Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = pevonedistat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2100 KiB  
Article
Distinct NF-kB Regulation Favors a Synergic Action of Pevonedistat and Laduviglusib in B-Chronic Lymphocytic Leukemia Cells Ex Vivo
by Víctor Arenas, Jose Luis Castaño, Juan José Domínguez, Lucrecia Yáñez and Carlos Pipaón
Cancers 2025, 17(3), 533; https://doi.org/10.3390/cancers17030533 - 5 Feb 2025
Cited by 1 | Viewed by 1303
Abstract
Background/Objectives: Chronic lymphocytic leukemia (CLL) remains an incurable B-cell malignancy. B-CLL cells exhibit an extended lifespan in part due to the activation of survival pathways such as NF-kB. A crosstalk between NF-kB and GSK-3β pathways has been reported. NF-kB has also been identified [...] Read more.
Background/Objectives: Chronic lymphocytic leukemia (CLL) remains an incurable B-cell malignancy. B-CLL cells exhibit an extended lifespan in part due to the activation of survival pathways such as NF-kB. A crosstalk between NF-kB and GSK-3β pathways has been reported. NF-kB has also been identified as a primary target of the NEDD8-activating enzyme inhibitor MLN4924. Our objective was to investigate potential synergies of MLN4924 with other NF-kB-targeting agents for the treatment of CLL and elucidate the mechanisms of action underlying this pathway regulation. Methods: To assess the cytotoxic efficacy of the combined ex vivo treatment with CHIR-99021 and MLN4924, we employed 7-AAD staining and XTT viability assays on primary samples from CLL patients. Subsequently, we conducted various analyses to identify the molecular mechanisms underlying the cytotoxic effects of this combination. Results: We discovered a discrepancy between the mRNA and protein levels of IkBɑ and provided evidence of translational control over its expression. This observation may explain why, unlike other cell types, B-CLL cells did not activate NF-kB signaling following inhibition of GSK-3ß. Furthermore, we describe a synergistic effect between a specific GSK-3ß inhibitor, CHIR-99021/Laduviglusib, and the NEDD8-activating enzyme inhibitor MLN4924/Pevonedistat, at doses that only slightly affect healthy B cell viability ex vivo. We investigated the molecular basis of this co-induction of cell death by analyzing the alterations in apoptosis-related gene expression. We found that the combinational treatment enhances a reduction in BCL2 mRNA expression levels, providing an alternative approach for BCL-2 inhibition in CLL that could have therapeutic implications for the treatment of refractory CLL cases. Conclusions: our findings revealed a unique interaction between GSK-3ß and NF-kB pathways in CLL and their regulation of BCL2 expression. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

19 pages, 8598 KiB  
Article
Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs
by Cunzhen Zhang, Jiyao Wang, Lin Jia, Qiang Wen, Na Gao and Hailing Qiao
Biomedicines 2025, 13(1), 236; https://doi.org/10.3390/biomedicines13010236 - 20 Jan 2025
Viewed by 1519
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression. [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression. Survival-related genes were identified using Cox regression, and their expression and function were validated via qPCR and gene interference. GO, KEGG, GSVA, and GSEA were used to determine enriched signaling pathways. ESTIMATE and CIBERSORT were used to calculate the stromal score, tumor purity, and immune cell infiltration. TIDE was employed to predict the patient response to immunotherapy. Finally, drug sensitivity was analyzed using the oncoPredict algorithm. Results: Two HCC subtypes with different gene expression profiles were identified, where subtype S1 exhibited a significantly shorter survival time. A subtype scoring formula and a nomogram were constructed, both of which showed an excellent predictive performance. COL11A1 and ACTL8 were identified as survival-related genes among the signature genes, and the downregulation of COL11A1 could suppress the invasion and migration of HepG2 cells. Subtype S1 was characterized by the upregulation of pathways related to collagen and the extracellular matrix, as well as downregulation associated with the xenobiotic metabolic process and fatty acid degradation. Subtype S1 showed higher stromal scores, immune scores, and ESTIMATE scores and infiltration of macrophages M0 and plasma cells, as well as lower tumor purity and infiltration of NK cells (resting/activated) and resting mast cells. Subtype S2 was more likely to benefit from immunotherapy. Subtype S1 appeared to be more sensitive to BMS-754807, JQ1, and Axitinib, while subtype S2 was more sensitive to SB505124, Pevonedistat, and Tamoxifen. Conclusions: HCC patients can be classified into two subtypes based on their gene expression profiles, which exhibit distinctions in terms of signaling pathways, the immune microenvironment, and drug sensitivity. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

17 pages, 2778 KiB  
Article
High-Throughput Drug Screening in Chondrosarcoma Cells Identifies Effective Antineoplastic Agents Independent of IDH Mutation
by Luyuan Li, Lily Hashemi, Josiane Eid, Wensi Tao, Leticia Campoverde, Amy Yu, Ammad Ahmad Farooqi, Hassan Al-Ali, Gina D’Amato, Francis Hornicek, Zhenfeng Duan, Ines Lohse and Jonathan Trent
Int. J. Mol. Sci. 2024, 25(23), 13003; https://doi.org/10.3390/ijms252313003 - 3 Dec 2024
Viewed by 2101
Abstract
The term chondrosarcoma refers to a rare and heterogeneous group of malignant cartilaginous tumors that are typically resistant to chemotherapy and radiotherapy. Metastatic chondrosarcoma has a poor prognosis, and effective systemic therapies are lacking. Isocitrate dehydrogenase (IDH) mutations represent a potential therapeutic target, [...] Read more.
The term chondrosarcoma refers to a rare and heterogeneous group of malignant cartilaginous tumors that are typically resistant to chemotherapy and radiotherapy. Metastatic chondrosarcoma has a poor prognosis, and effective systemic therapies are lacking. Isocitrate dehydrogenase (IDH) mutations represent a potential therapeutic target, but IDH inhibitors alone have shown limited clinical efficacy to date. Although the role of conventional chemotherapy is still subject to debate, some evidence suggests it may provide therapeutic benefits in advanced cases. In this study, we aimed to identify effective compounds for combination therapy in chondrosarcoma. Using high-throughput screening, we evaluated a panel of anticancer agents in IDH1-mutant chondrosarcoma cell lines and their mutant IDH1 knockout derivatives. The top 20 most potent compounds were identified across all cell lines, irrespective of IDH mutation status. Representative drugs selected for further investigation included docetaxel, methotrexate, panobinostat, idarubicin, camptothecin, and pevonedistat. These drugs inhibited colony formation, induced apoptosis and cell cycle arrest, and exhibited synergistic antitumor activity in two-drug combinations. In conclusion, we identified several highly effective agents with potent anti-tumor activity in chondrosarcoma cells, independent of IDH mutation status. These agents represent promising candidates for chondrosarcoma therapy and warrant further preclinical investigation and potential inclusion in clinical trials. Full article
(This article belongs to the Special Issue Molecular and Translational Research on Bone Tumors, 2nd Edition)
Show Figures

Figure 1

15 pages, 11768 KiB  
Article
Cullin 4B Ubiquitin Ligase Is Important for Cell Survival and Regulates TGF-β1 Expression in Pleural Mesothelioma
by Jessica Kreienbühl, Sakunthip Changkhong, Vanessa Orlowski, Michaela B. Kirschner, Isabelle Opitz and Mayura Meerang
Int. J. Mol. Sci. 2023, 24(17), 13410; https://doi.org/10.3390/ijms241713410 - 29 Aug 2023
Cited by 3 | Viewed by 2008
Abstract
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A [...] Read more.
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A in PM using an siRNA approach in PM cell lines (ACC Meso-1 and Mero82) and primary culture. The knockdown of CUL4B and CUL4A resulted in significantly reduced colony formation, increased cell death, and delayed cell proliferation. Furthermore, similar to the effect of CUL4A knockdown, downregulation of CUL4B led to reduced expression of Hippo pathway genes including YAP1, CTGF, and survivin. Interestingly, CUL4B and not CUL4A knockdown reduced TGF-β1 and MMP2 expression, suggesting a unique association of CUL4B with this pathway. However, the treatment of PM cells with exogenous TGF-β1 following CUL4B knockdown did not rescue PM cell growth. We further analyzed ACC Meso-1 xenograft tumor tissues treated with the cullin inhibitor, pevonedistat, which targets protein neddylation, and observed the downregulation of human TGF-β1 and MMP2. In summary, our data suggest that CUL4B overexpression is important for tumor cell growth and survival and may drive PM aggressiveness via the regulation of TGF-β1 expression and, furthermore, reveal a new mechanism of action of pevonedistat. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets of Solid Cancer)
Show Figures

Figure 1

21 pages, 6000 KiB  
Article
Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells
by Aaron A. Mehus, Madison Jones, Mason Trahan, Kaija Kinnunen, Kaitlyn Berwald, Becker Lindner, Sarmad Al-Marsoummi, Xu Dong Zhou, Scott H. Garrett, Donald A. Sens, Mary Ann Sens and Seema Somji
Int. J. Mol. Sci. 2023, 24(11), 9149; https://doi.org/10.3390/ijms24119149 - 23 May 2023
Cited by 8 | Viewed by 2562
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. [...] Read more.
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS. Full article
(This article belongs to the Special Issue Stem Cell Biology and Cancer)
Show Figures

Figure 1

17 pages, 4178 KiB  
Article
Drugs That Mimic Hypoxia Selectively Target EBV-Positive Gastric Cancer Cells
by Blue-leaf A. Cordes, Andrea Bilger, Richard J. Kraus, Ella T. Ward-Shaw, Madeline R. Labott, Shinhyo Lee, Paul F. Lambert and Janet E. Mertz
Cancers 2023, 15(6), 1846; https://doi.org/10.3390/cancers15061846 - 19 Mar 2023
Cited by 2 | Viewed by 2749
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV’s latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we [...] Read more.
Latent infection of Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cell cancers, including 10% of gastric carcinomas. We previously reported that hypoxia inducible factor-1α (HIF-1α) induces EBV’s latent-to-lytic switch and identified several HIF-1α-stabilizing drugs that induce this viral reactivation. Here, we tested three classes of these drugs for preferential killing of the EBV-positive gastric cancer AGS-Akata cell line compared to its matched EBV-negative AGS control. We observed preferential killing with iron chelators [Deferoxamine (DFO); Deferasirox (DFX)] and a prolyl hydroxylase inhibitor (BAY 85-3934 (Molidustat)), but not with a neddylation inhibitor [MLN4924 (Pevonedistat)]. DFO and DFX also induced preferential killing of the EBV-positive gastric cancer AGS-BDneo and SNU-719 cell lines. Preferential killing was enhanced when low-dose DFX (10 μM) was combined with the antiviral prodrug ganciclovir. DFO and DFX induced lytic EBV reactivation in approximately 10% of SNU-719 and 20-30% of AGS-Akata and AGS-BDneo cells. However, neither DFO nor DFX significantly induced synthesis of lytic EBV proteins in xenografts grown in NSG mice from AGS-Akata cells above the level observed in control-treated mice. Therefore, these FDA-approved iron chelators are less effective than gemcitabine at promoting EBV reactivation in vivo despite their high specificity and efficiency in vitro. Full article
(This article belongs to the Special Issue Viruses in Cancer Etiology)
Show Figures

Figure 1

14 pages, 281 KiB  
Review
Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review
by Samiha Mohsen, Philip T. Sobash, Ghada Fahad Algwaiz, Noor Nasef, Safaa Abed Al-Zeidaneen and Nagla Abdel Karim
Curr. Oncol. 2022, 29(3), 1695-1708; https://doi.org/10.3390/curroncol29030141 - 5 Mar 2022
Cited by 67 | Viewed by 7375
Abstract
Autophagy has been of novel interest since it was first demonstrated to have effect in Burkitt’s lymphoma. Since that time, the autophagy agents chloroquine and hydroxychloroquine have become the only FDA (Food and Drug Administration)-approved autophagy inhibitors. While not approved for cancer therapy, [...] Read more.
Autophagy has been of novel interest since it was first demonstrated to have effect in Burkitt’s lymphoma. Since that time, the autophagy agents chloroquine and hydroxychloroquine have become the only FDA (Food and Drug Administration)-approved autophagy inhibitors. While not approved for cancer therapy, there are ongoing clinical trials to evaluate their safety and efficacy. Pevonedistat has emerged as a novel inhibitor through the neddylation pathway and is an autophagy activator. This paper summarizes and presents current clinical trials for hydroxychloroquine (HCQ), chloroquine (CQ), and Pevonedistat for the clinician. Full article
(This article belongs to the Section Medical Oncology)
13 pages, 3519 KiB  
Article
Neddylation Regulates Class IIa and III Histone Deacetylases to Mediate Myoblast Differentiation
by Hongyi Zhou, Huabo Su and Weiqin Chen
Int. J. Mol. Sci. 2021, 22(17), 9509; https://doi.org/10.3390/ijms22179509 - 1 Sep 2021
Cited by 7 | Viewed by 3669
Abstract
As the largest tissue in the body, skeletal muscle has multiple functions in movement and energy metabolism. Skeletal myogenesis is controlled by a transcriptional cascade including a set of muscle regulatory factors (MRFs) that includes Myogenic Differentiation 1 (MYOD1), Myocyte Enhancer Factor 2 [...] Read more.
As the largest tissue in the body, skeletal muscle has multiple functions in movement and energy metabolism. Skeletal myogenesis is controlled by a transcriptional cascade including a set of muscle regulatory factors (MRFs) that includes Myogenic Differentiation 1 (MYOD1), Myocyte Enhancer Factor 2 (MEF2), and Myogenin (MYOG), which direct the fusion of myogenic myoblasts into multinucleated myotubes. Neddylation is a posttranslational modification that covalently conjugates ubiquitin-like NEDD8 (neural precursor cell expressed, developmentally downregulated 8) to protein targets. Inhibition of neddylation impairs muscle differentiation; however, the underlying molecular mechanisms remain less explored. Here, we report that neddylation is temporally regulated during myoblast differentiation. Inhibition of neddylation through pharmacological blockade using MLN4924 (Pevonedistat) or genetic deletion of NEDD8 Activating Enzyme E1 Subunit 1 (NAE1), a subunit of the E1 neddylation-activating enzyme, blocks terminal myoblast differentiation partially through repressing MYOG expression. Mechanistically, we found that neddylation deficiency enhances the mRNA and protein expressions of class IIa histone deacetylases 4 and 5 (HDAC4 and 5) and prevents the downregulation and nuclear export of class III HDAC (NAD-Dependent Protein Deacetylase Sirtuin-1, SIRT1), all of which have been shown to repress MYOD1-mediated MYOG transcriptional activation. Together, our findings for the first time identify the crucial role of neddylation in mediating class IIa and III HDAC co-repressors to control myogenic program and provide new insights into the mechanisms of muscle disease and regeneration. Full article
(This article belongs to the Special Issue Molecular Research on Muscle Protein and Myopathies)
Show Figures

Figure 1

13 pages, 2152 KiB  
Article
Nedd8-Activating Enzyme Is a Druggable Host Dependency Factor of Human and Mouse Cytomegalovirus
by Yulia Alejandra Flores-Martínez, Vu Thuy Khanh Le-Trilling and Mirko Trilling
Viruses 2021, 13(8), 1610; https://doi.org/10.3390/v13081610 - 14 Aug 2021
Cited by 6 | Viewed by 3526
Abstract
Human cytomegalovirus causes diseases in individuals with insufficient immunity. Cytomegaloviruses exploit the ubiquitin proteasome pathway to manipulate the proteome of infected cells. The proteasome degrades ubiquitinated proteins. The family of cullin RING ubiquitin ligases (CRL) regulates the stability of numerous important proteins. If [...] Read more.
Human cytomegalovirus causes diseases in individuals with insufficient immunity. Cytomegaloviruses exploit the ubiquitin proteasome pathway to manipulate the proteome of infected cells. The proteasome degrades ubiquitinated proteins. The family of cullin RING ubiquitin ligases (CRL) regulates the stability of numerous important proteins. If the cullin within the CRL is modified with Nedd8 (“neddylated”), the CRL is enzymatically active, while CRLs lacking Nedd8 modifications are inactive. The Nedd8-activating enzyme (NAE) is indispensable for neddylation. By binding to NAE and inhibiting neddylation, the drug MLN4924 (pevonedistat) causes CRL inactivation and stabilization of CRL target proteins. We showed that MLN4924 elicits potent antiviral activity against cytomegaloviruses, suggesting that NAE might be a druggable host dependency factor (HDF). However, MLN4924 is a nucleoside analog related to AMP, and the antiviral activity of MLN4924 may have been influenced by off-target effects in addition to NAE inhibition. To test if NAE is indeed an HDF, we assessed the novel NAE inhibitor TAS4464 and observed potent antiviral activity against mouse and human cytomegalovirus. Additionally, we raised an MLN4924-resistant cell clone and showed that MLN4924 as well as TAS4464 lose their antiviral activity in these cells. Our results indicate that NAE, the neddylation process, and CRLs are druggable HDFs of cytomegaloviruses. Full article
(This article belongs to the Special Issue New Concepts of Antiviral Strategies Against HCMV)
Show Figures

Figure 1

16 pages, 2294 KiB  
Article
Synthetic Lethality Screening Highlights Colorectal Cancer Vulnerability to Concomitant Blockade of NEDD8 and EGFR Pathways
by Federica Invrea, Simona Punzi, Consalvo Petti, Rosalba Minelli, Michael D. Peoples, Christopher A. Bristow, Valentina Vurchio, Alessia Corrado, Alberto Bragoni, Caterina Marchiò, Andrea Bertotti, Livio Trusolino, Alberto Bardelli, Claudio Isella, Alessandro Carugo, Giulio F. Draetta and Enzo Medico
Cancers 2021, 13(15), 3805; https://doi.org/10.3390/cancers13153805 - 28 Jul 2021
Cited by 10 | Viewed by 3773
Abstract
Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients’ outcomes. We previously found that the NEDD8-activating enzyme [...] Read more.
Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients’ outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a “drop-out” loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings. Full article
(This article belongs to the Special Issue Targeted Therapies in Colorectal Cancer: What’s New?)
Show Figures

Figure 1

13 pages, 867 KiB  
Review
Targeting NEDDylation as a Novel Approach to Improve the Treatment of Head and Neck Cancer
by Trace M. Jones, Jennifer S. Carew, Julie E. Bauman and Steffan T. Nawrocki
Cancers 2021, 13(13), 3250; https://doi.org/10.3390/cancers13133250 - 29 Jun 2021
Cited by 9 | Viewed by 4284
Abstract
Head and neck cancer is diagnosed in nearly 900,000 new patients worldwide each year. Despite this alarming number, patient outcomes, particularly for those diagnosed with late-stage and human papillomavirus (HPV)-negative disease, have only marginally improved in the last three decades. New therapeutics that [...] Read more.
Head and neck cancer is diagnosed in nearly 900,000 new patients worldwide each year. Despite this alarming number, patient outcomes, particularly for those diagnosed with late-stage and human papillomavirus (HPV)-negative disease, have only marginally improved in the last three decades. New therapeutics that target novel pathways are desperately needed. NEDDylation is a key cellular process by which NEDD8 proteins are conjugated to substrate proteins in order to modulate their function. NEDDylation is closely tied to appropriate protein degradation, particularly proteins involved in cell cycle regulation, DNA damage repair, and cellular stress response. Components of the NEDDylation pathway are frequently overexpressed or hyperactivated in many cancer types including head and neck cancer, which contribute to disease progression and drug resistance. Therefore, targeting NEDDylation could have a major impact for malignancies with alterations in the pathway, and this has already been demonstrated in preclinical studies and clinical trials. Here, we will survey the mechanisms by which aberrant NEDDylation contributes to disease pathogenesis and discuss the potential clinical implications of inhibiting NEDDylation as a novel approach for the treatment of head and neck cancer. Full article
(This article belongs to the Special Issue Targeting Mechanisms of Protein Degradation for Cancer Therapy)
Show Figures

Graphical abstract

10 pages, 2001 KiB  
Article
The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma
by Jennifer H. Foster, Eveline Barbieri, Linna Zhang, Kathleen A. Scorsone, Myrthala Moreno-Smith, Peter Zage and Terzah M. Horton
Int. J. Mol. Sci. 2021, 22(12), 6565; https://doi.org/10.3390/ijms22126565 - 18 Jun 2021
Cited by 9 | Viewed by 3485
Abstract
Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity [...] Read more.
Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromodeoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 status. Neuroblastoma cells with mutant (p53MUT) or reduced levels of wild-type p53 (p53si-p53) underwent G2-M cell-cycle arrest with rereplication, whereas p53 wild-type (p53WT) cell lines underwent G0-G1 cell-cycle arrest and apoptosis. In orthotopic neuroblastoma models, pevonedistat decreased tumor weight independent of p53 status. Control mice had an average tumor weight of 1.6 mg + 0.8 mg versus 0.5 mg + 0.4 mg (p < 0.05) in mice treated with pevonedistat. The mechanism of action of pevonedistat in neuroblastoma cell lines in vitro appears p53 dependent. However, in vivo studies using mouse neuroblastoma orthotopic models showed a significant decrease in tumor weight following pevonedistat treatment independent of the p53 status. Novel chemotherapy agents, such as the NEDD8-activating enzyme (NAE) inhibitor pevonedistat, deserve further study in the treatment of neuroblastoma. Full article
(This article belongs to the Special Issue Molecular Determinants of Neuroblastoma)
Show Figures

Figure 1

17 pages, 734 KiB  
Review
Current Therapy of the Patients with MDS: Walking towards Personalized Therapy
by Maria Luisa Palacios-Berraquero and Ana Alfonso-Piérola
J. Clin. Med. 2021, 10(10), 2107; https://doi.org/10.3390/jcm10102107 - 13 May 2021
Cited by 15 | Viewed by 7356
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, dysplasia and peripheral cytopenias. Nowadays, MDS therapy is selected based on risk. The goals of therapy are different in low-risk and high-risk patients. In low-risk MDS, the goal is to decrease transfusion needs and to [...] Read more.
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis, dysplasia and peripheral cytopenias. Nowadays, MDS therapy is selected based on risk. The goals of therapy are different in low-risk and high-risk patients. In low-risk MDS, the goal is to decrease transfusion needs and to increase the quality of life. Currently, available drugs for newly diagnosed low-risk MDS include growth factor support, lenalidomide and immunosuppressive therapy. Additionally, luspatercept has recently been added to treat patients with MDS with ring sideroblasts, who are not candidates or have lost the response to erythropoiesis-stimulating agents. Treatment of high-risk patients is aimed to improve survival. To date, the only currently approved treatments are hypomethylating agents and allogeneic stem cell transplantation. However, the future for MDS patients is promising. In recent years, we are witnessing the emergence of multiple treatment combinations based on hypomethylating agents (pevonedistat, magrolimab, eprenetapopt, venetoclax) that have proven to be effective in MDS, even those with high-risk factors. Furthermore, the approval in the US of an oral hypomethylating agent opens the door to exclusively oral combinations for these patients and their consequent impact on the quality of life of these patients. Relapsed and refractory patients remain an unmet clinical need. We need more drugs and clinical trials for this profile of patients who have a dismal prognosis. Full article
(This article belongs to the Special Issue Diagnostics and Management of Myelodysplastic Syndromes)
Show Figures

Figure 1

19 pages, 6324 KiB  
Article
Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum
by Robert J. Huber, William D. Kim and Sabateeshan Mathavarajah
Biomolecules 2021, 11(3), 482; https://doi.org/10.3390/biom11030482 - 23 Mar 2021
Cited by 3 | Viewed by 3684
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 [...] Read more.
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease. Full article
(This article belongs to the Special Issue Looking Back and Ahead: Emerging Concepts in Ubiquitin and UBLs)
Show Figures

Figure 1

19 pages, 4545 KiB  
Article
Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma
by Mayura Meerang, Jessica Kreienbühl, Vanessa Orlowski, Seraina L. C. Müller, Michaela B. Kirschner and Isabelle Opitz
Cancers 2020, 12(11), 3460; https://doi.org/10.3390/cancers12113460 - 20 Nov 2020
Cited by 8 | Viewed by 2561
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy [...] Read more.
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop