Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Data Processing and Analysis
- Step 1—Standardization
- Step 2—Covariance Matrix Computation
- Step 3—Eigen Decomposition
- Step 4—Principal Components and Dimensionality Reduction
- Step 1—Distance Matrix Calculation
- Step 2—Linkage Criteria
- Step 3—Dendrogram Construction
- Step 4—Cluster Selection
3. Results
3.1. Chemical Characteristics
3.2. Multi-Statistical Analysis
3.2.1. Principal Component Analysis (PCA)
3.2.2. Agglomerative Hierarchical Clustering (AHC)
4. Discussion
4.1. Trends in Water Quality Parameters
4.2. Variability and Spatial Patterns
4.3. Key Influencing Factors
4.4. Implications for Water Quality Management
5. Conclusions
- (1)
- Widespread exceedance of water quality standards:
- (2)
- Source apportionment of the five primary pollution sources (PS)
- (3)
- Spatial clustering reveals regional pollution characteristics
- (4)
- Comparative trends indicate increasing levels of pesticides and chromium
- (5)
- Importance of integrated water management
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adu, J.T.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Ardila, A.; Rodriguez, M.J.; Pelletier, G. Spatiotemporal Optimization of Water Quality Degradation Monitoring in Water Distribution Systems Supplied by Surface Sources: A Chronological and Critical Review. J. Environ. Manag. 2023, 337, 117734. [Google Scholar] [CrossRef] [PubMed]
- Shakya, B.M.; Nakamura, T.; Shrestha, S.; Pathak, S.; Nishida, K.; Malla, R. Tap Water Quality Degradation in an Intermittent Water Supply Area. Water Air Soil Pollut. 2022, 233, 81. [Google Scholar] [CrossRef]
- Sor, R.; Ngor, P.B.; Soum, S.; Chandra, S.; Hogan, Z.S.; Null, S.E. Water Quality Degradation in the Lower Mekong Basin. Water 2021, 13, 1555. [Google Scholar] [CrossRef]
- Horvat, M.; Horvat, Z.; Pastor, K. Multivariate Analysis of Water Quality Parameters in Lake Palic, Serbia. Environ. Monit. Assess. 2021, 193, 410. [Google Scholar] [CrossRef]
- Mamun, M.; Kim, J.Y.; An, K.G. Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam Reservoir. Water 2021, 13, 186. [Google Scholar] [CrossRef]
- Gyimah, R.A.A.; Gyamfi, C.; Anornu, G.K.; Karikari, A.Y.; Tsyawo, F.W. Multivariate Statistical Analysis of Water Quality of the Densu River, Ghana. Int. J. River Basin Manag. 2021, 19, 189–199. [Google Scholar] [CrossRef]
- Pratama, M.A.; Immanuel, Y.D.; Marthanty, D.R. A Multivariate and Spatiotemporal Analysis of Water Quality in Code River, Indonesia. Sci. World J. 2020, 2020, 8897029. [Google Scholar] [CrossRef]
- Muniz, D.H.F.; Oliveira-Filho, E.C. Multivariate Statistical Analysis for Water Quality Assessment: A Review of Research Published between 2001 and 2020. Hydrology 2023, 10, 196. [Google Scholar] [CrossRef]
- Horvat, Z.; Horvat, M.; Pastor, K.; Bursić, V.; Puvača, N. Multivariate Analysis of Water Quality Measurements on the Danube River. Water 2021, 13, 3634. [Google Scholar] [CrossRef]
- Pairan, M.A.; Zamri, N.; Ismail, A. Assessment of Water in Terengganu River, Malaysia Using Multivariate Statistical Techniques and Fuzzy DEMATEL. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 1225–1234. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.F.; Li, B.L. Assessment of Surface Water Quality via Multivariate Statistical Techniques: A Case Study of the Songhua River Harbin Region, China. J. Hydro-Environ. Res. 2013, 7, 30–40. [Google Scholar] [CrossRef]
- Oleiwi, A.S.; Al-Dabbas, M. Assessment of Contamination along the Tigris River from Tharthar-Tigris Canal to Azizziyah, Middle of Iraq. Water 2022, 14, 1194. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, D.; Song, S.; Sun, J. Assessments of Surface Water Quality through the Use of Multivariate Statistical Techniques: A Case Study for the Watershed of the Yuqiao Reservoir, China. Front. Environ. Sci. 2023, 11, 1107591. [Google Scholar] [CrossRef]
- Elumalai, V.; Brindha, K.; Lakshmanan, E. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa. Water 2017, 9, 234. [Google Scholar] [CrossRef]
- Ngamlana, Z.; Malherbe, W.; Gericke, G. Association of Coal Fired Power Plants with River Water Quality in South Africa. Limnologica 2024, 104, 126140. [Google Scholar] [CrossRef]
- Andati, P.; Majiwa, E.; Ngigi, M.; Mbeche, R.; Ateka, J. Determinants of Adoption of Climate Smart Agricultural Technologies among Potato Farmers in Kenya: Does Entrepreneurial Orientation Play a Role? Sustain. Technol. Entrep. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Mangadze, T.; Taylor, J.C.; Froneman, W.P.; Dalu, T. Water Quality Assessment in a Small Austral Temperate River System (Bloukrans River System, South Africa): Application of Multivariate Analysis and Diatom Indices. S. Afr. J. Bot. 2019, 125, 353–359. [Google Scholar] [CrossRef]
- Lin, Y.I.; Pan, S.Y.; Chang, H.H.; Yu, M.S.; Lin, W.L. Will Extreme Drought Impact the Reservoir Water Quality? A 30-Year Observational Study. Agric. Water Manag. 2023, 289, 108574. [Google Scholar] [CrossRef]
- Lawson, T.; Lycett, G.W.; Ali, A.; Chin, C.F. Characterization of Southeast Asia Mangoes (Mangifera indica L.) According to Their Physicochemical Attributes. Sci. Hortic. 2019, 243, 189–196. [Google Scholar] [CrossRef]
- Varol, M. Use of Water Quality Index and Multivariate Statistical Methods for the Evaluation of Water Quality of a Stream Affected by Multiple Stressors: A Case Study. Environ. Pollut. 2020, 266, 115417. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Costa, D.; Soares de Azevedo, J.P.; dos Santos, M.A.; dos Santos Facchetti Vinhaes Assumpção, R. Water Quality Assessment Based on Multivariate Statistics and Water Quality Index of a Strategic River in the Brazilian Atlantic Forest. Sci. Rep. 2020, 10, 22038. [Google Scholar] [CrossRef] [PubMed]
- Barrie, A.; Agodzo, S.K.; Frazer-Williams, R.; Awuah, E.; Bessah, E. A Multivariate Statistical Approach and Water Quality Index for Water Quality Assessment for the Rokel River in Sierra Leone. Heliyon 2023, 9, e16196. [Google Scholar] [CrossRef] [PubMed]
- Giao, N.T.; Nhien, H.T.H.; Anh, P.K.; Thuptimdang, P. Groundwater Quality Assessment for Drinking Purposes: A Case Study in the Mekong Delta, Vietnam. Sci. Rep. 2023, 13, 4380. [Google Scholar] [CrossRef]
- Tuu, N.T.; Lim, J.; Kim, S.; Tri, V.P.D.; Kim, H.; Kim, J. Surface Water Resource Assessment of Paddy Rice Production under Climate Change in the Vietnamese Mekong Delta: A System Dynamics Modeling Approach. J. Water Clim. Change 2020, 11, 514–528. [Google Scholar] [CrossRef]
- Leigh, C.; Stewart-Koster, B.; Van Sang, N.; Van Truc, L.; Hiep, L.H.; Xoan, V.B.; Tinh, N.T.N.; An, L.T.; Sammut, J.; Burford, M.A. Rice-Shrimp Ecosystems in the Mekong Delta: Linking Water Quality, Shrimp and Their Natural Food Sources. Sci. Total Environ. 2020, 739, 139931. [Google Scholar] [CrossRef]
- Be, T.T.; Dung, L.C.; Brennan, D. Environmental Costs of Shrimp Culture in the Rice-growing Regions of the Mekong Delta. Aquac. Econ. Manag. 1999, 3, 31–42. [Google Scholar] [CrossRef]
- Dang, H.D. Sustainability of the Rice-Shrimp Farming System in Mekong Delta, Vietnam: A Climate Adaptive Model. J. Econ. Dev. 2020, 22, 21–45. [Google Scholar] [CrossRef]
- Anh, P.T.; Kroeze, C.; Bush, S.R.; Mol, A.P.J. Water Pollution by Pangasius Production in the Mekong Delta, Vietnam: Causes and Options for Control. Aquac. Res. 2010, 42, 108–128. [Google Scholar] [CrossRef]
- Thanh, L.T.; Le, H.B.; Dinh, Q.M.; Nguyen, H.X.; Dang, H.T.; Le, T.M.; Dang, N.T.H. Pollution by Wastewater from Aquaculture in Some Coastal Zone in the Mekong Delta, Vietnam. AACL Bioflux 2022, 15, 1520–1530. [Google Scholar]
- Minh, H.V.T.; Tri, V.P.D.; Ut, V.N.; Avtar, R.; Kumar, P.; Dang, T.T.T.; Van Hoa, A.; Van Ty, T.; Downes, N.K. A Model-Based Approach for Improving Surface Water Quality Management in Aquaculture Using MIKE 11: A Case of the Long Xuyen Quadangle, Mekong Delta, Vietnam. Water 2022, 14, 412. [Google Scholar] [CrossRef]
- Nakayama, T.; Tuyet Hoa, T.T.; Harada, K.; Warisaya, M.; Asayama, M.; Hinenoya, A.; Lee, J.W.; Phu, T.M.; Ueda, S.; Sumimura, Y.; et al. Water Metagenomic Analysis Reveals Low Bacterial Diversity and the Presence of Antimicrobial Residues and Resistance Genes in a River Containing Wastewater from Backyard Aquacultures in the Mekong Delta, Vietnam. Environ. Pollut. 2017, 222, 294–306. [Google Scholar] [CrossRef]
- Chapman, A.; Darby, S. Evaluating Sustainable Adaptation Strategies for Vulnerable Mega-Deltas Using System Dynamics Modelling: Rice Agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 2016, 559, 326–338. [Google Scholar] [CrossRef]
- Wehrheim, C.; Lübken, M.; Stolpe, H.; Wichern, M. Identifying Key Influences on Surface Water Quality in Freshwater Areas of the Vietnamese Mekong Delta from 2018 to 2020. Water 2023, 15, 1295. [Google Scholar] [CrossRef]
- Le, T.H.; Tran, V.T.; Le, Q.V.; Nguyen, T.P.T.; Schnitzer, H.; Braunegg, G. An Integrated Ecosystem Incorporating Renewable Energy Leading to Pollution Reduction for Sustainable Development of Craft Villages in Rural Area: A Case Study at Sedge Mats Village in Mekong Delta, Vietnam. Energy Sustain. Soc. 2016, 6, 21. [Google Scholar] [CrossRef]
- Wilbers, G.J.; Sebesvari, Z.; Renaud, F.G. Piped-Water Supplies in Rural Areas of the Mekong Delta, Vietnam: Water Quality and Household Perceptions. Water 2014, 6, 2175. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Phan, K.A.; Huynh, T.H.N. Major Concerns of Surface Water Quality in South-West Coastal Regions of Vietnamese Mekong Delta. Sustain. Environ. Res. 2022, 32, 46. [Google Scholar] [CrossRef]
- Hong, T.T.K.; Giao, N.T. Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water 2022, 14, 1975. [Google Scholar] [CrossRef]
- Vinutha, H.P.; Poornima, B.; Sagar, B.M. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In Information and Decision Sciences; Advances in Intelligent Systems and Computing; Springer: Singapore, 2018; Volume 701. [Google Scholar]
- De Souza, R.R.; Toebe, M.; Mello, A.C.; Bittencourt, K.C. Sample Size and Shapiro-Wilk Test: An Analysis for Soybean Grain Yield. Eur. J. Agron. 2023, 142, 126666. [Google Scholar] [CrossRef]
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef]
- Islam Khan, M.S.; Islam, N.; Uddin, J.; Islam, S.; Nasir, M.K. Water Quality Prediction and Classification Based on Principal Component Regression and Gradient Boosting Classifier Approach. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 4773–4781. [Google Scholar] [CrossRef]
- Arslan, O. Spatially Weighted Principal Component Analysis (PCA) Method for Water Quality Analysis. Water Resour. 2013, 40, 315–324. [Google Scholar] [CrossRef]
- Dinesh, M.; Prakash, S.; Jadagerimath, A.N. AI-Based Principal Component Analysis (PCA) Approach for the Determination of Key Water Quality Parameters. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 209–218. [Google Scholar]
- Jo, C.D.; Kwon, H.G. Temporal and Spatial Evaluation of the Effect of River Environment Changes Caused by Climate Change on Water Quality. Environ. Technol. Innov. 2023, 30, 103066. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L. Using Principal Components Analysis and Idw Interpolation to Determine Spatial and Temporal Changes of Surfacewater Quality of Xin’Anjiang River in Huangshan, China. Int. J. Environ. Res. Public Health 2020, 17, 2942. [Google Scholar] [CrossRef] [PubMed]
- Nath Roy, B.; Roy, H.; Rahman, K.S.; Mahmud, F.; Bhuiyan, M.M.K.; Hasan, M.; Bhuiyan, A.A.K.; Hasan, M.; Mahbub, M.S.; Jahedi, R.M.; et al. Principal Component Analysis Incorporated Water Quality Index Modeling for Dhaka-Based Rivers. City Environ. Interact. 2024, 23, 100150. [Google Scholar] [CrossRef]
- Nguyen, T.G.; Huynh, T.H.N. Assessment of Surface Water Quality and Monitoring in Southern Vietnam Using Multicriteria Statistical Approaches. Sustain. Environ. Res. 2022, 32, 20. [Google Scholar] [CrossRef]
- Jiang, J.J.; Lee, C.L.; Der Fang, M.; Boyd, K.G.; Gibb, S.W. Source Apportionment and Risk Assessment of Emerging Contaminants: An Approach of Pharmaco-Signature in Water Systems. PLoS ONE 2015, 10, e0129410. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H. An Integrated Principal Component and Hierarchical Cluster Analysis Approach for Groundwater Quality Assessment in Jazan, Saudi Arabia. Water 2023, 15, 1466. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ismail, A.; Juahir, H.; Iliyasu, A.B.; Wailare, B.T.; Mukhtar, M.; Aminu, H. Water Quality Modelling Using Principal Component Analysis and Artificial Neural Network. Mar. Pollut. Bull. 2023, 187, 114493. [Google Scholar] [CrossRef]
- Giao, N.T.; Nhien, H.T.H. Evaluating Water Quality Variation in the Vietnamese Mekong Delta Area Using Cluster and Discriminant Analysis. Appl. Environ. Res. 2021, 43, 14–27. [Google Scholar] [CrossRef]
- Jin, Y.; Zhu, W.; Li, J.; Cui, D.; Zhang, Z.; Sun, G.; Zhu, Y.; Yang, H.; Zhang, X. Arsenic Pollution Concerning Surface Water and Sediment of Jie River: A Pilot Area Where Gold Smelting Enterprises Are Concentrated. Environ. Res. 2024, 249, 118384. [Google Scholar] [CrossRef] [PubMed]
- Parvin, F.; Haque, M.M.; Tareq, S.M. Recent Status of Water Quality in Bangladesh: A Systematic Review, Meta-Analysis and Health Risk Assessment. Environ. Chall. 2022, 6, 100416. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, S.; Yuan, H.; Ding, X.; Wang, J.; Laws, E.A. Surface Sediment Properties and Heavy Metal Contamination Assessment in River Sediments of the Pearl River Delta, China. Mar. Pollut. Bull. 2018, 136, 300–308. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Y.; Cui, J.; Gan, S.; Yang, X.; Wu, R.; Guo, P. Assessment of Water Quality Evolution in the Pearl River Estuary (South Guangzhou) from 2008 to 2017. Water 2020, 12, 59. [Google Scholar] [CrossRef]
Parameter | Samples | Minimum | Maximum | Mean | SD | WHO Limit |
---|---|---|---|---|---|---|
pH | 3117 | 3.050 | 9.490 | 6.998 | 0.588 | 6.5–8.5 |
DO | 3117 | 2.135 | 15.200 | 5.780 | 1.130 | ≥5 |
BOD5 | 3117 | 3.500 | 172.870 | 10.627 | 8.319 | n/a |
COD | 3117 | 6.493 | 472.984 | 25.014 | 18.805 | n/a |
TOC | 3117 | 5.746 | 159.674 | 16.438 | 6.591 | n/a |
N-NH4 | 3117 | 0.046 | 2.786 | 0.489 | 0.391 | 0.5 |
N-NO3 | 3117 | 0.100 | 1.975 | 0.390 | 0.255 | 50 |
N-NO2 | 3117 | 0.100 | 1.000 | 0.377 | 0.241 | 3 |
P-PO4 | 3117 | n.d | 45.800 | 1.585 | 4.572 | n/a |
Coliform | 3117 | n.d | 45,100.000 | 4408.208 | 2800.852 | 0 |
E. coli | 3117 | n.d | 95.000 | 3.833 | 14.294 | 0 |
TSS | 3117 | 1.00 | 912.560 | 35.340 | 39.831 | n/a |
Salinity | 3117 | 0.100 | 39.400 | 3.928 | 8.127 | n/a |
CL | 3117 | 0.15 | 42,185.500 | 1165.432 | 3841.767 | 250 |
Aldrin | 3117 | 0.009 | 0.991 | 0.029 | 0.027 | 0.00003 |
BHC | 3117 | 0.003 | 0.984 | 0.022 | 0.027 | 0.002 |
Dieldrin | 3117 | 0.002 | 0.983 | 0.019 | 0.026 | 0.00003 |
DDTs | 3117 | n.d | 1.227 | 0.021 | 0.033 | 0.00003 |
Heptachlor | 3117 | 0.011 | 1.031 | 0.036 | 0.027 | 0.00003 |
Heptachlorepoxide. | 3117 | 0.005 | 0.595 | 0.018 | 0.016 | 0.0002 |
As | 3117 | 0.006 | 0.046 | 0.017 | 0.003 | 0.01 |
Cd | 3117 | n.d | 0.863 | 0.010 | 0.022 | 0.003 |
Pb | 3117 | n.d | 0.020 | 0.004 | 0.003 | 0.01 |
Cr6 | 3117 | n.d | 1.960 | 0.023 | 0.048 | 0.05 |
Cu | 3117 | n.d | 0.045 | 0.004 | 0.003 | 2 |
Zn | 3117 | n.d | 0.076 | 0.003 | 0.011 | 3 |
Hg | 3117 | n.d | 0.190 | 0.004 | 0.018 | 0.001 |
WQI | 3117 | 2.376 | 85.314 | 47.486 | 14.260 | n/a |
Factor | PCA1 | PCA2 | PCA3 | PCA4 | PCA5 |
---|---|---|---|---|---|
Eigenvalue | 6.451 | 4.295 | 2.397 | 2.148 | 2.001 |
Variability (%) | 23.039 | 15.340 | 8.562 | 7.671 | 7.148 |
Cumulative % | 23.039 | 38.379 | 46.942 | 54.612 | 61.760 |
Variable | Components | ||||
---|---|---|---|---|---|
PCA1 | PCA2 | PCA3 | PCA4 | PCA5 | |
pH | 0.01 | 0.08 | 0.18 | 0.51 | −0.16 |
DO | 0.27 | 0.47 | −0.02 | 0.62 | −0.10 |
BOD5 | 0.61 | 0.65 | 0.08 | −0.22 | −0.03 |
COD | 0.63 | 0.66 | 0.09 | −0.21 | −0.04 |
TOC | 0.63 | 0.71 | 0.08 | −0.03 | −0.06 |
N-NH4+ | 0.02 | 0.06 | −0.01 | −0.04 | 0.09 |
N-NO3− | 0.11 | −0.02 | 0.26 | −0.18 | 0.83 |
N-NO2− | 0.08 | −0.07 | −0.04 | 0.10 | −0.05 |
P-PO43− | 0.08 | 0.16 | −0.10 | 0.25 | 0.0001 |
Coliform | 0.09 | 0.05 | −0.19 | 0.58 | 0.50 |
E. coli | 0.02 | −0.24 | 0.84 | 0.15 | −0.10 |
TSS | −0.13 | −0.24 | 0.33 | −0.18 | 0.02 |
Salinity | 0.12 | 0.04 | 0.55 | 0.21 | −0.08 |
Cl− | 0.06 | −0.01 | 0.46 | 0.19 | −0.09 |
Aldrin | 0.92 | −0.29 | −0.16 | −0.02 | −0.01 |
BHC | 0.91 | −0.37 | 0.02 | −0.02 | −0.03 |
Dieldrin | 0.72 | −0.66 | −0.01 | 0.10 | −0.03 |
DDTs | 0.72 | −0.66 | −0.02 | 0.11 | −0.07 |
Heptachlor | 0.63 | 0.63 | 0.10 | −0.17 | 0.04 |
Heptachlorepoxide | 0.92 | −0.29 | −0.16 | −0.02 | −0.01 |
As | 0.27 | 0.47 | −0.02 | 0.62 | −0.10 |
Cd | 0.61 | 0.59 | 0.08 | −0.26 | −0.04 |
Pb | 0.12 | −0.01 | 0.26 | −0.18 | 0.83 |
Cr | 0.72 | −0.62 | −0.22 | 0.03 | −0.06 |
Cu | 0.09 | 0.05 | −0.19 | 0.59 | 0.50 |
Zn | 0.02 | −0.24 | 0.84 | 0.15 | −0.10 |
Hg | 0.13 | −0.09 | 0.02 | 0.05 | −0.06 |
WQI | −0.47 | 0.08 | −0.25 | 0.16 | −0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, V.T.; Le, C.C.; Le, H.V.T.; Trieu, N.A.; Vo, P.L.; Tran, D.A.; Nguyen, H.V.; Toshinori, T.; Vu, T.T.H. Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors. Sustainability 2025, 17, 5375. https://doi.org/10.3390/su17125375
Doan VT, Le CC, Le HVT, Trieu NA, Vo PL, Tran DA, Nguyen HV, Toshinori T, Vu TTH. Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors. Sustainability. 2025; 17(12):5375. https://doi.org/10.3390/su17125375
Chicago/Turabian StyleDoan, Vu Thanh, Chinh Cong Le, Hung Van Tien Le, Ngoc Anh Trieu, Phu Le Vo, Dang An Tran, Hai Van Nguyen, Tabata Toshinori, and Thu Thi Hoai Vu. 2025. "Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors" Sustainability 17, no. 12: 5375. https://doi.org/10.3390/su17125375
APA StyleDoan, V. T., Le, C. C., Le, H. V. T., Trieu, N. A., Vo, P. L., Tran, D. A., Nguyen, H. V., Toshinori, T., & Vu, T. T. H. (2025). Comprehensive Statistical Analysis for Characterizing Water Quality Assessment in the Mekong Delta: Trends, Variability, and Key Influencing Factors. Sustainability, 17(12), 5375. https://doi.org/10.3390/su17125375