Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings
Abstract
1. Introduction
2. Report on Phase-Field Approach Modeling Mechanical Problems
2.1. Phase-Field Approach
2.2. Spectral Decomposition Method
2.3. Dynamic Fracture Approach
3. Results of the Mechanical Model
3.1. Tensile Test of Notched Pieces
3.2. Shear Test of Notched Pieces
3.3. Mixed-Mode Loading Tests of Notched Pieces
4. Results of the Thermo-Mechanical Phase-Field Framework
- The temperature field varies only in the x- and y-directions: T = T(x,y,t).
- The initial temperature is T(x,y,t = 0) = T0.
- The piece is brought in contact with cold water at temperature T∞. The water temperature remains constant at T∞ = 20 °C throughout the water quenching test.
- When the heat penetration depth is much smaller than the length L, a zero-heat flux condition is applied along the lateral and upper edges of the domain. Additionally, it is assumed that the deformation occurs slowly enough to have no impact on the temperature distribution.
Algorithm 1: Numerical implementation of a thermo-mechanical phase-field model |
1. Initialization of temperatures |
2. Input the material properties and model parameters |
3. Provide the loading condition from the previous step: εi−1 and αi−1 |
4. Compute the temperature field using Equations (17) and (18). |
5. Compute the thermal strain. |
6. Alternating minimization of the total energy Equation (20). |
7. For each time step ti: |
Solve minimization problem with staggered schema (Equation (19)). |
The iteration continues until both fields satisfy the convergence criteria. |
8. Set ti = ti+1 |
9. End for |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ben Said, L.; Allouch, M.; Wali, M.; Dammak, F. Numerical Formulation of Anisotropic Elastoplastic Behavior Coupled with Damage Model in Forming Processes. Mathematics 2023, 11, 204. [Google Scholar] [CrossRef]
- Hammami, C.; Kammoun, N.; Hentati, H.; Ben Amar, M.; Haddar, M. Parametric analysis of the damage characterization tests of aluminum bulk material. J. Mech. Sci. Technol. 2022, 36, 5019–5025. [Google Scholar] [CrossRef]
- Ammar, S.; Ben Fraj, B.; Hentati, H.; Saouab, A.; Ben Amar, M.; Haddar, M. Mechanical performances of printed carbon fiber-reinforced PLA and PETG composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 238, 1488–1499. [Google Scholar] [CrossRef]
- Jung, J.; Do, B.C.; Yang, Q.D. Augmented finite-element method for arbitrary cracking and crack interaction in solids under thermo-mechanical loadings. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150282. [Google Scholar] [CrossRef]
- Ben Said, L.; Hentati, H.; Kamoun, T.; Trabelsi, M. Experimental and Numerical Investigation of Folding Process—Prediction of Folding Force and Springback. Mathematics 2023, 11, 4103. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.A.; Marigo, J.J. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 2000, 48, 797–826. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.A.; Marigo, J.J. The Variational Approach to Fracture. J. Elast. 2008, 91, 5–148. [Google Scholar] [CrossRef]
- Griffith, A.A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 1921, 221, 163–198. [Google Scholar]
- Amor, H.; Marigo, J.J.; Maurini, C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 2009, 57, 1209–1229. [Google Scholar] [CrossRef]
- Miehe, C.; Hofacker, M.; Welschinger, F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 2010, 199, 2765–2778. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhou, S.; Sheng, M.; Li, G. On the hydraulic fracturing in naturally-layered porous media using the phase field method. Eng. Geol. 2020, 266, 105306. [Google Scholar] [CrossRef]
- Zhang, S.; Kim, D.U.; Jiang, W.; Tonk, M.R. A phase field model of crack propagation in anisotropic brittle materials with preferred fracture planes. Comput. Mater. Sci. 2021, 193, 110400. [Google Scholar] [CrossRef]
- Jeong, H.; Signetti, S.; Han, S.T.; Ryu, S. Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci. 2018, 155, 483–492. [Google Scholar] [CrossRef]
- Kriaa, Y.; Hentati, H.; Zouari, B. Applying the phase-field approach for brittle fracture prediction: Numerical implementation and experimental validation. Mech. Adv. Mater. Struct. 2022, 29, 828–839. [Google Scholar] [CrossRef]
- Miehe, C.; Schänzel, C.L.M.; Ulmer, H. Phase-field modeling of fracture in multiphysics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Method. Appl. Mech. 2015, 294, 449–485. [Google Scholar] [CrossRef]
- Miehe, C.; Mauthe, S. Phase-field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Method. Appl. Mech. 2016, 304, 619–655. [Google Scholar] [CrossRef]
- Clavijo, S.P.; Addassi, M.; Finkbeiner, T.; Hoteit, H. A coupled phase-field and reactive-transport framework for fracture propagation in poroelastic media. Sci. Rep. 2022, 12, 17819. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Pi, A.G. Calculation method for brittle fracture of functional gradient materials. Sci. Rep. 2024, 14, 29262. [Google Scholar] [CrossRef]
- Chu, D.; Li, X.; Liu, Z. Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling. Int. J. Fract. 2017, 208, 115–130. [Google Scholar] [CrossRef]
- Wang, T.; Ye, X.; Liu, Z.; Chu, D.; Zhuang, Z. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration. Comput. Mech. 2020, 65, 1305–1321. [Google Scholar] [CrossRef]
- Pang, Y.; Li, D.; Li, X.; Wang, R.; Ao, X. Phase-Field Simulation of Temperature-Dependent Thermal Shock Fracture of Al2O3/ZrO2 Multilayer Ceramics with Phase Transition Residual Stress. Materials 2023, 16, 734. [Google Scholar] [CrossRef] [PubMed]
- Proserpio, D.; Ambati, M.; Loren, L.; De Kiendl, J. Phase-field simulation of ductile fracture in shell structures. Comput. Methods Appl. Mech. Eng. 2021, 385, 1140. [Google Scholar] [CrossRef]
- Samaniego, C.; Ulloa, J.; Rodríguez, P.; Houzeaux, G.; Vázquez, M.; Samaniego, E. A phase-field model for ductile fracture with shear bands: A parallel implementation. Int. J. Mech. Sci. 2021, 200, 106424. [Google Scholar] [CrossRef]
- Felder, S.; Kopic-Osmanovic, N.; Holthusen, H.; Brepols, T.; Reese, S. Thermo-mechanically coupled gradient-extended damage-plasticity modeling of metallic materials at finite strains. Int. J. Plast. 2022, 148, 103142. [Google Scholar] [CrossRef]
- Schlüter, A.; Willenbücher, A.; Kuhn, C.; Müller, R. Phase field approximation of dynamic brittle fracture. Comput. Mech. 2014, 54, 1141–1161. [Google Scholar] [CrossRef]
- Hentati, H.; Dhahri, M.; Dammak, F. A phase-field model of quasistatic and dynamic brittle fracture using staggered algorithm. J. Mech. Mater. Struct. 2016, 11, 309327. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Wu, J. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput. Methods Appl. Mech. Engrg. 2018, 340, 1000–1022. [Google Scholar] [CrossRef]
- Carlsson, J.; Braesch-Andersen, A.; Ferguson, S.J.; Isaksson, P. Fracture in porous bone analysed with a numerical phase-field dynamical model. J. Mech. Behav. Biomed. Mater. 2023, 139, 105659. [Google Scholar] [CrossRef] [PubMed]
- Hentati, H.; Kriaa, Y.; Haugou, G.; Chaari, F.; Wali, M.; Zouari, B.; Dammak, F. Influence of elastic wave on crack nucleation—Experimental and computational investigation of brittle fracture. Appl. Acoust. 2017, 128, 45–54. [Google Scholar] [CrossRef]
- Mandal, T.K.; Nguyen, V.P.; Wu, J.Y. Evaluation of variational phase-field models for dynamic brittle fracture. Eng. Fract. Mech. 2020, 235, 107169. [Google Scholar] [CrossRef]
- Dinachandra, M.; Alankar, A. A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics. Theor. Appl. Fract. Mech. 2020, 109, 102681. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Yvonnet, J.; Liu, S.; Gu, S. Phase field modeling of dynamic fracture in elastoplastic composites with interfacial debonding. Eng. Fract. Mech. 2024, 295, 109792. [Google Scholar] [CrossRef]
- Newmark, N.M. A method of computation for structural dynamics. ASCE J Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Doyen, D.; Ern, A.; Piperno, S. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem. SIAM J. Sci. Comput. 2011, 33, 223–249. [Google Scholar] [CrossRef]
- Ambati, M.; Gerasimov, T.; Lorenzis, L.D. A review on phase-field models of brittle fracture and a new fast hybrid formulation. J Comput. Mech. 2015, 55, 383–405. [Google Scholar] [CrossRef]
- Agha Mohammad Pour, M.; Esmailzadeh, P.; Abdi Behnagh, R.; Ghaffarigharehbagh, A.; Brighenti, R. Phase-field simulation of fracture in Polymethyl Methacrylate. Mech. Adv. Mater. Struct. 2023, 31, 10153–10167. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, W. Phase-field model for brittle fracture based on the inner-element edge-based smoothed finite method (IES-FEM). Eng. Fract. Mech. 2021, 254, 107919. [Google Scholar] [CrossRef]
- Peng, F.; Huang, W.; Ma, Y.E.; Zhang, Z.Q.; Zhang, Y. Phase Field Modeling of Brittle Fracture Based on the Cell-Based Smooth FEM by Considering Spectral Decomposition. Int. J. Comput. Methods 2021, 18, 2050016. [Google Scholar] [CrossRef]
- Grégoire, D. Initiation, Propagation, Arrêt et Redémarrage de Fissures Sous Impact. Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, Lyon, France, 2008. [Google Scholar]
- Li, L.; Song, F.; Jiang, C. Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model. J. Eur. Ceram. Soc. 2013, 33, 2677–2687. [Google Scholar] [CrossRef]
- Jiang, C.P.; Wu, X.F.; Li, J.; Song, F.; Shao, Y.F.; Xu, X.H.; Yan, P. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Mater. 2012, 60, 4540–4550. [Google Scholar] [CrossRef]
E (MPa) | ν | ρ (kg/m3) | λ (W/(mK)) | λth | C (J/(kg K)) |
---|---|---|---|---|---|
370 | 0.3 | 3980 | 31 | 7.5 × 10−6 | 880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Said, L.; Hentati, H.; Turki, M.; Chabir, A.; Alharbi, S.; Haddar, M. Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings. Mathematics 2025, 13, 1742. https://doi.org/10.3390/math13111742
Ben Said L, Hentati H, Turki M, Chabir A, Alharbi S, Haddar M. Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings. Mathematics. 2025; 13(11):1742. https://doi.org/10.3390/math13111742
Chicago/Turabian StyleBen Said, Lotfi, Hamdi Hentati, Mohamed Turki, Alaa Chabir, Sattam Alharbi, and Mohamed Haddar. 2025. "Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings" Mathematics 13, no. 11: 1742. https://doi.org/10.3390/math13111742
APA StyleBen Said, L., Hentati, H., Turki, M., Chabir, A., Alharbi, S., & Haddar, M. (2025). Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings. Mathematics, 13(11), 1742. https://doi.org/10.3390/math13111742