Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (129)

Search Parameters:
Keywords = pesticide wastewater treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 620
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

31 pages, 832 KiB  
Review
Depolymerization to Decontamination: Transforming PET Waste into Tailored MOFs for Advanced Pollutant Adsorption
by Asma Nouira and Imene Bekri-Abbes
Physchem 2025, 5(3), 28; https://doi.org/10.3390/physchem5030028 - 19 Jul 2025
Viewed by 447
Abstract
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, [...] Read more.
Plastic waste and water pollution demand circular economy-driven innovations. This review examines metal–organic framework (MOF) synthesis from polyethylene terephthalate (PET) waste for wastewater treatment. Depolymerized PET yields terephthalic acid and ethylene glycol—essential MOF precursors. We evaluate the following: (1) PET depolymerization (hydrolysis, glycolysis, ammonolysis) for monomer recovery efficiency; (2) MOF synthesis (solvothermal, microwave, mechanochemical) using PET-derived linkers; (3) performance in adsorbing heavy metals, dyes, and emerging contaminants. PET-based MOFs match or exceed commercial adsorbents in pollutant removal while lowering costs. Their tunable porosity and surface chemistry enhance selectivity and capacity. By converting waste plastics into functional materials, this strategy tackles dual challenges: diverting PET from landfills and purifying water. The review underscores the environmental and economic benefits of waste-sourced MOFs, proposing scalable routes for sustainable water remediation aligned with zero-waste goals. Full article
(This article belongs to the Section Surface Science)
Show Figures

Figure 1

43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Viewed by 534
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

18 pages, 5673 KiB  
Article
Contaminants of Emerging Concern on Microplastics Found in the Chrysaora chesapeakei of the Patuxent River, Chesapeake Bay, MD
by Carol A. Smith, Natalie Drichko, Miranda Lorenzo and Saroj Pramanik
Microplastics 2025, 4(2), 32; https://doi.org/10.3390/microplastics4020032 - 11 Jun 2025
Viewed by 896
Abstract
Previously, we reported that microplastic volatile organic compounds are present within the Chrysaora chesapeakei of Chesapeake Bay, MD. In this study, we report the presence of contaminants of emerging concern (CECs) on the hydrophobic surface of microplastic (MP) particles extracted from the C. [...] Read more.
Previously, we reported that microplastic volatile organic compounds are present within the Chrysaora chesapeakei of Chesapeake Bay, MD. In this study, we report the presence of contaminants of emerging concern (CECs) on the hydrophobic surface of microplastic (MP) particles extracted from the C. chesapeakei, detected by Raman spectroscopy and identified by Wiley’s KnowItAll Software with IR & Raman Spectral Libraries. C. chesapeakei encounters various microplastics and emerging contaminants as it floats through the depths of the Patuxent River water column. This study identifies subsuming CECs found directly on microplastics from within C. chesapeakei in the wild using Raman spectroscopy. Among the extracted microplastics, some of the emerging contaminants found on the different microplastics were pesticides, pharmaceuticals, minerals, food derivatives, wastewater treatment chemicals, hormones, and recreational drugs. Our results represent the first of such findings in C. chesapeakei, obtained directly from the field, and indicate C. chesapeakei’s relationship with microplastics, with this species serving as a vector of emerging contaminants through the marine food web. This paper further illustrates a relationship between different types of plastics that attract dissimilar types of emerging pollutants in the same surrounding environmental conditions, underscoring the urgent need for further research to fully understand and mitigate the risks that MPs coexist with contaminants. Full article
Show Figures

Figure 1

18 pages, 5141 KiB  
Article
Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors
by Vu Thanh Doan, Chinh Cong Le, Hung Van Tien Le, Ngoc Anh Trieu, Phu Le Vo, Dang An Tran, Hai Van Nguyen, Toshinori Tabata and Thu Thi Hoai Vu
Sustainability 2025, 17(12), 5375; https://doi.org/10.3390/su17125375 - 11 Jun 2025
Viewed by 666
Abstract
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality [...] Read more.
The Mekong Delta, an important agricultural and economic hub in Vietnam, has suffered from severe water quality issues caused by both natural and anthropogenic forces. This paper aims to conduct a rational statistical approach to evaluate the current situation of surface water quality in the Mekong Delta, applying Factor Analysis (FA), Principal Component Analysis (PCA), and Agglomerative Hierarchical Clustering (AHC) to a database of 3117 samples collected by national and provincial monitoring stations. The results revealed significant contamination with organic pollutants (BOD5: 3.50–172.870 mg/L, COD: 6.493–472.984 mg/L), pesticides (e.g., DDTs: n.d to 1.227 mg/L), trace metals (As: 0.006–0.046 mg/L, Cr: n.d–1.960 mg/L), and microbial indicators (Coliforms: n.d–45,100 MPN/100 mL), often higher than the WHO drinking water threshold. PCA/AHC analysis identified the following five major pollution components: (1) organic pollution and sewage/industrial and deposited chemicals (PCA1—23.08% variance); (2) pesticide and agricultural runoff derived contamination with Hg (PCA2—15.44%); (3) microbial pollution of the water was found to correlate positively with Zn and Cu content (PCA3—8.90%); (4) salinity was found to mobilize As and Cr (PCA4—8.00%); (5) nutrient/microbial pollution presumably from agricultural and sewage inputs (PCA5—7.22%). AHC showed some spatial variability that grouped samples in urban/industrial (Cluster 1), rural/agricultural (Cluster 2), and a highly contaminated one, where water was toxic and presented with microbial and Cd contamination (Cluster 3). Levels of pesticides, Cr, and microbial pollution were higher than reported in previous Mekong Delta studies and exceeded regional trends. These results emphasize the importance of holistic water management strategies, including better wastewater treatment, pesticide control, sustainable farming, and climate-adaptive measures to reduce saltwater intrusion and safeguard drinking water quality for the Mekong Delta. Full article
Show Figures

Figure 1

19 pages, 1224 KiB  
Review
Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
by Marzhan S. Kalmakhanova, Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes and Daniel D. Snow
Sustainability 2025, 17(12), 5370; https://doi.org/10.3390/su17125370 - 11 Jun 2025
Viewed by 686
Abstract
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia [...] Read more.
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia is a landlocked region known for its harsh climatic conditions and scarce water resources, despite being home to some of the world’s largest internal drainage basins. The available literature suggests that increasing salinity has rendered water unsuitable for irrigation and consumption; hazardous trace elements are found throughout Central Asia, most often associated with mining and industrial sources; and that legacy pesticides influence water quality, particularly in agriculturally influenced basins. This study also focuses on the effects of municipal and industrial wastewater discharge. Additionally, the impact of inadequately treated wastewater on water resources is analyzed through a review of available data and reports regarding surface and groundwater quantity and quality. Given the challenges of water scarcity and accessibility, the reuse of treated wastewater is becoming increasingly important, offering a valuable alternative that necessitates careful oversight to ensure public health, environmental sustainability, and water security. However, due to insufficient financial and technical resources, along with underdeveloped regulatory frameworks, many urban areas lack adequate wastewater treatment facilities, significantly constraining their safe and sustainable reuse. Proper management of wastewater effluent is critical, as it directly influences the quality of both surface and groundwater, which serve as key sources for drinking water and irrigation. Due to their persistent and biologically active nature even at trace levels, we discuss contaminants of emerging concern such as antibiotics, pharmaceuticals, and modern agrochemicals. This review thus highlights gaps in the literature reporting on impacts of wastewater inputs to water quality in Central Asia. It is recommended that future research and efforts should focus on exploring sustainable solutions for water quality management and pollution control to assure environmental sustainability and public health. Full article
Show Figures

Figure 1

26 pages, 2299 KiB  
Review
Nanostructured Aerogels for Water Decontamination: Advances, Challenges, and Future Perspectives
by Alexa-Maria Croitoru, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Dan Eduard Mihaiescu, Marius Rădulescu and Alexandru Mihai Grumezescu
Nanomaterials 2025, 15(12), 901; https://doi.org/10.3390/nano15120901 - 11 Jun 2025
Viewed by 720
Abstract
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically [...] Read more.
Water contamination with toxic pollutants such as heavy metals, oil spills, organic and inorganic dyes, pesticides, etc., causes severe environmental and human health pollution. Aerogels have gained increasing attention in recent years as promising adsorbents due to their outstanding properties. This paper critically evaluates the recent advancements in aerogel-based materials, highlighting their challenges, limitations, and practical applications in large-scale experiments. The influence of key parameters such as adsorbent dosage, solution pH, ionic strength, and temperature is also discussed. Integrating nanotechnology and advanced manufacturing methods, a new generation of high-performance adsorbents with increased sorption capacity and reusability could be developed. Additionally, pilot studies and field trials are highlighted in this review, showing aerogels’ practical and real-world applications. Although various gaps in the production process that limit aerogel implementation in the market still exist, the research progress in the field shows that novel aerogels could be used in real wastewater treatment in the future. This review underscores the need for future research to develop advanced aerogel-based materials using green and sustainable synthesis methods that can lead to full-scale application. Full article
Show Figures

Figure 1

11 pages, 1775 KiB  
Article
ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment
by Nicola di Nicola, Mariacristina Di Pelino, Martina Foschi, Rosalba Passalacqua, Andrea Lazzarini and Fabrizio Ruggieri
Molecules 2025, 30(12), 2480; https://doi.org/10.3390/molecules30122480 - 6 Jun 2025
Viewed by 470
Abstract
The increasing presence of pesticide residues in aquatic environments poses a significant threat to ecosystems and human health, necessitating the development of effective removal technologies. In this study, Zeolitic Imidazolate Framework-8 (ZIF-8) was investigated as adsorbent for Linuron, a widely used herbicide. The [...] Read more.
The increasing presence of pesticide residues in aquatic environments poses a significant threat to ecosystems and human health, necessitating the development of effective removal technologies. In this study, Zeolitic Imidazolate Framework-8 (ZIF-8) was investigated as adsorbent for Linuron, a widely used herbicide. The material was synthesized via a hydrothermal method and underwent thorough physico-chemical characterization, confirming its intrinsic properties. Adsorption experiments were conducted under systematically varied conditions using a Central Composite Face-Centered (CFC) experimental design, evaluating the effects of temperature, Linuron concentration, ionic strength on adsorption efficiency. The Response Surface Methodology (RSM) revealed that temperature and Linuron concentration were the most influential variables. A quadratic effect of ionic strength and a significant interaction between Linuron concentration and ionic strength were also observed. The fitted quadratic regression model exhibited excellent predictive performance (R2 = 0.909; Q2 = 0.755), and analysis of variance (ANOVA) confirmed its significance (p < 0.001) with a non-significant lack of fit. Maximum Linuron removal (>95%) was achieved at elevated temperature, moderate concentration, and intermediate ionic strength. These findings highlight the potential of ZIF-8 as a tunable and high-efficiency adsorbent for the remediation of pesticide-contaminated water, demonstrating the value of RSM-based optimization in designing adsorption processes. Full article
Show Figures

Graphical abstract

32 pages, 2390 KiB  
Article
Valorizing Date Seeds into Biochar for Pesticide Removal: A Sustainable Approach to Agro-Waste-Based Wastewater Treatment
by Ivana Mihajlović, Ali Hgeig, Mladenka Novaković, Vesna Gvoić, Dejan Ubavin, Maja Petrović and Tonni Agustiono Kurniawan
Sustainability 2025, 17(11), 5129; https://doi.org/10.3390/su17115129 - 3 Jun 2025
Cited by 1 | Viewed by 643
Abstract
The increasing prevalence of emerging pesticides in aquatic ecosystems poses significant risks to environmental and human health. This study explores the valorization of date seeds—an abundant agro-waste in arid and semi-arid regions—into functional biochar for the adsorption of emerging pesticides from contaminated wastewater. [...] Read more.
The increasing prevalence of emerging pesticides in aquatic ecosystems poses significant risks to environmental and human health. This study explores the valorization of date seeds—an abundant agro-waste in arid and semi-arid regions—into functional biochar for the adsorption of emerging pesticides from contaminated wastewater. Biochar was synthesized via pyrolysis at 550 °C for 30 min under a nitrogen atmosphere and characterized using BET and FT-IR techniques. The prepared date seed biochar (DSBC) exhibited a high specific surface area of 307.45 m2/g and a well-developed microporous structure conducive to pollutant adsorption. The optimized DSBC achieved maximum adsorption capacities of 28.3 mg/g for carbendazim and 25.7 mg/g for linuron. The removal efficiency exceeded 90% for all pesticides at pH 6–8 and equilibrium was reached within 60 min. Regeneration tests demonstrated that DSBC retained its removal efficiency of 60.3% and 75.5% for carbendazim and linuron, respectively, after tenth cycles, highlighting its reusability and cost-effectiveness. Significant performance potential was demonstrated via the formed biochar regarding stability when exposed to real wastewater composition. Overall, date seed biochar presents a sustainable, low-cost, and efficient solution for mitigating pesticide pollution in wastewater treatment systems. Full article
Show Figures

Figure 1

15 pages, 1853 KiB  
Article
Degradation of Micropollutants in Wastewater Using Photocatalytic TiO2@Ag-NPs Coatings Under Visible Irradiation
by Cristian Yoel Quintero-Castañeda, Claire Tendero, Thibaut Triquet, Arturo I. Villegas-Andrade, María Margarita Sierra-Carrillo and Caroline Andriantsiferana
Water 2025, 17(11), 1632; https://doi.org/10.3390/w17111632 - 27 May 2025
Viewed by 609
Abstract
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material [...] Read more.
The contamination of aquatic ecosystems by the micropollutants in wastewater discharges is currently a critical issue. Therefore, the development of novel treatment processes and materials is essential to ensure the availability of safe water. The present study aims to develop a photocatalytic material composed of silver nanoparticles (Ag-NPs)-doped TiO2 supported on a Pyrex® plate (TiO2@Ag-NPs) exhibiting catalytic activity under visible irradiation (λ > 400 nm). The effects of Ag-NPs doping on the TiO2 matrix, the resistance of the coating at the catalyst/substrate interface, and the photocatalytic degradation efficiency of the photocatalyst for a micropollutant (diuron) of the pesticide family were studied. The photocatalyst was characterised using X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrophotometry, and scratch tests. The solution concentrations were monitored using high-performance liquid chromatography and total organic carbon analyses. A 32% diuron removal was achieved using photocatalytic TiO2@Ag-NPs under visible irradiation, whereas undoped TiO2 showed no activity. Furthermore, the effects of the nanoparticle growth mode on the photocatalytic activity of TiO2@Ag-NPs were explored. The presence of a TiO2 sublayer ensured the adhesion of the coating and promoted the dispersion of nanoparticles within the matrix. It ensured chemical continuity (TiO2@Ag-NPs/Pyrex®), reduced the bandgap, and decreased electron–hole pair recombination. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis in Water and Wastewater Treatment)
Show Figures

Figure 1

26 pages, 2810 KiB  
Review
A Review of Various Advanced Oxidation Techniques for Pesticide Degradation for Practical Application in Aqueous Environments
by Mehary Dagnew, Qin Xue, Jian Zhang, Zizeng Wang, Anran Zhou, Min Li and Chun Zhao
Sustainability 2025, 17(10), 4710; https://doi.org/10.3390/su17104710 - 20 May 2025
Viewed by 871
Abstract
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the [...] Read more.
Pesticides are chemicals used in agriculture, industry, and households to control pests and enhance crop yields but have emerged as pollutants in soil and water due to their presence in domestic and agricultural wastewater effluents. The World Health Organization (WHO) has identified the development of pesticide resistance as a significant threat to global public health. Consequently, removing pesticides in aqueous environments has gained considerable attention. Numerous methodologies, including biological, physical, and chemical methods, have been employed for their treatment. Among these methods, advanced oxidation processes (AOPs) have garnered particular interest due to their fast reaction rates and strong oxidizing abilities. This review focuses on various AOPs such as Fenton and Fenton-like oxidation, ozonation, the UV/H2O2 process, electrochemical oxidation, photocatalytic oxidation, and the UV/O3 process. The review analyzes and summarizes the current applications of these AOPs for treating pesticides in aqueous environments. It also compares various AOPs treatment methods and discusses the challenges, drawbacks, advantages, and strategies for addressing these issues, and provides insights into the future prospects. Finally, it propose potential strategies and areas of improvement for future research to enhance the efficiency and sustainability of AOPs in practical application. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

26 pages, 27036 KiB  
Article
Managed Aquifer Recharge (MAR) in Semiarid Regions: Water Quality Evaluation and Dynamics from the Akrotiri MAR System, Cyprus
by Maria Achilleos, Ourania Tzoraki and Evangelos Akylas
Hydrology 2025, 12(5), 123; https://doi.org/10.3390/hydrology12050123 - 19 May 2025
Viewed by 976
Abstract
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates [...] Read more.
Managed Aquifer Recharge (MAR) is increasingly being adopted across Europe to enhance water security in semiarid regions, with over 230 operational sites. The Akrotiri MAR system in Limassol, Cyprus, comprises 17 recharge ponds operating since 2016 to counteract saltwater intrusion. This study evaluates MAR effectiveness by analyzing spatial and temporal variations in water quality from 2016 to 2020. Parameters analyzed include nutrients, metals, pesticides, pharmaceuticals, fecal indicators, physicochemical characteristics, recharge and pumping volumes, and groundwater levels. The results show that soil aquifer treatment (SAT) generally improves groundwater quality but certain boreholes exhibited elevated nitrate (range 12.70–31 mg/L), electrical conductivity (range 936–10,420 μs/cm), and chloride concentrations (range 117–1631 mg/L), attributed to recharge water quality, seawater intrusion, and nearby agricultural activities. Tertiary treated wastewater used for recharge occasionally exceeds permissible limits, particularly in E. coli (up to 2420/100 mL), chloride (up to 385 mg/L), and nitrogen (up to 41 mg/L). Supplementing recharge with dam-supplied freshwater improves groundwater quality and raises water levels. These findings underline the importance of continuous monitoring and effective management, adopting sustainable farming practices, and the strict control of recharge water quality. The study offers valuable insights for optimizing MAR systems and supports integrating MAR into circular water management frameworks to mitigate pollution and seawater intrusion, enhancing long-term aquifer sustainability. Full article
Show Figures

Graphical abstract

17 pages, 3550 KiB  
Article
Advanced Degradation of Aniline in Secondary Effluent from a Chemical Industry Park by Cobalt Ferrite/Peracetic Acid System
by Jinxiang Gao, Peishan Yang, Mingxin Zhu, Hua Zhou and Shunlong Pan
Catalysts 2025, 15(5), 410; https://doi.org/10.3390/catal15050410 - 23 Apr 2025
Viewed by 478
Abstract
The residual emerging pollutants in secondary effluent from a chemical industry park contain potential risks for natural waters. Herein, the cobalt ferrite/peracetic acid system was employed to destroy aniline, a typical emerging pollutant, with a reaction rate of 0.0147 min−1 at pH [...] Read more.
The residual emerging pollutants in secondary effluent from a chemical industry park contain potential risks for natural waters. Herein, the cobalt ferrite/peracetic acid system was employed to destroy aniline, a typical emerging pollutant, with a reaction rate of 0.0147 min−1 at pH 7.0. Singlet oxygen (1O2) served as the predominant reactive species for aniline degradation, with superoxide radicals (O2) and organic radicals (R-O) acting in secondary roles. The valence transition between Co(II) and Co(III) on the CoFe2O4 surface played a determining role in the reaction progression. The presence of anions and humic acids with low concentrations had minimal impact on aniline removal. Additionally, the CoFe2O4 catalyst demonstrated excellent recyclability, maintaining a pollutant removal rate above 93% over five consecutive cycles. Lastly, the CoFe2O4/PAA system demonstrates effective treatment of typical pollutants, including phenolic compounds, pesticides, antibiotics, and dyes, achieving removal rates of 77.48% to 99.99%. Furthermore, it significantly enhances water quality in the treatment of actual secondary effluent, offering a novel theoretical foundation and practical insights for applying this catalytic system in wastewater treatment. Full article
Show Figures

Graphical abstract

18 pages, 3130 KiB  
Article
A Novel Halophilic Bacterium for Sustainable Pollution Control: From Pesticides to Industrial Effluents
by Nadia Mihoubi, Samira Ferhat, Mohamed Nedjhioui, Billal Zenati, Sabrina Lekmine, Reguia Boudraa, Mohammad Shamsul Ola, Jie Zhang, Abdeltif Amrane and Hichem Tahraoui
Water 2025, 17(6), 888; https://doi.org/10.3390/w17060888 - 19 Mar 2025
Cited by 1 | Viewed by 703
Abstract
This study investigates the bioremediation potential of Marinobacter-hydrocarbonoclasticus SDK644, a strain that has been isolated from petroleum-contaminated environments, for the degradation of the herbicide metribuzin and the treatment of slaughterhouse effluent. The strain’s bacterial growth and degradation capacity were assessed under varying conditions, [...] Read more.
This study investigates the bioremediation potential of Marinobacter-hydrocarbonoclasticus SDK644, a strain that has been isolated from petroleum-contaminated environments, for the degradation of the herbicide metribuzin and the treatment of slaughterhouse effluent. The strain’s bacterial growth and degradation capacity were assessed under varying conditions, including different metribuzin concentrations, pH values, temperatures, and inoculum sizes. The strain demonstrated optimal growth at a metribuzin concentration of 20 mg/L, with an optical density (OD600) of 0.408 after 96 h. At this concentration, 80% of the chemical oxygen demand (COD) was reduced over 144 h. The optimal growth conditions for M. hydrocarbonoclasticus SDK644 were identified as a pH of 7 and a temperature of 30 °C, where the enzymatic activity and degradation efficiency were maximized. Additionally, the treatment of slaughterhouse effluent showed significant reductions in organic pollution, with the COD and biochemical oxygen demand (BOD5) decreasing by 80% (from 1900 mg/L to 384 mg/L) and 81% (from 1700 mg/L to 320 mg/L), respectively, within seven days. The strain also facilitated ammonium removal and promoted nitrification, indicating its suitability for treating high-organic-load wastewater. Notably, the visual transformation of the effluent, from a dark red color to a clear state, further highlighted the efficiency of the treatment process. This research highlights the adaptability of M. hydrocarbonoclasticus SDK644 to a wide range of environmental conditions and its efficiency in biodegrading metribuzin and treating complex wastewater. The findings demonstrate the strain’s potential as a sustainable solution for mitigating organic pollution in agricultural runoff, pesticide-contaminated water, and industrial effluents. Full article
Show Figures

Figure 1

21 pages, 3113 KiB  
Article
Exploring the Role of pH and Solar Light-Driven Decontamination with Singlet Oxygen in Removing Emerging Pollutants from Agri-Food Effluents: The Case of Acetamiprid
by Víctor Fabregat
Physchem 2025, 5(1), 9; https://doi.org/10.3390/physchem5010009 - 22 Feb 2025
Cited by 1 | Viewed by 1470
Abstract
Previously synthesized and tested water-dispersible photoactive polymeric microparticles have been employed as heterogenous photosensitizers to evaluate their performance in generating singlet oxygen through direct solar irradiation. This study utilizes these photocatalysts for the degradation of Acetamiprid in IWWTP wastewater effluents from the Agri-food [...] Read more.
Previously synthesized and tested water-dispersible photoactive polymeric microparticles have been employed as heterogenous photosensitizers to evaluate their performance in generating singlet oxygen through direct solar irradiation. This study utilizes these photocatalysts for the degradation of Acetamiprid in IWWTP wastewater effluents from the Agri-food industry, exploring, in addition to direct or simulated solar irradiation, the influence of pH on the photooxidation process. Over a thousand emerging pollutants, including pesticides like Acetamiprid, have been detected in aquatic environments in recent years, posing challenges due to the limitations of current wastewater treatment technologies. The developed method is particularly effective under basic or slightly basic conditions, aligning with the natural pH of wastewater and addressing a limitation of conventional Acetamiprid degradation methods, which typically require medium acidification to be effective. Polymers P3 and P4 exhibited high photocatalytic activity, achieving over 99% degradation of Acetamiprid through oxidation via singlet oxygen generated by Rose Bengal supported on the polymer matrix, while maintaining catalytic efficiency across multiple cycles. The results confirm that Acetamiprid removal from industrial wastewater via direct solar irradiation is feasible, though constrained by the availability of sufficient effective sunlight hours. Full article
(This article belongs to the Section Photophysics, Photochemistry and Photobiology)
Show Figures

Graphical abstract

Back to TopTop