Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = person re-identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1171 KB  
Article
Person Re-Identification Under Non-Overlapping Cameras Based on Advanced Contextual Embeddings
by Chi-Hung Chuang, Tz-Chian Huang, Chong-Wei Wang, Jung-Hua Lo and Chih-Lung Lin
Algorithms 2025, 18(11), 714; https://doi.org/10.3390/a18110714 - 12 Nov 2025
Viewed by 122
Abstract
Person Re-identification (ReID), a critical technology in intelligent surveillance, aims to accurately match specific individuals across non-overlapping camera networks. However, factors in real-world scenarios such as variations in illumination, viewpoint, and pose continuously challenge the matching accuracy of existing models. Although Transformer-based models [...] Read more.
Person Re-identification (ReID), a critical technology in intelligent surveillance, aims to accurately match specific individuals across non-overlapping camera networks. However, factors in real-world scenarios such as variations in illumination, viewpoint, and pose continuously challenge the matching accuracy of existing models. Although Transformer-based models like TransReID have demonstrated a strong capability for capturing global context in feature extraction, the features they produce still have room for optimization at the metric matching stage. To address this issue, this study proposes a hybrid framework that combines advanced feature extraction with post-processing optimization. We employed a fixed, pre-trained TransReID model as the feature extractor and introduced a camera-aware Jaccard distance re-ranking algorithm (CA-Jaccard) as a post-processing module. Without retraining the main model, this framework refines the initial distance metric matrix by analyzing the local neighborhood topology among feature vectors and incorporating camera information. Experiments were conducted on two major public datasets, Market-1501 and MSMT17. The results show that our framework significantly improved the overall ranking quality of the model, increasing the mean Average Precision (mAP) on Market-1501 from 88.2% to 93.58% compared to using TransReID alone, achieving a gain of nearly 4% in mAP on MSMT17. This research confirms that advanced post-processing techniques can effectively complement powerful feature extraction models, providing an efficient pathway to enhance the robustness of ReID systems in complex scenarios. Additionally, it is the first-ever to analyze how the modified distance metric improves the ReID task when used specifically with the ViT-based feature extractor TransReID. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (3rd Edition))
Show Figures

Figure 1

41 pages, 2952 KB  
Systematic Review
Advancements and Challenges in Deep Learning-Based Person Re-Identification: A Review
by Liang Zhao, Yuyan Han and Zhihao Chen
Electronics 2025, 14(22), 4398; https://doi.org/10.3390/electronics14224398 - 12 Nov 2025
Viewed by 134
Abstract
Person Re-Identification (Re-ID), a critical component of intelligent surveillance and security systems, seeks to match individuals across disjoint camera networks under complex real-world conditions. While deep learning has revolutionized Re-ID through enhanced feature representation and domain adaptation, a holistic synthesis of its advancements, [...] Read more.
Person Re-Identification (Re-ID), a critical component of intelligent surveillance and security systems, seeks to match individuals across disjoint camera networks under complex real-world conditions. While deep learning has revolutionized Re-ID through enhanced feature representation and domain adaptation, a holistic synthesis of its advancements, unresolved challenges, and ethical implications remains imperative. This survey offers a structured and critical examination of Re-ID in the deep learning era, organized into three pillars: technological innovations, persistent barriers, and future frontiers. We systematically analyze breakthroughs in deep architectures (e.g., transformer-based models, hybrid global-local networks), optimization paradigms (contrastive, adversarial, and self-supervised learning), and robustness strategies for occlusion, pose variation, and cross-domain generalization. Critically, we identify underexplored limitations such as annotation bias, scalability-accuracy trade-offs, and privacy-utility conflicts in real-world deployment. Beyond technical analysis, we propose emerging directions, including causal reasoning for interpretable Re-ID, federated learning for decentralized data governance, open-world lifelong adaptation frameworks, and human-AI collaboration to reduce annotation costs. By integrating technical rigor with societal responsibility, this review aims to bridge the gap between algorithmic advancements and ethical deployment, fostering transparent, sustainable, and human-centric Re-ID systems. Full article
Show Figures

Figure 1

20 pages, 3054 KB  
Article
Tri-Invariance Contrastive Framework for Robust Unsupervised Person Re-Identification
by Lei Wang, Chengang Liu, Xiaoxiao Wang, Weidong Gao, Xuejian Ge and Shunjie Zhu
Mathematics 2025, 13(21), 3570; https://doi.org/10.3390/math13213570 - 6 Nov 2025
Viewed by 212
Abstract
Unsupervised person re-identification (Re-ID) has been proven very effective and it boosts the performance in learning representations from unlabeled data in the dataset. Most current methods have good accuracy, but there are two main problems. First, clustering often generates noisy labels. Second, features [...] Read more.
Unsupervised person re-identification (Re-ID) has been proven very effective and it boosts the performance in learning representations from unlabeled data in the dataset. Most current methods have good accuracy, but there are two main problems. First, clustering often generates noisy labels. Second, features can change because of different camera styles. Noisy labels causes incorrect optimization, which reduces the accuracy of the model. The latter results in inaccurate prediction for samples within the same category that have been captured by different cameras. Despite the significant variations inherent in the vast source data, the principles of invariance and symmetry remain crucial for effective feature recognition. In this paper, we propose a method called Invariance Constraint Contrast Learning (ICCL) to address these two problems. Specifically, we introduce center invariance and instance invariance to reduce the effect of noisy samples. We also use camera invariance to handle feature changes caused by different cameras. Center invariance and instance invariance help decrease the impact of noise. Camera invariance improves the classification accuracy by using a camera-aware classification strategy. We test our method on three common large-scale Re-ID datasets. It clearly improves the accuracy of unsupervised person Re-ID. Specifically, our approach demonstrates its effectiveness by improving mAP by 3.5% on Market-1501, 1.3% on MSMT17 and 3.5% on CUHK03 over state-of-the-art methods. Full article
(This article belongs to the Special Issue Mathematical Computation for Pattern Recognition and Computer Vision)
Show Figures

Figure 1

22 pages, 10489 KB  
Article
From Contemporary Datasets to Cultural Heritage Performance: Explainability and Energy Profiling of Visual Models Towards Textile Identification
by Evangelos Nerantzis, Lamprini Malletzidou, Eleni Kyratzopoulou, Nestor C. Tsirliganis and Nikolaos A. Kazakis
Heritage 2025, 8(11), 447; https://doi.org/10.3390/heritage8110447 - 24 Oct 2025
Viewed by 420
Abstract
The identification and classification of textiles play a crucial role in archaeometric studies, in the vicinity of their technological, economic, and cultural significance. Traditional textile analysis is closely related to optical microscopy and observation, while other microscopic, analytical, and spectroscopic techniques prevail over [...] Read more.
The identification and classification of textiles play a crucial role in archaeometric studies, in the vicinity of their technological, economic, and cultural significance. Traditional textile analysis is closely related to optical microscopy and observation, while other microscopic, analytical, and spectroscopic techniques prevail over fiber identification for composition purposes. This protocol can be invasive and destructive for the artifacts under study, time-consuming, and it often relies on personal expertise. In this preliminary study, an alternative, macroscopic approach is proposed, based on texture and surface textile characteristics, using low-magnification images and deep learning models. Under this scope, a publicly available, imbalanced textile image dataset was used to pretrain and evaluate six computer vision architectures (ResNet50, EfficientNetV2, ViT, ConvNeXt, Swin Transformer, and MaxViT). In addition to accuracy, energy efficiency and ecological footprint of the process were assessed using the CodeCarbon tool. The results indicate that two of the convolutional neural network models, Swin and EfficientNetV2, both deliver competitive accuracies together with low carbon emissions, in comparison to the transformer and hybrid models. This alternative, promising, sustainable, and non-invasive approach for textile classification demonstrates the feasibility of developing a custom, heritage-based image dataset. Full article
Show Figures

Figure 1

17 pages, 9650 KB  
Article
Occluded Person Re-Identification via Multi-Branch Interaction
by Yin Huang and Jieyu Ding
Sensors 2025, 25(21), 6526; https://doi.org/10.3390/s25216526 - 23 Oct 2025
Viewed by 425
Abstract
Person re-identification (re-ID) aims to retrieve images of a given individual from different camera views. Obstacles obstructing parts of a pedestrian’s body often result in incomplete identity information, impairing recognition performance. To address the occlusion problem, a method called Multi-Branch Interaction Network (MBIN) [...] Read more.
Person re-identification (re-ID) aims to retrieve images of a given individual from different camera views. Obstacles obstructing parts of a pedestrian’s body often result in incomplete identity information, impairing recognition performance. To address the occlusion problem, a method called Multi-Branch Interaction Network (MBIN) is proposed, which exploits the information interaction between different branches to effectively characterize occluded pedestrians for person re-ID. The method consists primarily of a hard branch, a soft branch, and a view branch. The hard branch enhances feature robustness via a unified horizontal partitioning strategy. The soft branch improves the high-level feature representation via multi-head attention. The view branch fuses multi-view feature maps to form a comprehensive representation via a dual-classifier fusion mechanism. Moreover, a mutual knowledge distillation strategy is employed to promote knowledge exchange among the three branches. Extensive experiments are conducted on widely used person re-ID datasets to validate the effectiveness of our method. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 2508 KB  
Article
An Attention-Enhanced Network for Person Re-Identification via Appearance–Gait Fusion
by Zelong Yu, Yixiang Cai, Hanming Xu, Lei Chen, Mingqian Yang, Huabo Sun and Xiangyu Zhao
Electronics 2025, 14(21), 4142; https://doi.org/10.3390/electronics14214142 - 22 Oct 2025
Viewed by 373
Abstract
The objective of person re-identification (Re-ID) is to recognize a given target pedestrian across different cameras. However, perspective variations, resulting from differences in shooting angles, often significantly impact the accuracy of person Re-ID. To address this issue, this paper presents an attention-enhanced person [...] Read more.
The objective of person re-identification (Re-ID) is to recognize a given target pedestrian across different cameras. However, perspective variations, resulting from differences in shooting angles, often significantly impact the accuracy of person Re-ID. To address this issue, this paper presents an attention-enhanced person Re-ID algorithm based on appearance–gait information interaction. Specifically, appearance features and gait features are first extracted from RGB images and gait energy images (GEIs), respectively, using two ResNet-50 networks. Then, a multimodal information exchange module based on the attention mechanism is designed to build a bridge for information exchange between the two modalities during the feature extraction process. This module aims to enhance the feature extraction ability through mutual guidance and reinforcement between the two modalities, thereby improving the model’s effectiveness in integrating the two types of modal information. Subsequently, to further balance the signal-to-noise ratio, importance weight estimation is employed to map perspective information into the importance weights of the two features. Finally, based on the autoencoder structure, the two features are weighted and fused under the guidance of importance weights to generate fused features that are robust to perspective changes. The experimental results on the CASIA-B dataset indicate that, under conditions of viewpoint variation, the method proposed in this paper achieved an average accuracy of 94.9%, which is 1.1% higher than the next best method, and obtained the smallest variance of 4.199, suggesting that the method proposed in this paper is not only more accurate but also more stable. Full article
(This article belongs to the Special Issue Artificial Intelligence and Microsystems)
Show Figures

Figure 1

31 pages, 2757 KB  
Article
Human–Machine Collaborative Learning for Streaming Data-Driven Scenarios
by Fan Yang, Xiaojuan Zhang and Zhiwen Yu
Sensors 2025, 25(21), 6505; https://doi.org/10.3390/s25216505 - 22 Oct 2025
Viewed by 640
Abstract
Deep learning has been broadly applied in many fields and has greatly improved efficiency compared to traditional approaches. However, it cannot resolve issues well when there are a lack of training samples, or in some varying cases, it cannot give a clear output. [...] Read more.
Deep learning has been broadly applied in many fields and has greatly improved efficiency compared to traditional approaches. However, it cannot resolve issues well when there are a lack of training samples, or in some varying cases, it cannot give a clear output. Human beings and machines that work in a collaborative and equal mode to address complicated streaming data-driven tasks can achieve higher accuracy and clearer explanations. A novel framework is proposed which integrates human intelligence and machine intelligent computing, taking advantage of both strengths to work out complex tasks. Human beings are responsible for the highly decisive aspects of the task and provide empirical feedback to the model, whereas the machines undertake the repetitive computing aspects of the task. The framework will be executed in a flexible way through interactive human–machine cooperation mode, while it will be more robust for some hard samples recognition. We tested the framework using video anomaly detection, person re-identification, and sound event detection application scenarios, and we found that the human–machine collaborative learning mechanism obtained much better accuracy. After fusing human knowledge with deep learning processing, the final decision making is confirmed. In addition, we conducted abundant experiments to verify the effectiveness of the framework and obtained the competitive performance at the cost of a small amount of human intervention. The approach is a new form of machine learning, especially in dynamic and untrustworthy conditions. Full article
(This article belongs to the Special Issue Smart Sensing System for Intelligent Human Computer Interaction)
Show Figures

Figure 1

26 pages, 7247 KB  
Article
DyslexiaNet: Examining the Viability and Efficacy of Eye Movement-Based Deep Learning for Dyslexia Detection
by Ramis İleri, Çiğdem Gülüzar Altıntop, Fatma Latifoğlu and Esra Demirci
J. Eye Mov. Res. 2025, 18(5), 56; https://doi.org/10.3390/jemr18050056 - 15 Oct 2025
Viewed by 380
Abstract
Dyslexia is a neurodevelopmental disorder that impairs reading, affecting 5–17.5% of children and representing the most common learning disability. Individuals with dyslexia experience decoding, reading fluency, and comprehension difficulties, hindering vocabulary development and learning. Early and accurate identification is essential for targeted interventions. [...] Read more.
Dyslexia is a neurodevelopmental disorder that impairs reading, affecting 5–17.5% of children and representing the most common learning disability. Individuals with dyslexia experience decoding, reading fluency, and comprehension difficulties, hindering vocabulary development and learning. Early and accurate identification is essential for targeted interventions. Traditional diagnostic methods rely on behavioral assessments and neuropsychological tests, which can be time-consuming and subjective. Recent studies suggest that physiological signals, such as electrooculography (EOG), can provide objective insights into reading-related cognitive and visual processes. Despite this potential, there is limited research on how typeface and font characteristics influence reading performance in dyslexic children using EOG measurements. To address this gap, we investigated the most suitable typefaces for Turkish-speaking children with dyslexia by analyzing EOG signals recorded during reading tasks. We developed a novel deep learning framework, DyslexiaNet, using scalogram images from horizontal and vertical EOG channels, and compared it with AlexNet, MobileNet, and ResNet. Reading performance indicators, including reading time, blink rate, regression rate, and EOG signal energy, were evaluated across multiple typefaces and font sizes. Results showed that typeface significantly affects reading efficiency in dyslexic children. The BonvenoCF font was associated with shorter reading times, fewer regressions, and lower cognitive load. DyslexiaNet achieved the highest classification accuracy (99.96% for horizontal channels) while requiring lower computational load than other networks. These findings demonstrate that EOG-based physiological measurements combined with deep learning offer a non-invasive, objective approach for dyslexia detection and personalized typeface selection. This method can provide practical guidance for designing educational materials and support clinicians in early diagnosis and individualized intervention strategies for children with dyslexia. Full article
Show Figures

Figure 1

25 pages, 2213 KB  
Article
Multi-Aligned and Multi-Scale Augmentation for Occluded Person Re-Identification
by Xuan Jiang, Xin Yuan and Xiaolan Yang
Sensors 2025, 25(19), 6210; https://doi.org/10.3390/s25196210 - 7 Oct 2025
Viewed by 546
Abstract
Occluded person re-identification (Re-ID) faces significant challenges, mainly due to the interference of occlusion noise and the scarcity of realistic occluded training data. Although data augmentation is a commonly used solution, the current occlusion augmentation methods suffer from the problem of dual inconsistencies: [...] Read more.
Occluded person re-identification (Re-ID) faces significant challenges, mainly due to the interference of occlusion noise and the scarcity of realistic occluded training data. Although data augmentation is a commonly used solution, the current occlusion augmentation methods suffer from the problem of dual inconsistencies: intra-sample inconsistency is caused by misaligned synthetic occluders (an augmentation operation for simulating real occlusion situations); i.e., randomly pasted occluders ignore spatial prior information and style differences, resulting in unrealistic artifacts that mislead feature learning; inter-sample inconsistency stems from information loss during random cropping (an augmentation operation for simulating occlusion-induced information loss); i.e., single-scale cropping strategies discard discriminative regions, weakening the robustness of the model. To address the aforementioned dual inconsistencies, this study proposes the unified Multi-Aligned and Multi-Scale Augmentation (MA–MSA) framework based on the core principle of ”synthetic data should resemble real-world data”. First, the Frequency–Style–Position Data Augmentation (FSPDA) module is designed: it ensures consistency in three aspects (frequency, style, and position) by constructing an occluder library that conforms to real-world distribution, achieving style alignment via adaptive instance normalization and optimizing the placement of occluders using hierarchical position rules. Second, the Multi-Scale Crop Data Augmentation (MSCDA) strategy is proposed. It eliminates the problem of information loss through multi-scale cropping with non-overlapping ratios and dynamic view fusion. In addition, different from the traditional serial augmentation method, MA–MSA integrates FSPDA and MSCDA in a parallel manner to achieve the collaborative resolution of dual inconsistencies. Extensive experiments on Occluded-Duke and Occluded-REID show that MA–MSA achieves state-leading performance of 73.3% Rank-1 (+1.5%) and 62.9% mAP on Occluded-Duke, and 87.3% Rank-1 (+2.0%) and 82.1% mAP on Occluded-REID, demonstrating superior robustness without auxiliary models. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 2116 KB  
Article
A Markov Chain Replacement Strategy for Surrogate Identifiers: Minimizing Re-Identification Risk While Preserving Text Reuse
by John D. Osborne, Andrew Trotter, Tobias O’Leary, Chris Coffee, Micah D. Cochran, Luis Mansilla-Gonzalez, Akhil Nadimpalli, Alex McAnnally, Abdulateef I. Almudaifer, Jeffrey R. Curtis, Salma M. Aly and Richard E. Kennedy
Electronics 2025, 14(19), 3945; https://doi.org/10.3390/electronics14193945 - 6 Oct 2025
Viewed by 954
Abstract
“Hiding in Plain Sight” (HIPS) strategies for Personal Health Information (PHI) replace PHI with surrogate values to hinder re-identification attempts. We evaluate three different HIPS strategies for PHI replacement, a standard Consistent replacement strategy, a Random replacement strategy, and a novel Markov model [...] Read more.
“Hiding in Plain Sight” (HIPS) strategies for Personal Health Information (PHI) replace PHI with surrogate values to hinder re-identification attempts. We evaluate three different HIPS strategies for PHI replacement, a standard Consistent replacement strategy, a Random replacement strategy, and a novel Markov model strategy. We evaluate the privacy-preserving benefits and relative utility for information extraction of these strategies on both a simulated PHI distribution and real clinical corpora from two different institutions using a range of false negative error rates (FNER). The Markov strategy consistently outperformed the Consistent and Random substitution strategies on both real data and in statistical simulations. Using FNER ranging from 0.1% to 5%, PHI leakage at the document level could be reduced from 27.1% to 0.1% and from 94.2% to 57.7% with the Markov strategy versus the standard Consistent substitution strategy, at 0.1% and 0.5% FNER, respectively. Additionally, we assessed the generated corpora containing synthetic PHI for reuse using a variety of information extraction methods. Results indicate that modern deep learning methods have similar performance on all strategies, but older machine learning techniques can suffer from the change in context. Overall, a Markov surrogate generation strategy substantially reduces the chance of inadvertent PHI release. Full article
Show Figures

Figure 1

20 pages, 59706 KB  
Article
Learning Hierarchically Consistent Disentanglement with Multi-Channel Augmentation for Public Security-Oriented Sketch Person Re-Identification
by Yu Ye, Zhihong Sun and Jun Chen
Sensors 2025, 25(19), 6155; https://doi.org/10.3390/s25196155 - 4 Oct 2025
Viewed by 505
Abstract
Sketch re-identification (Re-ID) aims to retrieve pedestrian photographs in the gallery dataset by a query sketch image drawn by professionals, which is crucial for criminal investigations and missing person searches in the field of public security. The main challenge of this task lies [...] Read more.
Sketch re-identification (Re-ID) aims to retrieve pedestrian photographs in the gallery dataset by a query sketch image drawn by professionals, which is crucial for criminal investigations and missing person searches in the field of public security. The main challenge of this task lies in bridging the significant modality gap between sketches and photos while extracting discriminative modality-invariant features. However, information asymmetry between sketches and RGB photographs, particularly the differences in color information, severely interferes with cross-modal matching processes. To address this challenge, we propose a novel network architecture that integrates multi-channel augmentation with hierarchically consistent disentanglement learning. Specifically, a multi-channel augmentation module is developed to mitigate the interference of color bias in cross-modal matching. Furthermore, a modality-disentangled prototype(MDP) module is introduced to decompose pedestrian representations at the feature level into modality-invariant structural prototypes and modality-specific appearance prototypes. Additionally, a cross-layer decoupling consistency constraint is designed to ensure the semantic coherence of disentangled prototypes across different network layers and to improve the stability of the whole decoupling process. Extensive experimental results on two public datasets demonstrate the superiority of our proposed approach over state-of-the-art methods. Full article
(This article belongs to the Special Issue Advances in Security for Emerging Intelligent Systems)
Show Figures

Figure 1

16 pages, 2692 KB  
Article
Improved UNet-Based Detection of 3D Cotton Cup Indentations and Analysis of Automatic Cutting Accuracy
by Lin Liu, Xizhao Li, Hongze Lv, Jianhuang Wang, Fucai Lai, Fangwei Zhao and Xibing Li
Processes 2025, 13(10), 3144; https://doi.org/10.3390/pr13103144 - 30 Sep 2025
Viewed by 356
Abstract
With the advancement of intelligent technology and the rise in labor costs, manual identification and cutting of 3D cotton cup indentations can no longer meet modern demands. The increasing variety and shape of 3D cotton cups due to personalized requirements make the use [...] Read more.
With the advancement of intelligent technology and the rise in labor costs, manual identification and cutting of 3D cotton cup indentations can no longer meet modern demands. The increasing variety and shape of 3D cotton cups due to personalized requirements make the use of fixed molds for cutting inefficient, leading to a large number of molds and high costs. Therefore, this paper proposes a UNet-based indentation segmentation algorithm to automatically extract 3D cotton cup indentation data. By incorporating the VGG16 network and Leaky-ReLU activation function into the UNet model, the method improves the model’s generalization capability, convergence speed, detection speed, and reduces the risk of overfitting. Additionally, attention mechanisms and an Atrous Spatial Pyramid Pooling (ASPP) module are introduced to enhance feature extraction, improving the network’s spatial feature extraction ability. Experiments conducted on a self-made 3D cotton cup dataset demonstrate a precision of 99.53%, a recall of 99.69%, a mIoU of 99.18%, and an mPA of 99.73%, meeting practical application requirements. The extracted 3D cotton cup indentation contour data is automatically input into an intelligent CNC cutting machine to cut 3D cotton cup. The cutting results of 400 data points show an 0.20 mm ± 0.42 mm error, meeting the cutting accuracy requirements for flexible material 3D cotton cups. This study may serve as a reference for machine vision, image segmentation, improvements to deep learning architectures, and automated cutting machinery for flexible materials such as fabrics. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

19 pages, 489 KB  
Article
An Analysis of Partitioned Convolutional Model for Vehicle Re-Identification
by Rajsekhar Kumar Nath and Debjani Mitra
Electronics 2025, 14(18), 3634; https://doi.org/10.3390/electronics14183634 - 14 Sep 2025
Viewed by 441
Abstract
Local Feature generation for vehicle re-identification is a challenging research area that is not yet well-investigated. The part-based convolutional baseline model with refined part pooling (PCB-RPP) architecture commonly approached in person reidentification problems was experimented over two standard vehicle image datasets (VReId and [...] Read more.
Local Feature generation for vehicle re-identification is a challenging research area that is not yet well-investigated. The part-based convolutional baseline model with refined part pooling (PCB-RPP) architecture commonly approached in person reidentification problems was experimented over two standard vehicle image datasets (VReId and VehicleId) to establish that RPP over uniform partitions do not work well. To address the limitation, we propose a novel approach, Overlapped-PCB, which overlaps parts of two adjacent parts to generate new parts to train the classifiers. The results are concatenated to generate the feature set and this improves the re-identification accuracy in comparison to the RPP approach. Performance comparison results of extensive testing are also presented using re-ranking and ensembling in the evaluation stage. Our proposed model has been ensembled over three architectures, ResNet50, ResNet101, and ResNext50, to show the extent of performance improvement over existing works. The re-ranking process is shown to be strongly dataset-dependent for which the conventionally used k-reciprocal neighbors method has been improved by augmenting a new simple score-based algorithm for obtaining the best mix of component distances. This can be used as a generalized tool to finetune re-ranking for different datasets. Full article
(This article belongs to the Special Issue Deep Learning for Computer Vision, 2nd Edition)
Show Figures

Figure 1

20 pages, 3317 KB  
Article
TE-TransReID: Towards Efficient Person Re-Identification via Local Feature Embedding and Lightweight Transformer
by Xiaoyu Zhang, Rui Cai, Ning Jiang, Minwen Xing, Ke Xu, Huicheng Yang, Wenbo Zhu and Yaocong Hu
Sensors 2025, 25(17), 5461; https://doi.org/10.3390/s25175461 - 3 Sep 2025
Viewed by 1601
Abstract
Person re-identification aims to match images of the same individual across non-overlapping cameras by analyzing personal characteristics. Recently, Transformer-based models have demonstrated excellent capabilities and achieved breakthrough progress in this task. However, their high computational costs and inadequate capacity to capture fine-grained local [...] Read more.
Person re-identification aims to match images of the same individual across non-overlapping cameras by analyzing personal characteristics. Recently, Transformer-based models have demonstrated excellent capabilities and achieved breakthrough progress in this task. However, their high computational costs and inadequate capacity to capture fine-grained local features impose significant constraints on re-identification performance. To address these challenges, this paper proposes a novel Toward Efficient Transformer-based Person Re-identification (TE-TransReID) framework. Specifically, the proposed framework retains only the former L-th layer layers of a pretrained Vision Transformer (ViT) for global feature extraction while combining local features extracted from a pretrained CNN, thus achieving the trade-off between high accuracy and lightweight networks. Additionally, we propose a dual efficient feature-fusion strategy to integrate global and local features for accurate person re-identification. The Efficient Token-based Feature-Fusion Module (ETFFM) employs the gate-based network to learn fused token-wise features, while the Efficient Patch-based Feature-Fusion Module (EPFFM) utilizes a lightweight Transformer to aggregate patch-level features. Finally, TE-TransReID achieves a rank-1 of 94.8%, 88.3%, and 85.7% on Market1501, DukeMTMC, and MSMT17 with a parameter of 27.5 M, respectively. Compared to existing CNN–Transformer hybrid models, TE-TransReID maintains comparable recognition accuracy while drastically reducing model parameters, establishing an optimal equilibrium between recognition accuracy and computational efficiency. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 307 KB  
Article
Construction and Validation of the Attitude Toward Returning to an Ex-Partner Scale
by María Agustina Vázquez, Miguel Mora-Pelegrín, María Aranda and Beatriz Montes-Berges
Soc. Sci. 2025, 14(9), 528; https://doi.org/10.3390/socsci14090528 - 31 Aug 2025
Viewed by 841
Abstract
Background/Objectives: When a relationship ends due to abuse, a favorable attitude toward reconciliation may become a risk factor. The objective of this study was to develop and validate an instrument to measure the attitude toward returning to an ex-partner. Methods: A pilot study [...] Read more.
Background/Objectives: When a relationship ends due to abuse, a favorable attitude toward reconciliation may become a risk factor. The objective of this study was to develop and validate an instrument to measure the attitude toward returning to an ex-partner. Methods: A pilot study was conducted to evaluate the dimensionality and psychometric quality of the items. The main study involved 55 women who had been victims of gender violence. Results: Following item analysis and assessments of reliability (α = 0.93) and validity, a unidimensional 16-item scale was developed. The instrument, named the “Attitude Toward Returning to an Ex-partner Scale” (ATRES), allows for the identification of predispositions to return to a relationship in which serious abuse has occurred. Moreover, the findings revealed that a heightened perception of danger, along with forgiveness directed toward oneself, the other person, and the situation, was associated with a less favorable attitude toward reconciliation. Conversely, high religiosity predisposed individuals to rekindle the relationship. Conclusions: The scale could serve to facilitate interventions, mainly in situations where restoring the relationship can be a risk. The assessment of the predisposition to forgive the ex-partner—namely, the individual who perpetrated the abuse—as well as the victim’s attitude toward re-engaging in the relationship, constitute important considerations for preventing revictimization. The ATRES is the first self-report measure designed to assist researchers and professionals in the precise assessment of specific beliefs and myths underlying the reinstatement of a relationship. Full article
(This article belongs to the Section Family Studies)
Back to TopTop