, 5(3), 49; https://doi.org/10.3390/geotechnics5030049 - 21 Jul 2025
Viewed by 880
Abstract
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository [...] Read more.
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository safety. Understanding the generation and migration of gas is crucial for the quantitative assessment of repository performance over extended timescales. The article synthesizes the current research on various types of claystone considered as potential host rocks for repositories, providing a comprehensive analysis of gas transport mechanisms and constitutive models. In addressing the challenges related to multi-field coupling, the article provides practical insights and outlines potential solutions and areas for further research, underscoring the importance of interdisciplinary collaboration to tackle these challenges and push the field forward. In addition, the article evaluates key research projects, such as GMT, FORGE, and DECOVALEX, shedding light on their methodologies, findings, and significant contributions to understanding gas migration in low-permeability geological media. In this context, mathematical modeling becomes indispensable for predicting long-term repository performance under hypothetical future conditions, enhancing prediction accuracy and supporting long-term safety assessments. Finally, the growing interest in gas-driven fracturing is explored, critically assessing the strengths and limitations of current numerical simulation tools, such as TOUGH, the phase-field method, and CODE_BRIGHT. Noteworthy advancements by the CODE_BRIGHT team in gas injection simulation are highlighted, although knowledge gaps remain. The article concludes with a call for innovative approaches to simulate gas fracturing processes more effectively, advocating for advanced modeling techniques and rigorous experimental validation to address existing challenges. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

24 pages, 4556 KB  
Article
Simulation of Rock Failure Cone Development Using a Modified Load-Transferring Anchor Design
by Kamil Jonak, Robert Karpiński, Andrzej Wójcik and Józef Jonak
Appl. Sci. 2025, 15(14), 7653; https://doi.org/10.3390/app15147653 - 8 Jul 2025
Cited by 1 | Viewed by 690
Abstract
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than [...] Read more.
This study investigates a novel anchor-based method for controlled rock fragmentation, designed as an alternative to conventional excavation or explosive techniques. The proposed solution utilizes a specially modified undercut anchor that induces localized failure within the rock mass through radial expansion rather than traditional pull-out forces. Finite Element Method simulations, performed in ABAQUS with an extended fracture mechanics approach, were used to model the initiation and propagation of failure zones in sandstone. The results revealed a two-phase cracking process starting beneath the anchor’s driving element and progressing toward the rock’s free surface, forming a breakout cone. This behavior significantly deviates from conventional prediction models, such as the 45° cone or Concrete Capacity Design methods (cone 35°). The simulations were supported by field tests, confirming both the feasibility and practical advantages of the proposed anchor system, especially in confined or safety-critical environments. The findings offer valuable insights for the development of compact and efficient rock fragmentation technologies suitable for mining, rescue operations, and civil engineering applications. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

21 pages, 4260 KB  
Article
An Optimally Oriented Coherence Attribute Method and Its Application to Faults and Fracture Sets Detection in Carbonate Reservoirs
by Shuai Chen, Shengjun Li, Qi Ma, Lu Qin and Sanyi Yuan
Appl. Sci. 2025, 15(13), 7393; https://doi.org/10.3390/app15137393 - 1 Jul 2025
Viewed by 444
Abstract
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute [...] Read more.
Faults and fracture sets in carbonate reservoirs are key geological features that govern hydrocarbon migration, accumulation, and wellbore stability. Their accurate detection is essential for structural interpretation, reservoir modeling, and drilling risk assessment. In this study, we propose an Optimally Oriented Coherence Attribute (OOCA) method that integrates geological guidance with multi-frequency structural analysis to achieve enhanced sensitivity to faults and fractures across multiple scales. The method is guided by depositional and tectonic principles, constructing model traces along directions with maximal structural variation to amplify responses at geological boundaries. A distance-weighted computation and extended directional model trace strategy are adopted to further enhance the detection of fine-scale discontinuities, overcoming the limitations of traditional attributes in resolving subtle structural features. A Gabor-based multi-frequency fusion framework is employed to simultaneously preserve large-scale continuity and fine-scale detail. Validation using physical modeling and field seismic data confirms the method’s ability to enhance weak fault imaging. Compared to traditional attributes such as C3 coherence, curvature, and instantaneous phase, OOCA delivers significantly improved spatial resolution. In zones with documented lost circulation, the identified structural features align well with drilling observations, demonstrating strong geological adaptability and engineering relevance. Overall, the OOCA method offers a geologically consistent and computationally efficient solution for high-resolution fault interpretation and drilling risk prediction in structurally complex carbonate reservoirs. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 4887 KB  
Article
Composition Design of a Novel High-Temperature Titanium Alloy Based on Data Augmentation Machine Learning
by Xinpeng Fu, Boya Li, Binguo Fu, Tianshun Dong and Jingkun Li
Materials 2025, 18(13), 3099; https://doi.org/10.3390/ma18133099 - 30 Jun 2025
Viewed by 862
Abstract
The application fields of high-temperature titanium alloys are mainly concentrated in the aerospace, defense and military industries, such as the high-temperature parts of rocket and aircraft engines, missile cases, tail rudders, etc., which can greatly reduce the weight of aircraft while resisting high [...] Read more.
The application fields of high-temperature titanium alloys are mainly concentrated in the aerospace, defense and military industries, such as the high-temperature parts of rocket and aircraft engines, missile cases, tail rudders, etc., which can greatly reduce the weight of aircraft while resisting high temperatures. However, traditional high-temperature titanium alloys containing multiple types of elements (more than six) have a complex impact on the solidification, deformation, and phase transformation processes of the alloys, which greatly increases the difficulty of casting and deformation manufacturing of aerospace and military components. Therefore, developing low-component high-temperature titanium alloys suitable for hot processing and forming is urgent. This study used data augmentation (Gaussian noise) to expedite the development of a novel quinary high-temperature titanium alloy. Utilizing data augmentation, the generalization abilities of four machine learning models (XGBoost, RF, AdaBoost, Lasso) were effectively improved, with the XGBoost model demonstrating superior prediction accuracy (with an R2 value of 0.94, an RMSE of 53.31, and an MAE of 42.93 in the test set). Based on this model, a novel Ti-7.2Al-1.8Mo-2.0Nb-0.4Si (wt.%) alloy was designed and experimentally validated. The UTS of the alloy at 600 °C was 629 MPa, closely aligning with the value (649 MPa) predicted by the model, with an error of 3.2%. Compared to as-cast Ti1100 and Ti6242S alloy (both containing six elements), the novel quinary alloy has considerable high-temperature (600 °C) mechanical properties and fewer components. The microstructure analysis revealed that the designed alloy was an α+β type alloy, featuring a typical Widmanstätten structure. The fracture form of the alloy was a mixture of brittle and ductile fracture at both room and high temperatures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

28 pages, 4124 KB  
Review
Thermal-Hydrologic-Mechanical Processes and Effects on Heat Transfer in Enhanced/Engineered Geothermal Systems
by Yu-Shu Wu and Philip H. Winterfeld
Energies 2025, 18(12), 3017; https://doi.org/10.3390/en18123017 - 6 Jun 2025
Viewed by 839
Abstract
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the [...] Read more.
Enhanced or engineered geothermal systems (EGSs), or non-hydrothermal resources, are highly notable among sustainable energy resources because of their abundance and cleanness. The EGS concept has received worldwide attention and undergone intensive studies in the last decade in the US and around the world. In comparison, hydrothermal reservoir resources, the ‘low-hanging fruit’ of geothermal energy, are very limited in amount or availability, while EGSs are extensive and have great potential to supply the entire world with the needed energy almost permanently. The EGS, in essence, is an engineered subsurface heat mining concept, where water or another suitable heat exchange fluid is injected into hot formations to extract heat from the hot dry rock (HDR). Specifically, the EGS relies on the principle that injected water, or another working fluid, penetrates deep into reservoirs through fractures or high-permeability channels to absorb large quantities of thermal energy by contact with the host hot rock. Finally, the heated fluid is produced through production wells for electricity generation or other usages. Heat mining from fractured EGS reservoirs is subject to complex interactions within the reservoir rock, involving high-temperature heat exchange, multi-phase flow, rock deformation, and chemical reactions under thermal-hydrological-mechanical (THM) processes or thermal-hydrological-mechanical-chemical (THMC) interactions. In this paper, we will present a THM model and reservoir simulator and its application for simulation of hydrothermal geothermal systems and EGS reservoirs as well as a methodology of coupling thermal, hydrological, and mechanical processes. A numerical approach, based on discretizing the thermo-poro-elastic Navier equation using an integral finite difference method, is discussed. This method provides a rigorous, accurate, and efficient fully coupled methodology for the three (THM) strongly interacted processes. Several programs based on this methodology are demonstrated in the simulation cases of geothermal reservoirs, including fracture aperture enhancement, thermal stress impact, and tracer transport in a field-scale reservoir. Results are displayed to show geomechanics’ impact on fluid and heat flow in geothermal reservoirs. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

19 pages, 3215 KB  
Article
Study on Elastoplastic Damage and Crack Propagation Mechanisms in Rock Based on the Phase Field Method
by Jie Zhang, Guang Qin and Bin Wang
Appl. Sci. 2025, 15(11), 6206; https://doi.org/10.3390/app15116206 - 31 May 2025
Cited by 3 | Viewed by 722
Abstract
To overcome the limitation of traditional elastic phase field models that neglect plastic deformation in rock compressive-shear failure, this study developed an elastoplastic phase field fracture model incorporating plastic strain energy and established a coupling framework for plastic deformation and crack evolution. By [...] Read more.
To overcome the limitation of traditional elastic phase field models that neglect plastic deformation in rock compressive-shear failure, this study developed an elastoplastic phase field fracture model incorporating plastic strain energy and established a coupling framework for plastic deformation and crack evolution. By introducing the non-associated flow rule and plastic damage variable, an energy functional comprising elastic strain energy, plastic work, and crack surface energy was constructed. The phase field governing equation considering plastic-damage coupling was obtained, enabling the simulation of the energy evolution in rock from the elastic stage to plastic damage and unstable failure. Validation was carried out through single-edge notch tension tests and uniaxial compression tests with prefabricated cracks. Results demonstrate that the model accurately captures characteristics such as the linear propagation of tensile cracks, the initiation of wing-like cracks under compressive-shear conditions, and the evolution of mixed-mode failure modes, which are highly consistent with classical experimental observations. Specifically, the model provides a more detailed description of local damage evolution and residual strength caused by stress concentration in compressive-shear scenarios, thereby quantifying the influence of plastic deformation on crack driving force. These findings offer theoretical support for crack propagation analysis in rock engineering applications, including hydraulic fracturing and the construction of underground energy storage caverns. The proposed plastic phase field model can be effectively utilized to simulate rock failure processes under complex stress states. Full article
Show Figures

Figure 1

17 pages, 2146 KB  
Article
Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings
by Lotfi Ben Said, Hamdi Hentati, Mohamed Turki, Alaa Chabir, Sattam Alharbi and Mohamed Haddar
Mathematics 2025, 13(11), 1742; https://doi.org/10.3390/math13111742 - 24 May 2025
Viewed by 1858
Abstract
The main objective of this work was to model the failure mechanisms of brittle materials subjected to thermal and mechanical loads. A diffusive representation of the crack topology provides the basis for the regularized kinematic framework used. With a smooth transition from the [...] Read more.
The main objective of this work was to model the failure mechanisms of brittle materials subjected to thermal and mechanical loads. A diffusive representation of the crack topology provides the basis for the regularized kinematic framework used. With a smooth transition from the undamaged to the fully damaged state, the fracture surface was roughly represented as a diffusive field. By integrating a staggered scheme and spectral decomposition, the variational formulation was used after being mathematically written and developed. Its effectiveness was analyzed using extensive benchmark tests, demonstrating the effectiveness of the phase-field model in modeling the behavior of brittle materials. This proposed approach was experimentally tested through the examination of crack propagation paths in brittle materials that were subjected to variable mechanical and thermal loads. This work focused on the integration of a spectral decomposition-based phase-field model with thermo-mechanical coupling for dynamic fracture, supported by benchmark validation and the comparative assessment of energy decomposition strategies. The results highlight the accuracy and robustness of numerical and experimental methodologies proposed to model fracture mechanics in brittle materials subjected to complex loading conditions. Full article
(This article belongs to the Special Issue Scientific Computing for Phase-Field Models)
Show Figures

Figure 1

23 pages, 3535 KB  
Article
Geological–Engineering Synergistic Optimization of CO2 Flooding Well Patterns for Sweet Spot Development in Tight Oil Reservoirs
by Enhui Pei, Chao Xu and Chunsheng Wang
Sustainability 2025, 17(11), 4751; https://doi.org/10.3390/su17114751 - 22 May 2025
Cited by 1 | Viewed by 652
Abstract
CO2 flooding technology has been established as a key technique that is both economically viable and environmentally sustainable, achieving enhanced oil recovery (EOR) while advancing CCUS objectives. This study addresses the challenge of optimizing CO2 flooding well patterns in tight oil [...] Read more.
CO2 flooding technology has been established as a key technique that is both economically viable and environmentally sustainable, achieving enhanced oil recovery (EOR) while advancing CCUS objectives. This study addresses the challenge of optimizing CO2 flooding well patterns in tight oil reservoirs through a geological–engineering integrated approach. A semi-analytical model incorporating startup pressure gradients and miscible/immiscible two-phase flow was developed to dynamically adjust injection intensity. An effective driving coefficient model considering reservoir heterogeneity and fracture orientation was proposed to determine well pattern boundaries. Field data from Blocks A and B were used to validate the models, with the results indicating optimal injection intensities of 0.39 t/d/m and 0.63 t/d/m, respectively. Numerical simulations confirmed that inverted five-spot patterns with well spacings of 240 m (Block A) and 260 m (Block B) achieved the highest incremental oil production (3621.6 t/well and 4213.1 t/well) while reducing the gas channeling risk by 35–47%. The proposed methodology provides a robust framework for enhancing recovery efficiency in low-permeability reservoirs under varying geological conditions. Full article
(This article belongs to the Special Issue Sustainable Exploitation and Utilization of Hydrocarbon Resources)
Show Figures

Figure 1

Back to TopTop