Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Historical Context of Autophagy Agents in Cancer
3.2. Autophagy Pathways
3.2.1. Lysosomal Pathway
3.2.2. Neddylation Pathway
3.3. Clinical Trial Results
3.3.1. Chloroquine (CQ)
Brain
Breast
3.3.2. Hydroxychloroquine (HCQ)
Miscellaneous Tumors
Lung
Gastrointestinal
Renal Cell Carcinoma
Multiple Myeloma
3.4. Pevonedistat (MLN4924)
3.5. Autophagy Inhibitors as Monotherapy vs. Combination
3.6. Adverse Effects Associated with Autophagy Agents
3.7. Tumor Response and Ki67
3.8. Strengths and Weakness of Autophagy Inhibitors in Cancer
4. Conclusions and Future Directions for Autophagy Agents in Cancer Therapy
Author Contributions
Funding
Conflicts of Interest
References
- Deter, R.L.; De Duve, C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 1967, 33, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Focusing on autophagy. Nat. Cell Biol. 2010, 12, 813. [CrossRef] [PubMed] [Green Version]
- Deretic, V. Autophagosome and Phagosome. In Autophagosome and Phagosome; Humana Press: Totowa, NJ, USA, 2008; pp. 1–10. [Google Scholar]
- Dunn, W.A. Autophagy and Related Mechanisms of Lysosome-Mediated Protein Degradation; Elsevier Ltd.: London, UK, 1994. [Google Scholar]
- Stolz, A.; Ernst, A.; Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 2014, 16, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Arias, E.; Cuervo, A.M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 2011, 23, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pengo, N.; Scolari, M.; Oliva, L.; Milan, E.; Mainoldi, F.; Raimondi, A.; Fagioli, C.; Merlini, A.; Mariani, E.; Pasqualetto, E.; et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 2013, 14, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef]
- Hu, C.; Solomon, V.R.; Ulibarri, G.; Lee, H. The efficacy and selectivity of tumor cell killing by akt inhibitors are substantially increased by chloroquine. Bioorganic Med. Chem. 2008, 16, 7888–7893. [Google Scholar] [CrossRef]
- Kumar, D.; Gupta, D.; Shankar, S.; Srivastava, R.K. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget 2015, 6, 3280–3291. [Google Scholar] [CrossRef] [Green Version]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, M.N.; Mowers, E.E.; Drake, L.E.; Macleod, K.F. Measuring Autophagy in Stressed Cells; Stress Responses: New York, NY, USA; Springer: New York, NY, USA, 2015; pp. 129–150. [Google Scholar]
- Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy 2011, 7, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Geser, A.; Brubaker, G.; Draper, C.C. Effect of a malaria suppression program on the incidence of african burkitt’s lymphoma. Am. J. Epidemiol. 1989, 129, 740–752. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, A.; Choudhury, D.; Datta, S.; Bhattacharya, S.; Chakrabarti, G. Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis. Biochimie 2014, 107, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
- Münz, C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shibutani, S.T.; Saitoh, T.; Nowag, H.; Münz, C.; Yoshimori, T. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol. 2015, 16, 1014–1024. [Google Scholar] [CrossRef]
- Richetta, C.; Faure, M. Autophagy in antiviral innate immunity. Cell. Microbiol. 2012, 15, 368–376. [Google Scholar] [CrossRef]
- Viry, E.; Noman, M.Z.; Arakelian, T.; Lequeux, A.; Chouaib, S.; Berchem, G.; Moussay, E.; Paggetti, J.; Janji, B. Hijacker of the antitumor immune response: Autophagy is showing its worst facet. Front. Oncol. 2016, 6, 246. [Google Scholar] [CrossRef]
- Paquette, M.; El-Houjeiri, L.; Pause, A. mTOR pathways in cancer and autophagy. Cancers 2018, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012, 33, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Tang, J.; Liang, Y.; Jin, R.; Cai, X. Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells. Cell Biosci. 2014, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.; Raposo, G. Exosomes—vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 2009, 21, 575–581. [Google Scholar] [CrossRef]
- Fader, C.; Colombo, M.I. Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy 2006, 2, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Ji, F.; Liu, Y.; He, M.; Zhang, Z.; Yang, J.; Wang, N.; Zhong, C.; Jin, Q.; Ye, X.; et al. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol. Rep. 2017, 38, 3668–3676. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.-I.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E.; et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; White, E. Role of autophagy in cancer: Management of metabolic stress. Autophagy 2007, 3, 28–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilad, Y.; Eliaz, Y.; Yu, Y.; Han, S.J.; O’Malley, B.W.; Lonard, D.M. Drug-induced PD-L1 expression and cell stress response in breast cancer cells can be balanced by drug combination. Sci. Rep. 2019, 9, 15099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorburn, A.; Thamm, D.; Gustafson, D.L. Autophagy and cancer therapy. Mol. Pharmacol. 2014, 85, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Sharif, T.; Martell, E.; Dai, C.; Kennedy, B.E.; Murphy, P.; Clements, D.R.; Kim, Y.; Lee, P.W.K.; Gujar, S.A. Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy 2017, 13, 264–284. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Hanif, E.A.M.; Chin, S.-F. Is targeting autophagy mechanism in cancer a good approach? the possible double-edge sword effect. Cell Biosci. 2021, 11, 56. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, Y.; Luo, Q.; Li, L.; Jia, L. Neddylation: A novel modulator of the tumor microenvironment. Molecular cancer Mol. Cancer 2019, 18, 77. [Google Scholar] [CrossRef] [Green Version]
- Soucy, T.A.; Dick, L.R.; Smith, P.G.; Milhollen, M.A.; Brownell, J.E. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 2010, 1, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 2014, 1, e29911. [Google Scholar] [CrossRef] [PubMed]
- Santana-Codina, N.; Mancias, J.D.; Kimmelman, A.C. The role of autophagy in cancer. Annu. Rev. Cancer Biol. 2017, 1, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Chude, C.I.; Amaravadi, R.K. Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 2017, 18, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaout, A.; Robertson, S.J.; Pond, G.R.; Lee, H.; Jeong, A.; Ianni, L.; Kroeger, L.; Hilton, J.; Coupland, S.; Gottlieb, C.; et al. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res. Treat. 2019, 178, 327–335. [Google Scholar] [CrossRef]
- Anand, K.; Niravath, P.; Patel, T.; Ensor, J.; Rodriguez, A.; Boone, T.; Wong, S.T.; Chang, J.C. A phase II study of the efficacy and safety of chloroquine in combination with taxanes in the treatment of patients with advanced or metastatic anthracycline-refractory breast cancer. Clin. Breast Cancer 2021, 21, 199–204. [Google Scholar] [CrossRef]
- Abdel Karim, N.F.; Ahmad, I.; Gaber, O.; Eldessouki, I.; Olowokure, O.O.; Farooq, M.; Morris, J.C. Phase I trial of chloroquine (CQ)/hydroxychloroquine (HCQ) in combination with carboplatin-gemcitabine (CG) in patients with advanced solid tumors. J. Clin. Oncol. 2019, 37 (Suppl. 15), 3027. [Google Scholar] [CrossRef]
- Samaras, P.; Tusup, M.; Nguyen-Kim, T.D.L.; Seifert, B.; Bachmann, H.; Von Moos, R.; Knuth, A.; Pascolo, S. Phase I study of a chloroquine–gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017, 80, 1005–1012. [Google Scholar] [CrossRef]
- Espina, V.A.; Liotta, L.; Rassulova, S.; Gallimore, H.; Grant-Wisdom, T.; Menezes, G.; Nayer, H.; Edmiston, K. Abstract CT140: PINC trial: Preventing invasive breast neoplasia with chloroquine. Clinical Trials 2017, 77, CT140. [Google Scholar] [CrossRef]
- Khurshed, M.; Molenaar, R.; van Linde, M.; Mathôt, R.; Struys, E.; van Wezel, T.; van Noorden, C.; Klümpen, H.-J.; Bovée, J.; Wilmink, J. A phase ib clinical trial of metformin and chloroquine in patients with idh1-mutated solid tumors. Cancers 2021, 13, 2474. [Google Scholar] [CrossRef]
- Eldredge, H.B.; DeNittis, A.; DuHadaway, J.B.; Chernick, M.; Metz, R.; Prendergast, G.C. Concurrent whole brain radiotherapy and short-course chloroquine in patients with brain metastases: A pilot trial. J. Radiat. Oncol. 2013, 2, 315–321. [Google Scholar] [CrossRef]
- Montanari, F.; Lu, M.; Marcus, S.; Saran, A.; Malankar, A.; Mazumder, A. A phase II trial of chloroquine in combination with bortezomib and cyclophosphamide in patients with relapsed and refractory multiple myeloma. Blood 2014, 124, 5775. [Google Scholar] [CrossRef]
- Compter, I.; Eekers, D.; Hoeben, A.; Rouschop, K.; Reymen, B.; Ackermans, L.; Beckervordersantforth, J.; Bauer, N.; Anten, M.; Wesseling, P.; et al. CHLOROBRAIN phase IB trial: The addition of chloroquine, an autophagy inhibitor, to concurrent radiation and temozolomide for newly diagnosed glioblastoma. Ann. Oncol. 2019, 30, v154. [Google Scholar] [CrossRef]
- Briceño, E.; Reyes, S.; Sotelo, J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus 2003, 14, 1–6. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Rubinson, D.A.; Wang, X.; Chan, J.A.; Cleary, J.M.; Enzinger, P.C.; Fuchs, C.S.; McCleary, N.J.; Meyerhardt, J.A.; Ng, K.; et al. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 2014, 19, 637–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, J.; Jabbour, S.; Orlick, M.; Riedlinger, G.; Guo, Y.; White, E.; Aisner, J. Phase ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treat. Res. Commun. 2019, 21, 100158. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.P.; Tenner, L.L.; Sarantopoulos, J.; Morris, J.L.; Longoria, L.; Liu, Q.; Michalek, J.; Mahalingam, D. Modulation of autophagy: A phase II study of vorinostat (VOR) plus hydroxychloroquine (HCQ) vs. regorafenib (RGF) in chemo-refractory metastatic colorectal cancer (mCRC). J. Clin. Oncol. 2019, 37, 3551. [Google Scholar] [CrossRef]
- Brown, T.J.; Karasic, T.B.; Schneider, C.J.; Teitelbaum, U.R.; Reiss, K.A.; Mitchell, T.C.; Massa, R.C.; O’Hara, M.H.; DiCicco, L.; Garcia-Marcano, L.; et al. Phase I trial of regorafenib, hydroxychloroquine, and entinostat in metastatic colorectal cancer. J. Clin. Oncol. 2021, 39, e15580. [Google Scholar] [CrossRef]
- Malhotra, J.; Jabbour, S.; Orlick, M.; Riedlinger, G.; Joshi, S.; Guo, J.Y.; White, E.; Aisner, J. Modulation of autophagy with hydroxychloroquine in patients with advanced non-small cell lung cancer (NSCLC): A phase ib study. J. Clin. Oncol. 2018, 36, e21138. [Google Scholar] [CrossRef]
- Wang, P.; Burikhanov, R.; Jayswal, R.; Weiss, H.L.; Arnold, S.M.; Villano, J.L.; Rangnekar, V.M. Neoadjuvant administration of hydroxychloroquine in a phase 1 clinical trial induced plasma par-4 levels and apoptosis in diverse tumors. Genes Cancer 2018, 9, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, R.; Leone, R.; Chang, Y.C.; Fecher, L.A.; Schuchter, L.M.; Kramer, A.; Tan, K.-S.; Heitjan, D.F.; Rodgers, G.; Gallagher, M.; et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 2014, 10, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Loaiza-Bonilla, A.; O’Hara, M.H.; Redlinger, M.; Damjanov, N.; Teitelbaum, U.R.; Vasilevskaya, I.; Rosen, M.A.; Heitjan, D.F.; Amaravadi, R.K.; O’Dwyer, P.J. Phase II trial of autophagy inhibition using hydroxychloroquine (HCQ) with FOLFOX/bevacizumab in the first-line treatment of advanced colorectal cancer. J. Clin. Oncol. 2015, 33, 3614. [Google Scholar] [CrossRef]
- Boone, B.A.; Bahary, N.; Zureikat, A.; Moser, A.J.; Normolle, D.; Wu, W.; Singhi, A.D.; Bao, P.; Bartlett, D.; Liotta, L.; et al. Safety and Biologic Response of Pre-Operative Autophagy Inhibition with Gemcitabine in Patients with Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2015, 22, 4402–4410. [Google Scholar] [CrossRef] [PubMed]
- Karasic, T.B.; O’Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.; Burrell, J.A.; Laheru, D.A.; et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: A phase 2 randomized clinical trial. JAMA Oncol. 2019, 5, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.B.; Supko, J.G.; Neal, J.W.; Muzikansky, A.; Digumarthy, S.; Fidias, P.; Temel, J.S.; Heist, R.S.; Shaw, A.T.; McCarthy, P.O.; et al. A phase I study of erlotinib and hydroxychloroquine in advanced Non–Small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 2014, 10, 1359–1368. [Google Scholar] [CrossRef]
- Vogl, D.T.; Stadtmauer, E.A.; Bradner, J.; Davis, L.; Paul, T.M.; Scott, E.C.; Nichols, C.W.; Porter, D.L.; Carroll, M.; Kaplan, J.; et al. Combined autophagy and proteasome inhibition for multiple myeloma: Final results of a phase 1 trial of hydroxychloroquine and standard dose bortezomib for patients with relapsed or refractory myeloma. Blood 2011, 118, 1869. [Google Scholar] [CrossRef]
- Scott, E.C.; Vogl, D.T.; Reasor-Heard, S.; Floyd, K.; Medvedova, E.; Spurgeon, S.E.; Gordon, M.; Kratz, A.; Siegel, M.B.; Loriaux, M.; et al. A phase I study of hydroxychloroquine with infusional cyclophosphamide, pulse dexamethasone and rapamycin in patients with relapsed or refractory multiple myeloma. Blood 2014, 124, 3449. [Google Scholar] [CrossRef]
- Appleman, L.J.; Normolle, D.P.; Logan, T.F.; Monk, P.; Olencki, T.; McDermott, D.F.; Ernstoff, M.S.; Maranchie, J.K.; Parikh, R.A.; Friedland, D.; et al. Safety and activity of hydroxychloroquine and aldesleukin in metastatic renal cell carcinoma: A cytokine working group phase II study. J. Clin. Oncol. 2018, 36, 4573. [Google Scholar] [CrossRef]
- El-Chemaly, S.; Taveira-Dasilva, A.; Goldberg, H.J.; Peters, E.; Haughey, M.; Bienfang, D.; Jones, A.M.; Julien-Williams, P.; Cui, Y.; Villalba, J.A.; et al. Sirolimus and autophagy inhibition in lymphangioleiomyomatosis: Results of a phase I clinical trial. Chest 2017, 151, 1302–1310. [Google Scholar] [CrossRef]
- Haas, N.B.; Appleman, L.J.; Stein, M.; Redlinger, M.; Wilks, M.; Xu, X.; Onorati, A.; Kalavacharla, A.; Kim, T.; Zhen, C.J.; et al. Autophagy inhibition to augment mTOR inhibition: A phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin. Cancer Res. 2019, 25, 2080–2087. [Google Scholar] [CrossRef] [Green Version]
- Zeh, H.J.; Bahary, N.; Boone, B.A.; Singhi, A.D.; Miller-Ocuin, J.L.; Normolle, D.P.; Zureikat, A.H.; Hogg, M.E.; Bartlett, D.L.; Lee, K.K.; et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin. Cancer Res. 2020, 26, 3126–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockhart, A.C.; Bauer, T.M.; Aggarwal, C.; Lee, C.B.; Harvey, R.D.; Cohen, R.B.; Sedarati, F.; Nip, T.K.; Faessel, H.; Dash, A.B.; et al. Phase ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Investig. New Drugs 2019, 37, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Sedarati, F.; Faller, D.V.; Zhao, D.; Faessel, H.M.; Chowdhury, S.; Bolleddula, J.; Li, Y.; Venkatakrishnan, K.; Papai, Z. Phase I study assessing the mass balance, pharmacokinetics, and excretion of [ 14 C]-pevonedistat, a NEDD8-activating enzyme inhibitor in patients with advanced solid tumors. Investig. New Drugs 2021, 39, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Swords, R.T.; Coutre, S.; Maris, M.B.; Zeidner, J.F.; Foran, J.M.; Cruz, J.; Erba, H.P.; Berdeja, J.G.; Tam, W.; Vardhanabhuti, S.; et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 2018, 131, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, S.; Hamid, O.; Pavlick, A.C.; Mulligan, G.; Smith, P.G.; Pickard, M.D.; Shultz, M.; Walker, R.M.; Dezube, B.; O’Day, S. MLN4924, an investigational NEDD8-activating enzyme (NAE) inhibitor, in patients (pts) with metastatic melanoma: Results of a phase I study. J. Clin. Oncol. 2011, 29, 8529. [Google Scholar] [CrossRef]
- Sekeres, M.A.; Watts, J.; Radinoff, A.; Sangerman, M.A.; Cerrano, M.; Lopez, P.F.; Zeidner, J.F.; Campelo, M.D.; Graux, C.; Liesveld, J.; et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia 2021, 35, 2119–2124. [Google Scholar] [CrossRef]
- Swords, R.T.; Erba, H.P.; DeAngelo, D.J.; Bixby, D.L.; Altman, J.K.; Maris, M.; Hua, Z.; Blakemore, S.J.; Faessel, H.; Sedarati, F.; et al. Pevonedistat (MLN4924), a First-in-Class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: A phase 1 study. Br. J. Haematol. 2015, 169, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Marinković, M.; Šprung, M.; Buljubasic, M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxidative Med. Cell. Longev. 2018, 2018, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Hwang, M.; Moretti, L.; Jaboin, J.J.; Cha, Y.I.; Lu, B. Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer. Autophagy 2008, 4, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; White, E.P.; Mehnert, J.M. Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma. PLoS ONE 2013, 8, e55096. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nature reviews. Nat. Rev. Drug Discov. 2012, 11, 709–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halcrow, P.W.; Geiger, J.D.; Chen, X. Overcoming chemoresistance: Altering pH of cellular compartments by chloroquine and hydroxychloroquine. Front. Cell Dev. Biol. 2021, 9, 627639. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, P.; Strambi, A.; Zipoli, C.; Hägg-Olofsson, M.; Buoncervello, M.; Linder, S.; De Milito, A. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine. Autophagy 2014, 10, 562–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varisli, L.; Cen, O.; Vlahopoulos, S. Dissecting pharmacological effects of chloroquine in cancer treatment: Interference with inflammatory signaling pathways. Immunology 2020, 159, 257–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabitsch, S.; McVey, J.C.; Ma, C.; Ruf, B.; Kamenyeva, O.; McCallen, J.D.; Diggs, L.P.; Heinrich, B.; Greten, T.F. Hydroxychloroquine can impair tumor response to anti-PD1 in subcutaneous mouse models. iScience 2021, 24, 101990. [Google Scholar] [CrossRef]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef]
Therapy Type | Chloroquine | Hydroxychloroquine | Pevonedistat |
---|---|---|---|
Monotherapy | 11 | 20 | 3 |
Combination | 7 | 66 | 34 |
Total | 18 | 86 | 37 |
Cancer Type | |||
MDS | - | 1 | 13 |
Multiple Myeloma | 1 | 4 | 2 |
AML | - | 2 | 19 |
ALL | - | - | 1 |
CLL | - | 1 | |
Lymphoma | - | - | 4 |
Non-Hematological | |||
Brain | 7 | 4 | 1 |
Brain Metastasis | 1 | - | - |
Endocrine | 1 | 1 | - |
Lung | 2 | 8 | 2 |
Breast | 3 | 9 | - |
GI | 2 | 22 | 1 |
Sarcoma/Bone Mets | 1 | 4 | - |
Melanoma | 1 | 8 | 1 |
Solid Neoplasms | 1 | 8 | 5 |
Renal | - | 1 | - |
Prostate | - | 9 | - |
Ovarian | - | 1 | - |
Lymphangioleiomyomatosis | - | 1 | - |
Mesothelioma | - | - | 1 |
Phase | |||
Phase I | 6 | 28 | 19 |
Phase I/II | 3 | 25 | 5 |
Phase II | 5 | 29 | 10 |
Phase II/III | - | 1 | - |
Phase III | 1 | - | 2 |
Not Applicable | 3 | 2 | 1 |
Published Results | 10 | 16 | 8 |
Trial | Indication | Chemotherapy/ Immunotherapy | Phase | Results |
---|---|---|---|---|
Chloroquine | ||||
NCT02333890 [38] | Breast | N/A | II | Treatment with single-agent Chloroquine 500 mg daily in the preoperative setting was not associated with any significant effects on breast cancer cellular proliferation. It was, however, associated with toxicity that may affect its broader use in oncology. |
NCT01446016 [39] | Breast | Taxane | II | A combination of Chloroquine with taxane or taxane-like chemotherapy was efficacious in patients with locally advanced or metastatic breast cancer with prior anthracycline-based chemotherapy. |
NCT02071537 [40] | Advanced Solid Tumors | Carboplatin Gemcitabine | I | Maximum tolerated dose of CQ was lower than previously reported with concomitant use of chemotherapeutic regimens. |
NCT01777477 [41] | Pancreatic | Gemcitabine | I | The addition of Chloroquine to gemcitabine was well tolerated and showed promising effects on the clinical response to the anti-cancer chemotherapy. Based on these initial results, the efficacy of the Gemcitabine–Chloroquine combination should be further assessed. |
NCT01023477 [42] | Breast | N/A | I/II | Oral Chloroquine, as anti-autophagy therapy, generates a measurable reduction in proliferation of DCIS lesions and enhances immune cell migration into the duct. |
NCT02496741 [43] | Solid Tumors (Glioma/ Cholangiocarcinoma/ Chondrosarcoma | N/A | 1/II | The combination regimen of metformin and Chloroquine is well tolerated, but the combination did not induce a clinical response in this patient population. |
NCT01727531 [44] | Brain Metastasis | N/A | II | WBRT with concurrent, short-course CQ is well tolerated in patients with brain metastases. The high intracranial disease control rate warrants additional study. |
NCT01438177 [45] | Multiple Myeloma | Velcade Cyclophosphamide | II | The addition of Chloroquine to bortezomib and cyclophosphamide is effective and overcoming probably some inhibitor resistance in a significant fraction of heavily pre-treated patients, with an acceptable toxicity profile. |
NCT02378532 [46] | Brain | Temozolomide | I | A daily dose of 200 mg CQ was established as the MTD when combined with RT and concurrent TMZ for newly diagnosed GBM. Favorable tolerability supports further clinical trials. |
NCT00224978 [47] | Brain | Carmustine | III | Chronic administration of Chloroquine greatly enhanced the response of GB to antineoplastic treatment. Because the toxicity of Chloroquine on malignant cells is negligible, these favorable results appear mediated by its strong antimutagenic effect that precludes the appearance of resistant clones during radio and chemotherapy. |
Hydroxychloroquine | ||||
NCT01273805 [48] | Pancreatic | N/A | II | HCQ monotherapy achieved inconsistent autophagy inhibition and demonstrated negligible therapeutic efficacy. |
NCT00765765 | Breast | Ixabepilone | I/II | Terminated/No published data. |
NCT00786682 | Prostate | Docetaxel | II | Terminated/No published data. |
NCT01828476 | Prostate | Abiraterone ABT-263 | II | Terminated/No published data. |
NCT01006369 | Colorectal | Capecitiabine Oxalplatin Bevacizumab | II | Completed/No published data. |
NCT00728845 [49] | Lung | Carboplatin Paclitaxel Bevacizumab | I/II | Addition of Hydroxychloroquine is safe and tolerable, with a modest improvement in clinical responses compared with prior studies. Autophagy inhibition may overcome chemotherapy resistance in advanced NSCLC, and further study in a more molecularly selected population such as KRAS-positive tumors is warranted. |
NCT02346340 [50] | Colorectal | Vorinostat Regorafenib | II | VOR/HCQ did not improve survival when compared with RGF. |
NCT03215264 [51] | Colorectal | Regorafenib Entinostat | I | The combination of regorafenib, HCQ, and entinostat was poorly tolerated without evident activity in metastatic colorectal cancer. |
NCT01649947 [52] | Lung | Carboplatin Paclitaxel Bevacizumab | II | Addition of HCQ has a similar toxicity profile compared with chemotherapy alone. Response rate to therapy in Kras-mutated and wild-type tumors was similar; even the Kras-mutated tumors usually demonstrate worse responses and progression free survival to chemotherapy. |
NCT02232243 [53] | Prostate/Lung/Head and Neck | N/A | I | Both dose levels of HCQ were well tolerated, and Par-4 secretion but not induction of the autophagy-inhibition of marker p62 correlated with apoptosis induction in tumors. |
NCT00714181 [54] | Solid Tumors/Melanoma | Temozolomide | I | This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable and is associated with autophagy modulation in patients. |
NCT01206530 [55] | Colorectal | FOLFOX Bevacizumab | I/II | The combination of FOLFOX/bevacizumab with HCQ is an active regimen in unselected patients with colorectal cancer. A randomized phase II trial of the combination is in development. |
NCT01128296 [56] | Pancreatic | Gemcitabine | I/II | Pre-operative autophagy inhibition with HCQ plus gemcitabine is safe and well tolerated. Surrogate biomarker responses (CA19-9) and surgical oncologic outcomes were encouraging. p53 status was not associated with adverse outcomes. |
NCT01506973 [57] | Pancreatic | Gemcitabine/nab-Paclitaxel | I/II | The addition of HCQ to block autophagy did not improve the primary endpoint of overall survival at 12 months. However, improvement seen in the overall response rate with HCQ may indicate a role for HCQ in the locally advanced setting, where tumor response may permit resection. |
NCT 00977470 [58] | Lung | Erlotinib | I | HCQ with or without erlotinib was safe and well tolerated. The recommended phase 2 dose of HCQ was 1000 mg when given in combination with erlotinib 150 mg. |
NCT00486603 [59] | Brain | Temozolomide | I/II | These data establish that autophagy inhibition is achievable with HCQ, but dose-limiting toxicity prevented escalation to higher doses of HCQ. Patients are awaiting the development of lower-toxicity compounds that can achieve more consistent inhibition of autophagy than HCQ. |
NCT00568880 [60] | Multiple Myeloma | Bortezomib | I | Combined targeting of proteasomal and autophagic protein degradation using bortezomib and Hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy. |
NCT01396200 [61] | Multiple Myeloma | Cyclophosphamide Rapamycin | I | The addition of mTOR and autophagy inhibition to a backbone of cy/dex yields a tolerable regimen with durable responses in heavily pretreated patients. A randomized phase 2 study is needed to determine the synergistic properties of dual mTOR and autophagy inhibition vs. chemotherapy alone. |
NCT01550367 [62] | RCC | N/A (IL-2) | I/II | IL-2 plus HCQ was well tolerated and clinically active, with encouraging PFS of 17 months at the 600 mg HCQ dose. |
NCT01687179 [63] | Lymphangioleiomyomatosis | Sirolimus | I | The combination of Sirolimus and Gydroxychloroquine is well tolerated, with no dose-limiting adverse events observed at 200 mg twice a day. Potential effects on lung function should be explored in larger trials. |
NCT01510119 [64] | RCC | Everolimus | I/II | Combined Hydroxychloroquine 600 mg twice daily with 10 mg daily everolimus was tolerable. The primary endpoint of >40% 6-month PFS rate was met. Hydroxychloroquine is a tolerable autophagy inhibitor for future RCC or other trials. |
NCT03344172 | Pancreatic | Gemcitabine, Abraxane, Avelumab | II | Terminated/No published results. |
NCT01978184 [65] | Pancreatic | Gemcitabine, Abraxane | II | The addition of Hydroxychloroquine to preoperative gemcitabine and nab-paclitaxel chemotherapy in patients with respectable pancreatic adenocarcinoma resulted in greater pathologic tumor response, improved serum biomarker response, and evidence of autophagy inhibition and immune activity |
NCT02013778 | HCC | N/A (TACE) | I/II | Terminated/No published data. |
Pevonedistat | ||||
NCT01862328 [66] | Solid Tumors | Paclitaxel Gemcitabine Docetaxel Carboplatin | I | Pevonedistat with docetaxel or with carboplatin plus paclitaxel was tolerable without cumulative toxicity. Sustained clinical responses were observed in pretreated patients receiving Ppevonedistat with carboplatin and paclitaxel. |
NCT03057366 [67] | Solid Tumors | Docetaxel Carboplatin Paclitaxel | I | Pevonedistat in combination with docetaxel or carboplatin plus paclitaxel was generally well tolerated. |
NCT01814826 [68] | AML | Azacitidine | I | Pevonedistat/azacitidine combo did not alter toxicity profile of azacytidine. Intent to treat ORR was 50%. |
NCT00722488 | Multiple Myeloma Lymphoma | N/A | I | Unable to obtain abstract. |
NCT03709576 | AML | Azacitidine | II | Terminated/No published results. |
NCT01011530 [69] | Melanoma | N/A | I | MLN4924 is generally well tolerated at the doses tested on schedule A, with antitumor activity. |
NCT02610777 [70] | MDS | Azacizidine | II | The OS, EFS, and ORR benefits were particularly promising among patients with higher-risk MDS, as was the OS benefit in LB-AML. The addition of Pevonedistat to azacitidine resulted in a comparable safety profile to azacitidine alone, no increased myelosuppression, and azacitidine dose intensity was maintained. |
NCT00911066 [71] | AML MDS | N/A | 1 | Administration of the first-in-class agent, Ppevonedistat, was feasible in patients with MDS and AML, and modest clinical activity was observed. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohsen, S.; Sobash, P.T.; Algwaiz, G.F.; Nasef, N.; Al-Zeidaneen, S.A.; Karim, N.A. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Curr. Oncol. 2022, 29, 1695-1708. https://doi.org/10.3390/curroncol29030141
Mohsen S, Sobash PT, Algwaiz GF, Nasef N, Al-Zeidaneen SA, Karim NA. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Current Oncology. 2022; 29(3):1695-1708. https://doi.org/10.3390/curroncol29030141
Chicago/Turabian StyleMohsen, Samiha, Philip T. Sobash, Ghada Fahad Algwaiz, Noor Nasef, Safaa Abed Al-Zeidaneen, and Nagla Abdel Karim. 2022. "Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review" Current Oncology 29, no. 3: 1695-1708. https://doi.org/10.3390/curroncol29030141
APA StyleMohsen, S., Sobash, P. T., Algwaiz, G. F., Nasef, N., Al-Zeidaneen, S. A., & Karim, N. A. (2022). Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Current Oncology, 29(3), 1695-1708. https://doi.org/10.3390/curroncol29030141