Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,122)

Search Parameters:
Keywords = phase-change energy storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 1358 KB  
Review
Paraffin Coated with Diatomite as a Phase Change Material (PCM) in Heat Storage Systems—A Review of Research, Properties, and Applications
by Agnieszka Przybek, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(22), 5166; https://doi.org/10.3390/ma18225166 (registering DOI) - 13 Nov 2025
Abstract
Paraffin-based phase change materials (PCMs) have emerged as promising candidates for thermal energy storage (TES) applications due to their high latent heat, chemical stability, and low cost. However, their inherently low thermal conductivity and the risk of leakage during melting–solidification cycles significantly limit [...] Read more.
Paraffin-based phase change materials (PCMs) have emerged as promising candidates for thermal energy storage (TES) applications due to their high latent heat, chemical stability, and low cost. However, their inherently low thermal conductivity and the risk of leakage during melting–solidification cycles significantly limit their practical performance. To address these limitations, numerous studies have investigated composite PCMs in which paraffin is incorporated into porous supporting matrices. Among these, diatomite has garnered particular attention due to its high porosity, large specific surface area, and chemical compatibility with organic materials. Serving as both a carrier and stabilizing shell, diatomite effectively suppresses leakage and enhances thermal conductivity, thereby improving the overall efficiency and reliability of the PCM. This review synthesizes recent research on paraffin–diatomite composites, with a focus on impregnation methods, surface modification techniques, and the influence of synthesis parameters on thermal performance and cyclic stability. The mechanisms of heat and mass transport within the composite structure are examined, alongside comparative analyses of paraffin–diatomite systems and other inorganic or polymeric supports. Particular emphasis is placed on applications in energy-efficient buildings, passive heating and cooling, and hybrid thermal storage systems. The review concludes that paraffin–diatomite composites present a promising avenue for stable, efficient, and sustainable phase change materials (PCMs). However, challenges such as the optimization of pore structure, long-term durability, and large-scale manufacturing must be addressed to facilitate their broader implementation in next-generation energy storage technologies. Full article
Show Figures

Graphical abstract

47 pages, 15788 KB  
Review
A Review of PCM Trombe Walls: Advances in Structural Optimization, Material Selection, and Operational Strategies
by Zhen Wang, Jinxuan Wang, Menghui Yu, Xinyi Zhang, Qingsong Ma, Yuling Xiao, Xindong Wei and Xin Yuan
Sustainability 2025, 17(22), 10123; https://doi.org/10.3390/su172210123 - 12 Nov 2025
Abstract
Given that building energy consumption accounts for a significant portion of total energy consumption, passive building technologies have demonstrated tremendous potential in addressing energy crises and the greenhouse effect. As a passive building technology, the Trombe wall (TW) can utilize solar energy to [...] Read more.
Given that building energy consumption accounts for a significant portion of total energy consumption, passive building technologies have demonstrated tremendous potential in addressing energy crises and the greenhouse effect. As a passive building technology, the Trombe wall (TW) can utilize solar energy to enhance building energy efficiency. However, due to their reliance on direct solar radiation patterns and limited thermal inertia characteristics, traditional TW systems exhibit inherent efficiency limitations. By integrating phase change materials (PCMs), TW systems can achieve high thermal storage performance and temperature control flexibility within a narrow temperature gradient range. By integrating functional materials, PCM-TW systems can be made multifunctional (e.g., through thermal catalysts for air purification). This has significant engineering implications. Therefore, this paper systematically reviews the development timeline of TWs, focusing on the evolution of PCM-TW technology and its performance. Based on this, the paper particularly emphasizes the roles of three key operational parameters: structural characteristics, thermophysical material design, and operational management. Importantly, through comparative analysis of existing systems, this paper identifies the shortcomings of current PCM-TW systems and proposes future improvement directions based on the review results. Full article
Show Figures

Figure 1

17 pages, 3862 KB  
Article
Study of Heat Transfer Characteristics of PCMs Melting Inside Aluminum Foams
by Farjad Shahid Hasan Khan and Andrea Diani
Materials 2025, 18(22), 5130; https://doi.org/10.3390/ma18225130 - 11 Nov 2025
Abstract
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, [...] Read more.
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, 20, and 40 PPI, but identical porosity (volumetric value), were impregnated with two PCMs (paraffin RT55 and RT64HC) and tested under varying heat fluxes. The thermophysical properties of three PCMs (RT42, RT55, and RT64HC) were first characterized using the T-history method. A control case consisting of pure PCM revealed significant thermal lag between the heater and the PCM, whereas the inclusion of a metal foam improved temperature uniformity and accelerated melting. The results showed that PPI variation had little influence on melting completion time, while PCM type, viz., melting temperature, strongly affected duration. Heat flux was the dominant parameter: higher input power substantially reduced melting times, although diminishing returns were observed at elevated heat fluxes. An empirical correlation from the literature, originally developed for side-heated foams, was applied to the base-heated configuration and reproduced the main melting trends, though it consistently underpredicted completion times at high fluxes. Overall, embedding PCMs in metal foams enhances heat transfer, mitigates localized overheating, and enables more compact and efficient TES systems. Future work should focus on developing correlations for non-adiabatic cases, exploring advanced foam architecture, and scaling the approach for practical energy storage and cooling applications. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Graphical abstract

18 pages, 5613 KB  
Article
Preparation and Performance Study of Decanoic Acid–Stearic Acid Composite Phase-Change Ceramsite Aggregate
by Gui Yu, Qiang Yuan, Min Li, Jiaxing Tao, Jing Jiang and De Chen
Coatings 2025, 15(11), 1315; https://doi.org/10.3390/coatings15111315 - 11 Nov 2025
Abstract
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote [...] Read more.
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote the utilization of solid waste resources. Based on the theory of minimum melting, composite phase-change materials were screened through thermodynamic models. The capric acid–stearic acid (CA-SA) melt system, whose theoretical phase-transition temperature falls within the building indoor thermal environment control range (18–26 °C), was preferred as the experimental object of this study, and its characteristics were verified through step cooling curves and thermal property tests. Subsequently, the ceramsite adsorption process was optimized, and the encapsulation process was studied. Finally, the encapsulation performance was evaluated through thermal stability and stirring crushing rate tests. The results showed that the phase-transition temperature of the decanoic acid–stearic acid melt system was 24.83 °C, which accurately matched the indoor thermal environment control requirements. The ceramsite particles treated by a physical vibrating screen can reach equilibrium after 30 min of adsorption at room temperature and pressure, which is both efficient and economical. The encapsulation layer of sludge biochar cement slurry with a water–cement ratio of 0.5 and a biochar content of 3% has both thermal conductivity and encapsulation integrity. The thermal stability test showed that the percentage of leakage of sludge biochar cement slurry and epoxy resin encapsulated aggregates was 0%, and the thermal stability rating was “very stable”. However, the percentage of leakage of unencapsulated and spray-coated encapsulated aggregates was as high as 193% and 40%, respectively. The results of the mixing and crushing rate test show that although the mixing and crushing rate of sludge biochar cement slurry encapsulation is slightly higher, its production cost is much lower than that of epoxy resin, and it is also environmentally friendly. This study improves the thermal performance of buildings by using composite phase-change ceramsite aggregate, and simultaneously realizes the resource utilization of sludge biochar, providing a solution for building energy saving and efficiency that combines environmental and engineering value. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

24 pages, 5647 KB  
Article
Thermal Performance Assessment of Heat Storage Unit by Investigating Different Fins Configurations
by Atif Shazad, Maaz Akhtar, Ahmad Hussain, Naser Alsaleh and Barun Haldar
Energies 2025, 18(22), 5920; https://doi.org/10.3390/en18225920 - 10 Nov 2025
Viewed by 97
Abstract
Energy shortage is a significant global concern due to the heavy reliance of industrial and residential sectors on energy. As fossil fuels diminish, there is a pressing shift towards alternative energy sources such as solar and wind. However, the intermittent nature of these [...] Read more.
Energy shortage is a significant global concern due to the heavy reliance of industrial and residential sectors on energy. As fossil fuels diminish, there is a pressing shift towards alternative energy sources such as solar and wind. However, the intermittent nature of these renewable resources, such as the absence of solar energy at night, necessitates robust energy storage solutions. This study focuses on enhancing the performance of a thermal storage unit by employing multiple fin configuration with solar salt (NaNO3-KNO3) as a phase change material (PCM) and Duratherm 630 as a heat transfer fluid (HTF). Notably, W-shaped and trapezoidal fins achieved reductions in melting time from 162 min to 84 min and 97 min, respectively, while rectangular fins were the least effective, albeit still reducing melting time to 143 min. Reduction in thermal gradients due to well-developed thermal mixing significantly reduced phase transition duration. Impact of fins geometries on localized vortexes generation within the unit was identified. W-shaped and trapezoidal fins were notably efficacious because of greater heat transfer area and better heat distribution through conduction and convection. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

19 pages, 4518 KB  
Article
Simulation Study on Heat Transfer and Flow Performance of Pump-Driven Microchannel-Separated Heat Pipe System
by Yanzhong Huang, Linjun Si, Chenxuan Xu, Wenge Yu, Hongbo Gao and Chaoling Han
Energies 2025, 18(22), 5882; https://doi.org/10.3390/en18225882 - 8 Nov 2025
Viewed by 245
Abstract
The separable heat pipe, with its highly efficient heat transfer and flexible layout features, has become an innovative solution to the heat dissipation problem of batteries, especially suitable for the directional heat dissipation requirements of high-energy-density battery packs. However, most of the number–value [...] Read more.
The separable heat pipe, with its highly efficient heat transfer and flexible layout features, has become an innovative solution to the heat dissipation problem of batteries, especially suitable for the directional heat dissipation requirements of high-energy-density battery packs. However, most of the number–value models currently studied examine the flow of refrigerant working medium within the pump as an isentropic or isothermal process and are unable to effectively analyze the heat transfer characteristics of different internal regions. Based on the laws of energy conservation, momentum conservation, and mass conservation, this study establishes a steady-state mathematical model of the pump-driven microchannel-separated heat pipe. The influence of factors—such as the phase state change in the working medium inside the heat exchanger, the heat transfer flow mechanism, the liquid filling rate, the temperature difference, as well as the structural parameters of the microchannel heat exchanger on the steady-state heat transfer and flow performance of the pump-driven microchannel-separated heat pipe—were analyzed. It was found that the influence of liquid filling ratio on heat transfer quantity is reflected in the ratio of change in the sensible heat transfer and latent heat transfer. The sensible heat transfer ratio is higher when the liquid filling is too low or too high, and the two-phase heat transfer is higher when the liquid filling ratio is in the optimal range; the maximum heat transfer quantity can reach 3.79 KW. The decrease in heat transfer coefficient with tube length in the single-phase region is due to temperature and inlet effect, and the decrease in heat transfer coefficient in the two-phase region is due to the change in flow pattern and heat transfer mechanism. This technology has the advantages of long-distance heat transfer, which can adapt to the distributed heat dissipation needs of large-energy-storage power plants and help reduce the overall lifecycle cost. Full article
Show Figures

Figure 1

39 pages, 2886 KB  
Review
Sand-Based Thermal Storage System for Human-Powered Energy Generation: A Review
by Qirui Ding, Lili Zeng, Ying Zeng, Changhui Song, Liang Lei and Weicheng Cui
Energies 2025, 18(22), 5869; https://doi.org/10.3390/en18225869 - 7 Nov 2025
Viewed by 290
Abstract
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical [...] Read more.
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical pore structures provide multiscale thermal conduction pathways while achieving PCM loading capacities exceeding 90%. Carbon-based nanomaterial doping enhances thermal conductivity by up to 269%, reaching 3.1 W/m·K while maintaining phase change enthalpies above 130 J/g. This demonstrated cycling stability exceeds 1000 thermal cycles with <8% capacity degradation. Thermal energy storage costs reach ~$20 kWh−1—60% lower than lithium-ion systems when normalized by usable heat capacity. Integration with triboelectric nanogenerators achieves 55% peak mechanical-to-electrical conversion efficiency for direct pathways, while thermal-buffered systems provide 8–12% end-to-end efficiency with temporal decoupling between intermittent human power input and stable electrical output. Miniaturized systems target off-grid communities, offering 5–10× cost advantages over conventional batteries for resource-constrained deployments. Levelized storage costs remain competitive despite efficiency penalties versus lithium-ion alternatives. Critical challenges, including thermal cycling degradation, energy-power density trade-offs, and environmental adaptability, are systematically analyzed. Future directions explore biomimetic multi-level pore designs, intelligent responsive systems, and distributed microgrid implementations. Full article
Show Figures

Figure 1

31 pages, 5824 KB  
Review
Recent Advances in Photo-Responsive Microencapsulated Phase-Change Materials
by Chaofeng Yang and Binyang Du
Materials 2025, 18(21), 5014; https://doi.org/10.3390/ma18215014 - 3 Nov 2025
Viewed by 327
Abstract
Photo-responsive microencapsulated phase-change materials (MEPCMs) are attracting growing interest for their significant potential in solar energy applications and advanced intelligent thermal management systems, owing to their exceptional capacity for thermal energy storage, efficiency for photothermal conversion, and capability for multifunctional integration. This review [...] Read more.
Photo-responsive microencapsulated phase-change materials (MEPCMs) are attracting growing interest for their significant potential in solar energy applications and advanced intelligent thermal management systems, owing to their exceptional capacity for thermal energy storage, efficiency for photothermal conversion, and capability for multifunctional integration. This review provides a systematic summary of the advancements in photo-responsive MEPCMs containing photothermal, photocatalytic, and luminescent materials in the past five years, highlighting their potential in energy conversion, pollutant degradation, and intelligent sensing applications. Moreover, perspectives for future research are provided to enhance the practical application of photo-responsive MEPCMs. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

18 pages, 4924 KB  
Article
Thermal Performance Evaluation of Phase Change Material-Integrated Triple-Glazed Windows Under Korean Climatic Conditions
by Kwanghyun Song, Ruda Lee, Dongsu Kim, Jongho Yoon and Dongho Shin
Energies 2025, 18(21), 5754; https://doi.org/10.3390/en18215754 - 31 Oct 2025
Viewed by 193
Abstract
Passive design strategies incorporating phase change materials (PCM) provide effective thermal energy storage, improve indoor comfort, and reduce building energy demand. This study aimed to evaluate the effectiveness of partially filled PCM glazing systems in stabilizing indoor thermal comfort under Korean climate conditions, [...] Read more.
Passive design strategies incorporating phase change materials (PCM) provide effective thermal energy storage, improve indoor comfort, and reduce building energy demand. This study aimed to evaluate the effectiveness of partially filled PCM glazing systems in stabilizing indoor thermal comfort under Korean climate conditions, testing the hypothesis that partial integration can provide meaningful diurnal temperature regulation without compromising daylight access. Indoor air, interior and exterior glazing surfaces, and the PCM layer were monitored to evaluate heat transfer, while EnergyPlus simulations extended the analysis to seasonal conditions. The PCM model was developed using the Conduction Finite Difference (CondFD) algorithm and validated against experimental data, reliably reproducing dynamic phase change behavior. Field tests with a 28 °C PCM showed reductions in indoor peak temperatures of about 2.0 °C during daytime and increases of 1.5 °C at night. Under broader climatic simulations, the same PCM achieved up to 3.7 °C daytime reductions and 2.0 °C nighttime increases, depending on outdoor conditions. These findings highlight the potential of PCM-integrated glazing systems for adaptive thermal regulation in Korean climates and suggest broader applicability for passive cooling and heating strategies in buildings facing increasingly variable weather conditions. Full article
Show Figures

Figure 1

37 pages, 9322 KB  
Review
Bio-Based Composites with Encapsulated Phase Change Materials for Sustainable Thermal Energy Storage: A Review
by Gunasilan Manar, Mohamed Shalaby, Mohd Supian Abu Bakar, Bisma Parveez, Muhammad Imran Najeeb, Mohd Khair Hassan, Sulaiman Al-Sowayan and Mohamad A. Alawad
Polymers 2025, 17(21), 2925; https://doi.org/10.3390/polym17212925 - 31 Oct 2025
Viewed by 904
Abstract
Thermal energy storage (TES) plays a vital role in advancing energy efficiency and sustainability, with phase change materials (PCMs) receiving significant attention due to their high latent heat storage capacity. Nevertheless, conventional PCMs face critical challenges such as leakage, phase separation, and low [...] Read more.
Thermal energy storage (TES) plays a vital role in advancing energy efficiency and sustainability, with phase change materials (PCMs) receiving significant attention due to their high latent heat storage capacity. Nevertheless, conventional PCMs face critical challenges such as leakage, phase separation, and low thermal conductivity, which hinder large-scale applications. Encapsulation strategies have been developed to address these issues, and bio-based composite materials are increasingly recognised as sustainable alternatives. Materials such as lignin, nanocellulose, and biochar, as well as hybrid formulations with graphene and aerogels, show promise in improving thermal conductivity, mechanical integrity, and environmental performance. This review evaluates bio-based encapsulation approaches for PCMs, examining their effectiveness in enhancing heat transfer, durability under thermal cycling, and scalability. Applications in solar energy systems, building insulation, and electronic thermal regulation are highlighted, as are emerging AI-driven modelling tools for optimising encapsulation performance. Although bio-based PCM composites outperform conventional systems in terms of thermal stability and multifunctionality, they still face persistent challenges in terms of cost-effectiveness, scalability, and long-term reliability. Future research on smart, multifunctional PCMs and advanced bio-nanocomposites is essential for realising next-generation TES solutions that combine sustainability, efficiency, and durability. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

27 pages, 6417 KB  
Article
Thermal Performance of Charge/Discharge Dynamics in Flat-Plate Phase-Change Thermal Energy Storage Systems
by Minglong Ni, Xiaolong Yue, Mingtao Liu, Lei Wang and Zhenqian Chen
Energies 2025, 18(21), 5733; https://doi.org/10.3390/en18215733 - 31 Oct 2025
Viewed by 234
Abstract
Phase-change materials (PCMs) are integral to the thermal energy storage devices used in phase-change storage air-conditioning systems, but their adoption is hindered by slow heat transfer rates and suboptimal energy storage efficiency. In this study, we design and analyze a flat-panel thermal energy [...] Read more.
Phase-change materials (PCMs) are integral to the thermal energy storage devices used in phase-change storage air-conditioning systems, but their adoption is hindered by slow heat transfer rates and suboptimal energy storage efficiency. In this study, we design and analyze a flat-panel thermal energy storage device based on PCM, using both numerical simulations and experimental testing to evaluate performance under various operating conditions. The simulations, conducted using computational fluid dynamics (CFD) in a steady-state environment with an inlet temperature of 12 °C, demonstrate that the phase-change completion time for cooling storage is 8331 s, while the cooling release process is completed in 3883 s. The fluid distribution within the device is found to be uniform, and the positioning of the inlet and outlet has a minimal effect on performance metrics. However, the lateral stacking configuration of PCM units significantly improves heat transfer efficiency, increasing it by 15% compared to vertical stacking arrangements. Experimental tests confirm that increasing the inlet flow rate accelerates the phase transition process but has a marginal impact on overall energy utilization efficiency. These results provide valuable quantitative insights into optimizing the design of phase-change thermal storage devices, particularly in terms of enhancing heat transfer and overall energy efficiency. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

34 pages, 2322 KB  
Review
Photovoltaic-Thermal (PVT) Solar Collector and System Overview
by Sahand Hosouli, Mansoureh Aliakbari, Forough Raeisi, Muhammad Talha Jahangir, João Gomes, Damu Murali and Iván P. Acosta Pazmiño
Energies 2025, 18(21), 5643; https://doi.org/10.3390/en18215643 - 27 Oct 2025
Viewed by 876
Abstract
Photovoltaic-thermal (PVT) solar collector technologies are considered a highly efficient solution for sustainable energy generation, capable of producing electricity and heat simultaneously. This paper reviews and discusses different aspects of PVT collectors, including fundamental principles, materials, diverse classifications, such as air-type and water-type, [...] Read more.
Photovoltaic-thermal (PVT) solar collector technologies are considered a highly efficient solution for sustainable energy generation, capable of producing electricity and heat simultaneously. This paper reviews and discusses different aspects of PVT collectors, including fundamental principles, materials, diverse classifications, such as air-type and water-type, and different cooling mechanisms to boost their performance, such as nano-fluids, Phase Change Materials (PCMs), and Thermoelectric Generators (TEGs). At the system level, this paper analyses PVT technologies’ integration in buildings and industrial applications and gives a comprehensive market overview. The methodology focused on evaluating advancements in design, thermal management, and overall system efficiency based on existing literature published from 2010 to 2025. From the findings of various studies, water-based PVT systems provide electrical efficiencies ranging from 8% to 22% and thermal efficiencies between 30% and 70%, which are almost always higher than air-based alternatives. Innovations, including nanofluids, phase change materials, and hybrid topologies, have improved energy conversion and storage. Market data indicates growing adoption in Europe and Asia, stressing significant investments led by Sunmaxx, Abora Solar, Naked Energy, and DualSun. Nonetheless, obstacles to PVT arise regarding aspects such as cost, design complexity, lack of awareness, and economic incentives. According to the findings of this study, additional research is required to reduce the operational expenses of such systems, improve system integration, and build supportive policy frameworks. This paper offers guidance on PVT technologies and how they can be integrated into different setups based on current normativity and regulatory frameworks. Full article
Show Figures

Figure 1

22 pages, 3311 KB  
Article
Machine Learning-Based Prediction of Root-Zone Temperature Using Bio-Based Phase-Change Material in Greenhouse
by Hasan Kaan Kucukerdem and Hasan Huseyin Ozturk
Sustainability 2025, 17(21), 9455; https://doi.org/10.3390/su17219455 - 24 Oct 2025
Viewed by 437
Abstract
The study focuses on the experimental investigation of the impact of using coconut oil (CO) as a phase-change material (PCM) for heat storage on the root-zone temperature within a greenhouse in Adana, Türkiye. The study examines the efficacy of PCM as latent heat-storage [...] Read more.
The study focuses on the experimental investigation of the impact of using coconut oil (CO) as a phase-change material (PCM) for heat storage on the root-zone temperature within a greenhouse in Adana, Türkiye. The study examines the efficacy of PCM as latent heat-storage material and predicts root-zone temperature using three machine learning algorithms. The dataset used in the analysis consists of 2658 data at hourly resolution with six variables from February to April in 2022. A greenhouse with PCM shows a remarkable increase in both ambient (0.9–4.1 °C) and root-zone temperatures (1.1–1.6 °C) especially during the periods without sunlight compared to a conventional greenhouse. Machine learning algorithms used in this study include Multivariate Adaptive Regression Splines (MARS), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost). Hyperparameter tuning was performed for all three models to control model complexity, flexibility, learning rate, and regularization level, thereby preventing overfitting and underfitting. Among these algorithms, R2 values for testing data listed from largest to smallest are MARS (0.95), SVR (0.96), and XGBoost (0.97), respectively. The results emphasize the potential of machine learning approaches for applying thermal energy storage systems to agricultural greenhouses. In addition, it provides insight into a net-zero energy greenhouse approach by storing heat in a bio-based PCM, alongside its implementation and operational procedures. Full article
Show Figures

Figure 1

20 pages, 2995 KB  
Article
Numerical Study of Liquid Hydrogen Internal Flow in Liquid Hydrogen Storage Tank
by Xiang Li, Qun Wei, Lianyan Yu, Xiaobin Zhang, Yiting Zou, Yongcheng Zhu, Yanbo Peng, Daolin Wang, Zexian Zhu, Xianlei Chen, Yalei Zhao, Chengxu Tu and Fubing Bao
Energies 2025, 18(21), 5592; https://doi.org/10.3390/en18215592 - 24 Oct 2025
Viewed by 289
Abstract
As a key zero-carbon energy carrier, the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However, the ultra-low temperature, ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of [...] Read more.
As a key zero-carbon energy carrier, the accurate measurement of liquid hydrogen flow in its industrial chain is crucial. However, the ultra-low temperature, ultra-low density and other properties of liquid hydrogen can introduce calibration errors. To enhance the measurement accuracy and reliability of liquid hydrogen flow, this study investigates the heat and mass transfer within a 1 m3 non-vented storage tank during the calibration process of a liquid hydrogen flow standard device that integrates combined dynamic and static gravimetric methods. The vertical tank configuration was selected to minimize the vapor–liquid interface area, thereby suppressing boil-off gas generation and enhancing pressure stability, which is critical for measurement accuracy. Building upon research on cryogenic flow standard devices as well as tank experiments and simulations, this study employs computational fluid dynamics (CFD) with Fluent 2024 software to numerically simulate liquid hydrogen flow within a non-vented tank. The thermophysical properties of hydrogen, crucial for the accuracy of the phase-change simulation, were implemented using high-fidelity real-fluid data from the NIST Standard Reference Database, as the ideal gas law is invalid under the cryogenic conditions studied. Specifically, the Lee model was enhanced via User-Defined Functions (UDFs) to accurately simulate the key phase-change processes, involving coupled flash evaporation and condensation during liquid hydrogen refueling. The simulation results demonstrated good agreement with NASA experimental data. This study systematically examined the effects of key parameters, including inlet flow conditions and inlet liquid temperature, on the flow characteristics of liquid hydrogen entering the tank and the subsequent heat and mass transfer behavior within the tank. The results indicated that an increase in mass flow rate elevates tank pressure and reduces filling time. Conversely, a decrease in the inlet liquid hydrogen temperature significantly intensifies heat and mass transfer during the initial refueling stage. These findings provide important theoretical support for a deeper understanding of the complex physical mechanisms of liquid hydrogen flow calibration in non-vented tanks and for optimizing calibration accuracy. Full article
Show Figures

Figure 1

27 pages, 14839 KB  
Article
Fin-Embedded PCM Tubes in BTMS: Heat Transfer Augmentation and Mass Minimization via Multi-Objective Surrogate Optimization
by Bo Zhu, Yi Zhang and Zhengfeng Yan
Batteries 2025, 11(10), 387; https://doi.org/10.3390/batteries11100387 - 21 Oct 2025
Viewed by 396
Abstract
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical [...] Read more.
The rapid proliferation of electric vehicles (EVs) demands lightweight yet efficient battery thermal management systems (BTMS). The fin-embedded phase-change material energy storage tube (PCM-EST) offers significant potential due to its high thermal energy density and passive operation, but conventional designs face a critical trade-off: enhancing heat transfer typically increases mass, conflicting with EV lightweight requirements. To resolve this conflict, this study proposes a multi-objective surrogate optimization framework integrating computational fluid dynamics (CFD) and Kriging modeling. Fin geometric parameters—number, height, and tube length—were rigorously analyzed via ANSYS (2020 R1) Fluent simulations to quantify their coupled effects on PCM melting/solidification dynamics and structural mass. The results reveal that fin configurations dominate both thermal behavior and weight. An enhanced multi-objective particle swarm optimization (MOPSO) algorithm was then deployed to simultaneously maximize heat transfer and minimize mass, generating a Pareto-optimal solution. The optimized design achieves 8.7% enhancement in heat exchange capability and 0.732 kg mass reduction—outperforming conventional single-parameter designs by 37% in weight savings. This work establishes a systematic methodology for synergistic thermal-structural optimization, advancing high-performance BTMS for sustainable EVs. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Figure 1

Back to TopTop