ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Adsorbent Material
2.2. Response Surface Methodology and Model Fitting
3. Materials and Methods
3.1. Materials
3.2. ZIF-8 Synthesis
3.3. Adsorption Experiments
3.4. Experimental Design
3.5. Characterization Techniques
3.5.1. XRPD
3.5.2. Attenuated Total Reflectance Mid Infrared Spectroscopy (ATR-MIR)
3.5.3. Surface Area Analysis
3.5.4. Scanning Electron Microscopy (SEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO; WHO. Report 2023—Pesticide Residues in Food; Joint FAO/WHO Meeting on Pesticide Residues: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Madani, N.A.; Carpenter, D.O. Effects of Glyphosate and Glyphosate-Based Herbicides like RoundupTM on the Mammalian Nervous System: A Review. Environ. Res. 2022, 214, 113933. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.M.A.; Videira, R.A.; Fernandes, M.A.S.; Santos, M.S.; Moreno, A.J.M.; Vicente, J.A.F.; Jurado, A.S. Toxicity of the Herbicide Linuron as Assessed by Bacterial and Mitochondrial Model Systems. Toxicol. In Vitro 2014, 28, 932–939. [Google Scholar] [CrossRef]
- Ding, H.; Zheng, W.; Han, H.; Hu, X.; Hu, B.; Wang, F.; Su, L.; Li, H.; Li, Y. Reproductive Toxicity of Linuron Following Gestational Exposure in Rats and Underlying Mechanisms. Toxicol. Lett. 2017, 266, 49–55. [Google Scholar] [CrossRef]
- Swarcewicz, M.; Gregorczyk, A.; Sobczak, J. Comparison of Linuron Degradation in the Presence of Pesticide Mixtures in Soil under Laboratory Conditions. Environ. Monit. Assess. 2013, 185, 8109–8114. [Google Scholar] [CrossRef]
- Zahoor, M. Removal of Paraquat and Linuron from Water by Continuous Flow Adsorption/Ultrafiltration Membrane Processes. J. Chem. Soc. Pak. 2013, 35, 577. [Google Scholar]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Lin, Y.S. Stability of ZIF-8 in Water under Ambient Conditions. Microporous Mesoporous Mater. 2019, 279, 201–210. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef]
- Dai, H.; Yuan, X.; Jiang, L.; Wang, H.; Zhang, J.; Zhang, J.; Xiong, T. Recent Advances on ZIF-8 Composites for Adsorption and Photocatalytic Wastewater Pollutant Removal: Fabrication, Applications and Perspective. Coord. Chem. Rev. 2021, 441, 213985. [Google Scholar] [CrossRef]
- Sann, E.E.; Pan, Y.; Gao, Z.; Zhan, S.; Xia, F. Highly Hydrophobic ZIF-8 Particles and Application for Oil-Water Separation. Sep. Purif. Technol. 2018, 206, 186–191. [Google Scholar] [CrossRef]
- Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y. Formation of High Crystalline ZIF-8 in an Aqueous Solution. CrystEngComm 2013, 15, 1794–1801. [Google Scholar] [CrossRef]
- Vatanpour, V.; Yuksekdag, A.; Ağtaş, M.; Mehrabi, M.; Salehi, E.; Castro-Muñoz, R.; Koyuncu, I. Zeolitic Imidazolate Framework (ZIF-8) Modified Cellulose Acetate NF Membranes for Potential Water Treatment Application. Carbohydr. Polym. 2023, 299, 120230. [Google Scholar] [CrossRef]
- Yu, R.; Wu, Z. High Adsorption for Ofloxacin and Reusability by the Use of ZIF-8 for Wastewater Treatment. Microporous Mesoporous Mater. 2020, 308, 110494. [Google Scholar] [CrossRef]
- Lai, Z. Development of ZIF-8 Membranes: Opportunities and Challenges for Commercial Applications. Curr. Opin. Chem. Eng. 2018, 20, 78–85. [Google Scholar] [CrossRef]
- Foschi, M.; Capasso, P.; Maggi, M.A.; Ruggieri, F.; Fioravanti, G. Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides. ACS Omega 2021, 6, 16943–16954. [Google Scholar] [CrossRef]
- Lee, Y.R.; Jang, M.S.; Cho, H.Y.; Kwon, H.J.; Kim, S.; Ahn, W.S. ZIF-8: A Comparison of Synthesis Methods. Chem. Eng. J. 2015, 271, 276–280. [Google Scholar] [CrossRef]
- di Nicola, N.; Paolucci, V.; Daniele, V.; Taglieri, G.; Crucianelli, M.; Guidoni, L.; Lazzarini, A. ZIF-8 as Potential Vector for Enhanced Target Delivery of Sulfathiazole for the Treatment of Bovine Ruminal Acidosis. Eur. J. Inorg. Chem. 2024, 27, e202400504. [Google Scholar] [CrossRef]
- Balliana, E.; Marchand, M.; Di Matteo, V.; Ballarin, B.; Cassani, M.C.; Panzavolta, S.; Zendri, E. Application of Zinc-Based Metal-Organic Framework ZIF-8 on Paper: A Pilot Study on Visual Appearance and Effectiveness. Polymers 2025, 17, 1369. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Abdi, J.; Vossoughi, M.; Mahmoodi, N.M.; Alemzadeh, I. Synthesis of Metal-Organic Framework Hybrid Nanocomposites Based on GO and CNT with High Adsorption Capacity for Dye Removal. Chem. Eng. J. 2017, 326, 1145–1158. [Google Scholar] [CrossRef]
- Krokidas, P.; Castier, M.; Moncho, S.; Brothers, E.; Economou, I.G. Molecular Simulation Studies of the Diffusion of Methane, Ethane, Propane, and Propylene in ZIF-8. J. Phys. Chem. C 2015, 119, 27028–27037. [Google Scholar] [CrossRef]
- Schmidt, B.E.; Cnudde, P.; Van Speybroeck, V.; Vanduyfhuys, L. In-Depth Thermodynamic and Kinetic Analysis of Ethane Diffusion in ZIF-8. J. Phys. Chem. C 2024, 128, 18509–18523. [Google Scholar] [CrossRef]
- Verploegh, R.J.; Nair, S.; Sholl, D.S. Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. J. Am. Chem. Soc. 2015, 137, 15760–15771. [Google Scholar] [CrossRef]
- Zhong, Y.; Mu, X.; Cheang, U.K. High-Performance and Selective Adsorption of ZIF-8/MIL-100 Hybrids towards Organic Pollutants. Nanoscale Adv. 2022, 4, 1431–1444. [Google Scholar] [CrossRef]
- Feng, D.; Xia, Y. Comparisons of Glyphosate Adsorption Properties of Different Functional Cr-Based Metal–Organic Frameworks. J. Sep. Sci. 2018, 41, 732–739. [Google Scholar] [CrossRef]
- Tanaka, S.; Tanaka, Y. A Simple Step toward Enhancing Hydrothermal Stability of ZIF-8. ACS Omega 2019, 4, 19905–19912. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhang, J.; Zhang, X.; Liu, J.; Du, X.; Lu, X. Yolk-Shell MOF-on-MOF Hybrid Solid-Phase Microextraction Coatings for Efficient Enrichment and Detection of Pesticides: Structural Regulation Cause Performance Differences. Talanta 2024, 278, 126474. [Google Scholar] [CrossRef]
- Rouahna, N.; Salem, D.B.; Bouchareb, I.; Nouioua, A.; Ouakouak, A.; Fadel, A.; Hamdi, N.; Boopathy, R. Reduction of Crystal Violet Dye from Water by Pomegranate Peel–Derived Efficient Biochar: Influencing Factors and Adsorption Behaviour. Water Air Soil. Pollut. 2023, 234, 324. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, D.; Mei, G.; Hong, X.; Wu, J.; Zheng, J.; Pang, J.; Yan, Z. Preparation of Konjac Glucomannan-Based Zeolitic Imidazolate Framework-8 Composite Aerogels with High Adsorptive Capacity of Ciprofloxacin from Water. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 187–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, C.; Liu, F.; Yuan, Y.; Wu, H.; Li, A. Effects of Ionic Strength on Removal of Toxic Pollutants from Aqueous Media with Multifarious Adsorbents: A Review. Sci. Total Environ. 2019, 646, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Hu, X.; Sun, Z. Magnetic Zeolite Imidazole Framework Material-8 as an Effective and Recyclable Adsorbent for Removal of Ceftazidime from Aqueous Solution. J. Hazard. Mater. 2020, 384, 121406. [Google Scholar] [CrossRef] [PubMed]
- Aranda-García, E.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E. Effect of Ionic Strength and Coexisting Ions on the Biosorption of Divalent Nickel by the Acorn Shell of the Oak Quercus Crassipes Humb. & Bonpl. Processes 2020, 8, 1229. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Walker, G.M. Effect of Solution PH, Ionic Strength, and Temperature on Adsorption Behavior of Reactive Dyes on Activated Carbon. Dye. Pigment. 2008, 77, 16–23. [Google Scholar] [CrossRef]
- El-Nahhal, Y.Z.; Lagaly, G. Salt Effects on the Adsorption of a Pesticide on Modified Bentonites. Colloid. Polym. Sci. 2005, 283, 968–974. [Google Scholar] [CrossRef]
Run | Temperature [°C] | Linuron Concentration [μg/mL] | Ionic Strength [mg/mL] | X1 | X2 | X3 | Linuron Removed (%) |
---|---|---|---|---|---|---|---|
1 | 40 | 2 | 0 | +1 | −1 | −1 | 91.4 |
2 | 40 | 8 | 50 | +1 | +1 | −1 | 97.5 |
3 | 40 | 8 | 50 | +1 | +1 | +1 | 93.4 |
4 | 40 | 2 | 0 | +1 | −1 | +1 | 92.9 |
5 | 40 | 5 | 25 | +1 | 0 | 0 | 92.1 |
6 | 30 | 5 | 25 | 0 | 0 | 0 | 91.5 |
7 * | 30 | 5 | 25 | 0 | 0 | 0 | 89.6 |
8 * | 30 | 5 | 25 | 0 | 0 | 0 | 89.1 |
9 | 30 | 2 | 0 | 0 | −1 | 0 | 87.7 |
10 | 30 | 8 | 50 | 0 | 1 | 0 | 94.6 |
11 | 20 | 8 | 50 | −1 | 1 | −1 | 86.9 |
12 | 20 | 5 | 25 | −1 | 0 | 0 | 83.2 |
13 | 30 | 5 | 25 | 0 | 0 | −1 | 85.9 |
14 | 30 | 5 | 25 | 0 | 0 | 1 | 88.9 |
15 * | 30 | 5 | 25 | 0 | 0 | −1 | 85.9 |
16 * | 30 | 5 | 25 | 0 | 0 | 1 | 86.9 |
17 | 20 | 2 | 0 | −1 | −1 | −1 | 81.3 |
18 | 20 | 2 | 0 | −1 | −1 | 1 | 82.7 |
19 * | 20 | 8 | 50 | −1 | 1 | −1 | 88.7 |
20 | 20 | 8 | 50 | −1 | 1 | 1 | 85.8 |
21 * | 20 | 5 | 25 | −1 | 0 | 0 | 86.6 |
22 * | 20 | 5 | 25 | −1 | 0 | 0 | 86.6 |
Parameters | Value ± SD | R2 | Adj-R2 | Q2 | |
---|---|---|---|---|---|
intercept | 89.5 ± 0.5 | ||||
* X1 | 4.4 ± 0.4 | ||||
* X2 | 2.5 ± 0.4 | 0.909 | 0.873 | 0.755 | |
X3 | 0.4 ± 0.4 | ||||
* X2·X3 | –1.1 ± 0.5 | ||||
* X22 | 1.9 ± 0.7 | ||||
Variation source | Sum of squares | Degrees of freedom | Mean square | F-value | p-value |
lack of fit | 16.4 | 8 | 2.05 | 0.986 | 0.5140 |
pure error | 14.5 | 7 | 2.1 | ||
model | 309.9 | 6 | 51.66 | 25.7 | <0.001 |
residual | 30.9 | 15 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Nicola, N.; Di Pelino, M.; Foschi, M.; Passalacqua, R.; Lazzarini, A.; Ruggieri, F. ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment. Molecules 2025, 30, 2480. https://doi.org/10.3390/molecules30122480
di Nicola N, Di Pelino M, Foschi M, Passalacqua R, Lazzarini A, Ruggieri F. ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment. Molecules. 2025; 30(12):2480. https://doi.org/10.3390/molecules30122480
Chicago/Turabian Styledi Nicola, Nicola, Mariacristina Di Pelino, Martina Foschi, Rosalba Passalacqua, Andrea Lazzarini, and Fabrizio Ruggieri. 2025. "ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment" Molecules 30, no. 12: 2480. https://doi.org/10.3390/molecules30122480
APA Styledi Nicola, N., Di Pelino, M., Foschi, M., Passalacqua, R., Lazzarini, A., & Ruggieri, F. (2025). ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment. Molecules, 30(12), 2480. https://doi.org/10.3390/molecules30122480