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Abstract

Occluded person re-identification (Re-ID) faces significant challenges, mainly due to the
interference of occlusion noise and the scarcity of realistic occluded training data. Although
data augmentation is a commonly used solution, the current occlusion augmentation
methods suffer from the problem of dual inconsistencies: intra-sample inconsistency is
caused by misaligned synthetic occluders (an augmentation operation for simulating real
occlusion situations); i.e., randomly pasted occluders ignore spatial prior information and
style differences, resulting in unrealistic artifacts that mislead feature learning; inter-sample
inconsistency stems from information loss during random cropping (an augmentation
operation for simulating occlusion-induced information loss); i.e., single-scale cropping
strategies discard discriminative regions, weakening the robustness of the model. To
address the aforementioned dual inconsistencies, this study proposes the unified Multi-
Aligned and Multi-Scale Augmentation (MA–MSA) framework based on the core principle
of ”synthetic data should resemble real-world data”. First, the Frequency–Style–Position
Data Augmentation (FSPDA) module is designed: it ensures consistency in three aspects
(frequency, style, and position) by constructing an occluder library that conforms to real-
world distribution, achieving style alignment via adaptive instance normalization and
optimizing the placement of occluders using hierarchical position rules. Second, the
Multi-Scale Crop Data Augmentation (MSCDA) strategy is proposed. It eliminates the
problem of information loss through multi-scale cropping with non-overlapping ratios
and dynamic view fusion. In addition, different from the traditional serial augmentation
method, MA–MSA integrates FSPDA and MSCDA in a parallel manner to achieve the
collaborative resolution of dual inconsistencies. Extensive experiments on Occluded-Duke
and Occluded-REID show that MA–MSA achieves state-leading performance of 73.3%
Rank-1 (+1.5%) and 62.9% mAP on Occluded-Duke, and 87.3% Rank-1 (+2.0%) and 82.1%
mAP on Occluded-REID, demonstrating superior robustness without auxiliary models.

Keywords: occluded person re-identification; data augmentation; multi-scale occlusion;
crops-mixture

1. Introduction
Person re-identification (Re-ID) aims to match images of the same pedestrian captured

from different non-overlapping views, and it is significant for smart transportation man-
agement and public security surveillance. However, the existing research [1–7] mostly
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relies on idealized assumptions; that is, pedestrians are fully visible in images and their
features are clearly distinguishable. In real-world scenarios, pedestrians often suffer from
partial occlusion due to vehicles, trees, crowds, etc., which greatly affects the performance
of traditional Re-ID methods. For example, when a vehicle occludes the lower body of
a pedestrian, the feature extraction will incorporate irrelevant visual elements, such as
the vehicle’s contours and colors, contaminating the features and reducing the matching
accuracy. In high-density pedestrian scenarios such as subway stations and large gath-
erings, pedestrians will also occlude each other, confusing appearance features [8–10].
Coupled with the dynamic changes in pedestrians’ poses, it becomes even more difficult to
distinguish features and establish cross-camera correspondences.

Scarcity of occluded samples in training data is another critical bottleneck for occluded
person Re-ID [11]. The sample sizes obtained by the existing dataset construction methods
(screening occluded images from existing Re-ID datasets or manually collecting in occlusion
scenarios) are limited, restricting models from learning occlusion-invariant representations.
The data scarcity prevents models from comprehensively learning feature distribution
patterns across different occlusion scenarios during training. When encountering new
occlusion types or angles not covered in the training data, the model’s accuracy will drop
sharply, and its generalization ability will be compromised.

Previous studies [12–15] tackle person Re-ID occlusion mainly by predicting pedestrian
visibility and extracting features from non-occluded regions. They use auxiliary pre-
trained models (e.g., keypoint detectors, semantic parsers, and pose estimators) to isolate
visible parts, then apply these features for matching. For example, MAHATMA [12]
uses human mask semantics to focus on unoccluded regions, and HOREID [13] leverages
keypoint estimation for local features and graph nodes. However, these methods have high
computational costs, depend on auxiliary model performance, and cannot solve the core
issue of insufficient occluded training samples.

Thus, scholars have explored data augmentation to tackle occlusion, aiming to boost
model robustness and generalization, ease sample scarcity, balance performance and effi-
ciency, and avoid auxiliary model limitations [16–18]. As shown in Figure 1a, the current
occlusion data augmentation methods related to synthetic occlusion can mainly be divided
into three categories. The first includes methods like random erasing [19] and OAMN [20].
The former simulates occlusion by randomly selecting a rectangular image area and filling it
with random values; the latter does so by cropping background regions from other images
and pasting them onto training images. However, the occluded regions lack real object
texture, leading models to learn unrealistic features divorced from actual scenes, hindering
practical adaptation. The second category, exemplified by SUREID [21], uses real objects
(e.g., backpacks and umbrellas) as occluders pasted onto pedestrian images. However,
these occluders carry their original backgrounds, introducing extraneous context that is
irrelevant to the pedestrian scene. This weakens scenario authenticity and may mislead
models to learn occluder backgrounds as discriminative features, diverting focus from key
pedestrian features. The third category, represented by DPEFormer [22], improves by using
transparent-background occluders to avoid extraneous backgrounds. Yet, flaws remain: the
occluder placement is overly simplistic, neglecting real-world spatial logic; more critically,
occluders from other datasets often conflict stylistically with person Re-ID data, result-
ing in mismatched brightness, contrast, or saturation between occluders and pedestrians.
This causes models to misinterpret such discrepancies as key cues, failing to learn natu-
ral occluder–pedestrian relationships and leading to intra-sample inconsistency, thereby
restricting the model’s generalization in real scenarios. Additionally, occlusion causes
loss of identity-related information, which cropping-based augmentation can simulate.
Random Resized Crop (RRC), from GoogleNet [23] and used in ImageNet [24] classification,
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generates variants by random cropping to expand datasets. However, in occluded person
Re-ID, its randomness risks cutting off key pedestrian details (Figure 1b). Cropped regions
may exclude the target entirely, including irrelevant objects or backgrounds, noise that
interferes with accurate feature learning and leads to inter-sample inconsistency.
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Figure 1. (a) Issues in traditional copy–paste augmentation (e.g., ignoring occlusion paste posi-
tion/style). (b) Drawbacks of random cropping augmentation (e.g., generating invalid images).
(c) Samples of our methods.

To resolve these dual inconsistencies, we innovatively propose Multi-Aligned and
Multi-Scale Augmentation (MA–MSA), a unified framework that integrates the two aug-
mentation methods in parallel, whose core design is illustrated in Figure 2. This framework
breaks through the bottlenecks of the existing methods in two regards. First, it proposes
the Frequency–Style–Position Data Augmentation (FSPDA) mechanism, consistent with
real-world scene distributions. By building an occluder library that includes real-world
occlusion distributions, we ensure that the occlusion frequency aligns with the actual
conditions of person Re-ID datasets. We achieve style alignment between occluders and the
dataset using adaptive instance normalization, and optimize the placement of occluders
through hierarchical position rules. This not only guarantees spatial rationality but also
enforces space–frequency–style consistency, accurately simulating real occlusion scenarios
and fundamentally improving the quality of generated occluded samples. Second, it pro-
poses a two-stage Multi-Scale Crop Data Augmentation (MSCDA) strategy. To tackle the
issue of key information loss in single random cropping, we perform multi-scale cropping
with non-overlapping ratios in the multi-scale cropping stage, obtaining views of different
sizes to deeply explore multi-granular information in images. In the image mixture stage,
we adopt linear fusion and regional replacement fusion strategies for dynamic view fu-
sion, which not only avoids information loss but also organically integrates features from
different perspectives, further enhancing data diversity and representativeness. The final
generated effect diagram of our data augmentation is shown in Figure 1c.
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Figure 2. The framework structure diagram of our method. Frequency–Style–Position Data Augmen-
tation (FSPDA) and Multi-Scale Crop Data Augmentation (MSCDA) are the two main parts of our
method. We organize the framework in a parallel manner. Among them, FSPDA consists of three
components: frequency setting, style setting, and location setting; MSCDA includes two main parts:
multi-scale cropping and image mixing.

Through the above designs, the MA–MSA framework effectively combines the au-
thenticity of occlusion simulation with the comprehensiveness of crop fusion, significantly
improving the quality and diversity of augmented samples and providing higher-quality
training data for models to learn robust features in real occluded scenarios. In conclusion,
the main contributions of this paper are fourfold:

• We propose a Frequency–Style–Position Data Augmentation (FSPDA) mechanism to
address intra-sample inconsistency: by constructing an occluder library with real-
world distributions, achieving style alignment, and optimizing placement positions, it
ensures space–frequency–style consistency of occlusion scenarios and improves the
authenticity of occluded samples.

• We design a two-stage Multi-Scale Crop Data Augmentation (MSCDA) strategy
to tackle inter-sample inconsistency: it mitigates information loss caused by ex-
cessive cropping through multi-scale view fusion and improves data diversity
and representativeness.

• We build a unified MA–MSA framework: Unlike the conventional serial augmentation
approach, it integrates FSPDA and MSCDA in parallel. This parallel integration
enhances the quality and diversity of augmented samples, providing high-quality
training data for models to learn robust features in real occluded scenarios.

• Experiments on both holistic and occluded datasets show that MA–MSA achieves
competitive performance compared to the existing methods, demonstrating superior
robustness without auxiliary models.

2. Related Works
2.1. Occluded Person Re-Identification

Local Feature-Based Methods. This category processes human features or feature
maps in partitions to train targeted recognition capabilities. The Part-Based Convolutional
Baseline (PCB) method [25], as a representative approach for specific predefined semantic
parts, divides the human body hierarchy into multiple parts and then trains multiple
part-level classifiers. The Consecutive Batch DropBlock Network (CBDB-Net) method [26]
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evenly divides strips on the feature map and drops each strip one by one to output multiple
incomplete feature maps, forcing the model to learn a more robust pedestrian representation
in an environment with incomplete information.

Auxiliary Model-Based Methods. These methods separate visible body parts from
occlusion interference with the help of supplementary information, such as human seman-
tic analysis and pose estimation. The Mask-Aware Hierarchical Aggregation Transformer
(MAHATMA) method [12] guides the model to focus on unoccluded body parts by combin-
ing the mask semantic information of the human body. Meanwhile, it proposes a layered
HFA module, which aggregates the image patch features processed by Transformer blocks
at layers 2, 4, 10, and 12, capturing fine-grained local features by aggregating hierarchical
image block representations.

The High-Order ReID (HOReID) method [13] uses a keypoint estimation model to
extract semantic local features, regards the local features of images as nodes of the graph,
and conveys the relationship information between nodes. The Pose-Masked Feature Branch
(PMFB) method [27] obtains the confidence and coordinates of human keypoints through
pose estimation, sets thresholds to filter occluded areas, and finally uses visible parts to
constrain feature responses at the channel level to solve the occlusion problem. The Pose-
Skeleton-Guided Cross-Attention Representation Fusion (PSCR) method [28] obtains the
position coordinates, confidence scores, and heatmaps of keypoints through pose esti-
mation, establishes relevant mechanisms to suppress the diffusion of occlusion informa-
tion, generates fine-grained skeletal region masks to extract comprehensive local features,
and fuses different features to enhance their expressiveness and semantic alignment. How-
ever, the Adaptive Occlusion-Aware Network (AOANet) method [29] defines four learnable
part grabbers and applies cross-attention to motivate them to extract complex semantic
information related to body part regions from feature maps. Compared with pose estima-
tion methods, this model does not require additional auxiliary models for pose estimation,
resulting in lower complexity.

Attention Mechanism-Based Methods. These methods use attention mechanisms
to select regions with high significance and differentiation, suppress noise interfer-
ence, and improve model performance. The Attention-Aware Compositional Network
(AACN) method [30] combines an attitude-guided attention map with a partial visibil-
ity score to eliminate background interference and occlusion, and then extracts clean
pedestrian features.

The multi-head self-attention (MHSA) method [31] multiplies attention weights with
feature maps and applies nonlinear transformations to encourage the multi-head attention
mechanism to adaptively capture key local features. However, there is a flaw: the network
tends to focus on the most distinctive parts of the image (e.g., a vivid background) while
suppressing other areas of the target. The Complete Object Feature Diffusion Network
(COFD-Net) method [32] identifies the above attention focus bias problem and makes the
features learned by the model truly correspond to the target object by explicitly limiting
the distribution of attention.

2.2. Occlusion Augmentation

Occlusion augmentation simulates occlusion noise by combining data augmenta-
tion methods such as data transformation, thereby improving the model’s sensitivity to
occlusion. At present, the proposed occlusion enhancement methods mainly include
the following:

Basic Data Enhancement. The way to use basic data enhancement is to use erasing,
cropping, and flipping to increase the diversity of the data. Random erasure is commonly
used to simulate occlusion. By selecting a certain size area in a random position in the
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image for erasure, it can effectively simulate the situation that pedestrians may be blocked
by various objects in reality. RE [19] introduces a random erasure method. Specifically,
a rectangular region is randomly selected in the image, and then the pixels in the region
are erased with random values, thus generating images with different occlusion degrees,
which are used for training the model to extract discriminant identity information of the
unoccluded part, thus enhancing the robustness of the model to data changes.

Cut and Paste. The Occlusion-Aware Mask Network (OAMN) method [20] proposes
a novel occlusion enhancement scheme. In this scheme, the rectangular blocks are clipped
randomly from the training image and then scaled to the top, bottom, left, and right posi-
tions of the target image to simulate occlusion. In order to simulate more realistic occlusion
of misbehavior, the feature erasing and diffusion network (FED) method [33] manually
clips blocks of background and occlusion objects from the training image, constructs occlu-
sion sets, and pastes them on the occlusion pedestrian image. The speed-up person ReID
(SUREID) [21] pastes small blocks in the occlusion set in the training image. However, this
approach introduces additional information about the background of the occlusion map,
which may interfere with the training process. The Dynamic Patch-Aware Enrichment
Transformer (DPEFormer) [22] involves pasting occluder images obtained from other data
sources into the person Re-ID dataset.

However, in the synthetic images generated by this method, the occluders are derived
from other datasets, and the intensity distribution of the synthesized occluded images
is not uniform enough. In previous works, the design of data enhancement schemes
has not been refined enough. Firstly, the simulated noise is often highly random, which
causes the generated occlusion samples to deviate significantly from the regular occlusion
situations in real-world scenarios, making it difficult to truly replicate the natural forms
and distribution characteristics of occlusions in reality. Secondly, during the process of
simulating occlusions, additional background noise is likely to be introduced. These non-
targeted noises will confuse the model’s learning focus and interfere with its effective
capture and learning of real occlusion features. Thirdly, if the occluders used in synthesized
images are from other datasets, due to the inherent differences in image style, texture
details, etc., between different datasets, it is easy to cause an obvious style gap between
the synthesized images and real scenes. At the same time, the intensity distribution of the
synthesized occluded images often has uneven problems, which will not only increase
the difficulty of model learning but also further restrict the system’s adaptability and
generalization performance to various occlusion situations.

3. Methodology
One of the challenges of person Re-ID tasks is that there are various occlusions in

real-world scenes. Unlike previous occlusion enhancement methods, our method can
simulate more realistic occlusion. As shown in Figure 3, our data augmentation scheme
consists of two main parts. One is the Frequency–Style–Position Data Augmentation
(FSPDA) mechanism based on real-world scene distributions, which is further divided into
frequency setting, style setting, and location setting. The other is a two-stage Multi-Scale
Crop Data Augmentation Data Augmentation (MSCDA), which [34] includes two main
parts: multi-scale cropping and image mixing.
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Figure 3. A detailed introduction to our data augmentation method. On the left are the three
components and workflow of Frequency–Style–Position Data Augmentation (FSPDA), and on the
right are the two main workflows of Multi-Scale Crop Data Augmentation (MSCDA).

3.1. Occlusion Frequency Setting

Occlusion Library: To simulate occlusions in the real world, we have established an
occlusion set. First, by integrating the distribution patterns and occurrence frequencies
of occluders in real-world scenarios, we identified 19 high-frequency common object
categories as the core screening criteria through manual statistics and filtering. These
categories cover key occluder types, such as pedestrians, various motor vehicles and non-
motor vehicles, umbrellas, and backpacks. Based on the aforementioned identified object
categories, we performed precise screening and fusion of the base datasets: we extracted
samples containing these 19 categories of objects from the training set of the Occluded-
Duke [35] dataset and simultaneously selected images covering these object categories from
the training set of the COCO [34] dataset. The two types of screened data were integrated
to form the base data pool for dataset construction.

Subsequently, the Mask RCNN [36] algorithm was adopted for targeted processing of
the object instances in the fused dataset. The core objective was to strip the image back-
ground, accurately extract the occluder entities corresponding to the 19 object categories,
and synchronously obtain the bounding box information of each occluder. To further
improve data quality, manual supplementary correction was additionally conducted on
images with suboptimal processing results from the Mask RCNN algorithm (e.g., blurred
edges of occluders or incomplete entity extraction), ensuring the extraction accuracy of
each occluder entity.

Meanwhile, unlike previous studies that randomly set the proportions of various
occluders in the occluder set, we have designed an Occlusion Frequency Module to adjust
the occurrence frequency of different types of occluders. Figure 3 illustrates how it adjusts
the occlusion set into the occlusion library based on the frequency of occluders.

Occlusion Frequency Module: Let there be n = 19 different categories of occluders in
the dataset. Suppose the frequency of the i-th category of occluder appearing in the dataset
is fi (i = 1, 2, . . . , m). In our occluder library, we adjust the quantity Ni of the i-th category of
occluder according to these frequencies fi. Specifically, let the total quantity of the occluder
library be Ntotal . The formula can be expressed as

Ni = Ntotal × fi (1)
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Figure 4 shows the frequency settings of the highest 8 occluder categories in terms
of occurrence frequencies. This method can more realistically reflect the distribution
of occluders in real-world application scenarios, thereby improving the generalization
ability and practicality of the model. Through this frequency adjustment, our model can
better adapt to various occlusion situations, providing a more robust foundation for the
subsequent matching steps.
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Figure 4. The figure shows the frequency settings of the 8 categories of occluders with the highest
occurrence frequencies. Figure (a) shows the number of occurrences of each occluder in our statistical
dataset, and Figure (b) shows the number of occluder settings in our occlusion library.

3.2. Occlusion Style Setting

Current data augmentation methods predominantly focus on generating diverse
samples to boost data diversity. However, these methods overlook the fact that authenticity
is also of great importance while ensuring diversity. Authenticity is an indispensable
element in data augmentation as it directly impacts the accuracy and applicability of
the features learned by the model. If the augmented data significantly deviates from
the actual situation, the model may capture some unrealistic or irrelevant features. This
limitation is particularly crucial, especially when the objective is to train the model for real-
world scenarios. Therefore, we need to carefully consider and validate data augmentation
techniques to ensure that the generated data aligns with the natural distribution of real-
world images, thereby minimizing the risk of the model learning false patterns that may
not generalize well to real-world scenarios.

As shown in Figure 3, our Occlusion Style Transfer Module is as follows: First, input
the occlusion image (such as a bench, providing content) and the style image (such as
a pedestrian, providing style). An encoder first extracts the content and style features,
respectively. Then, ADAIN (adaptive instance normalization) adapts the style features of
the style image to the content features of the occlusion image. Finally, a decoder restores
and outputs a result image that retains the content of the occlusion and incorporates the
target style, achieving content preservation and style transfer.

More specifically, our process is as shown in Algorithm 1. The entire process helps
to enhance the authenticity of the augmented data. Since the generated occluder images
now conform more closely to the visual style characteristics present in the training set, our
model can better learn and adapt to real-world scenarios when dealing with occlusions in
the person Re-ID task.
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Algorithm 1 AdaIN-based Image Style Transfer Algorithm

Require: Occlusion image x (providing content information)
1: Style image y (providing style information)
2: Pre-trained encoder e, Decoder d

Ensure: Style-transferred output image z
3: Step 1. Extract feature maps using the encoder
4: e(x)← Feature extraction result of occlusion image x via encoder e (content features)
5: e(y)← Feature extraction result of style image y via encoder e (style features)
6: Step 2. Perform adaptive instance normalization
7: Calculate mean and standard deviation of feature maps:
8: µ(x)← Channel-wise mean of feature map e(x)
9: σ(x)← Channel-wise standard deviation of feature map e(x)

10: µ(y)← Channel-wise mean of feature map e(y)
11: σ(y)← Channel-wise standard deviation of feature map e(y)
12: Execute AdaIN operation:
13: z′ ← σ(y) ·

(
e(x)−µ(x)

σ(x)

)
+ µ(y)

14: Step 3. Generate final image through decoder
15: z← Decoding result of z′ via decoder d
16: return z

3.3. Occlusion Location Setting

Through a systematic analysis of a large amount of real-scene image data, we found
that the locations of common occluders such as cars, bicycles, and pedestrians in the image
space exhibit significant distribution patterns. Based on this observation with statistical
significance, we designed and constructed the Occlusion Location Determination Module,
as shown in Figure 3. For the occluded image library, we divided it into two subsets—the
horizontal instance set and the vertical instance set. These two subsets have different
preferences for occlusion positions, aiming to more accurately simulate occlusion scenarios
in the real world.

(1) Horizontal Instance Set
Bottom Instance Set: This subset is specifically used to collect occluder instances

that frequently appear in the bottom area of the image in real-world scenarios, such as
stationary bicycles, street benches, and other typical objects. Let the bottom boundary of
the image be represented in the image coordinate system as

Bimage = {(x, y)|y = ymin, x ∈ [xle f t, xright]}, (2)

where (xle f t, xright) and ymin define the horizontal and vertical boundary ranges of the
image, respectively. For each occluder in the subset, the position of its bottom boundary
Boccluder in the image space is ensured to be precisely aligned with the bottom of the image
through the constraint Boccluder ≡ Bimage. In the horizontal direction, to simulate the random
distribution characteristics of occluders in the actual scene, we introduce a random variable
X based on a uniform distribution, X ∼ U(xmin, xmax), where [xmin, xmax] ⊆ [xle f t, xright].
By setting the horizontal position coordinate of the occluder as x = X, on the basis of
maintaining the bottom alignment, the random adjustment of the horizontal position is
achieved, thereby highly restoring the diverse position states that occluders may appear in
at the bottom of the image in the real world.

Upper Instance Set: This subset mainly focuses on occluder categories that usually
appear in the upper area of the image. Umbrellas are typical representatives. Similarly, we
define the top boundary of the image in the image coordinate system as

Timage = {(x, y)|y = ymax, x ∈ [xle f t, xright]} (3)
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For the occluders in this subset, their top boundary Toccluder satisfies the constraint
Toccluder ≡ Timage to ensure precise alignment with the top of the image. In terms of
the randomization of the horizontal position, we also introduce a random variable X′

that follows a uniform distribution, X′ ∼ U(xmin, xmax), and set the horizontal position
coordinate of the occluder as x = X′, where the definition of [xmin, xmax] is the same as the
horizontal range of the bottom instance set. In this way, the actual situations of occluders
appearing in different positions in the upper area of the image are effectively simulated.

Middle Instance Set: This subset is designed to simulate occluder instances that
typically appear in the middle area of the image. Common examples include bags and
suitcases. We first define the vertical middle boundary range of the image in the image
coordinate system.

Let the vertical middle range of the image be determined by two key lines. The lower
boundary of the middle area ymid-low and the upper boundary of the middle area ymid-high

divide the image vertically. The middle area in the vertical direction can be defined
as y ∈ [ymid-low, ymid-high], where ymid-low = ymin+ymax

3 and ymid-high = 2(ymin+ymax)
3 (the

specific division ratio can be adjusted according to actual scene characteristics).
The middle boundary constraint of the image for occluders is defined as

Mimage =
{
(x, y)

∣∣∣y ∈ [ymid-low, ymid-high], x ∈ [xleft, xright]
}

(4)

For each occluder in this subset, its vertical coverage range (e.g., the vertical span
of a pedestrian group) must satisfy the constraint that its main body lies within Mimage.
To simulate the random horizontal distribution of occluders in the middle area, sim-
ilar to the bottom and upper sets, we introduce a random variable Xmid following a
uniform distribution,

Xmid ∼ U(xmin-mid, xmax-mid) (5)

where [xmin-mid, xmax-mid] ⊆ [xleft, xright]. By setting the horizontal position coordinate of
the occluder as x = Xmid, we maintain the vertical middle-area alignment while randomly
adjusting the horizontal position. This highly restores the diverse states of occluders
that may appear in the middle of the image in real-world scenarios, such as pedestrians
randomly distributed horizontally in the middle of a street-view image, helping to compre-
hensively test and improve the adaptability of image recognition systems to occlusions in
different vertical regions.

(2) Vertical Instance Set
In this subset, a series of occluder objects appearing in the vertical direction are

included, such as tall trees, street billboards, street lamps, etc. Unlike other subsets, the po-
sitions of occluders in the horizontal direction of the image are no longer subject to specific
restrictions in this subset. However, to ensure the vertical morphological characteristics
of the vertical occluder set, it is necessary to process the height of the occluder images.
First, based on the total height y of the input image, the height threshold is calculated using
the following formula:

ythresh =
2
3

y (6)

Then, the occluders are screened or adjusted one by one. If their original height is lower
than this threshold, they are processed by means of proportional stretching until their height
is not lower than ythresh so as to ensure that these occluders can occupy sufficient vertical
space in the image and fully reflect the core characteristics of the vertical morphology.

Meanwhile, a random variable following a uniform distribution X ∼ U(xleft, xright)

is introduced to generate horizontal coordinates, and the occluders that meet the height
constraint are randomly placed in the left and right regions of the image. This ensures that
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these occluders can occupy sufficient vertical space in the image, fully reflecting the core
characteristics of the vertical morphology and making the occlusion scene closer to the
real situation.

3.4. Multi-Scale Crop Data Augmentation

In the field of person Re-ID, especially when dealing with occlusion situations, how
to effectively augment data to improve the model’s ability to capture features at different
scales is a key challenge. The existing single random cropping method has limitations. Due
to randomness, it may capture limited or irrelevant information, such as pure backgrounds
or unrelated objects. To address this issue, we propose an innovative data augmentation
method that combines multi-scale cropping and flexible image mixing strategies.

As shown in Figure 3, our Multi-Scale Crop Data Augmentation follows a two-stage
process, including the multi-scale cropping stage and the image mixing stage. Through
these two stages, we can fully explore the multi-scale information in the images and
effectively fuse it, thereby enhancing the model’s performance in occlusion scenarios.

(1) Multi-Scale Cropping Stage
To address the issue that existing single random cropping methods may capture limited

or irrelevant information due to randomness, we design multi-scale cropping operations to
fully explore multi-scale information in images for multi-scale crop data augmentation.

Definition of the Cropping Operation Set: We define a set O = {om}M
m=1 containing

M cropping operations. The scales of these cropping operations range from an extremely
small proportion to covering the entire image, and the scales of each operation do not
overlap. Let the size of the original image I be H×W (height × width). The cropping ratio
corresponding to the m-th cropping operation om is pm, so the size of the cropped image is
Hm = pm H and Wm = pmW, where pm satisfies 0 < p1 < p2 < · · · < pM ≤ 1.

To clearly present the “non-overlapping” scale division rule, we set the lower bound
of the cropping ratio (minimum cropping ratio) to 0.01 and the upper bound to 1 (corre-
sponding to the scale of the full image). When the number of cropping operations M = 3
(this setting is to match the feature hierarchy of “local details–half-body features–global
context” in the occluded person re-identification task and achieve hierarchical capture of
key information), the total scale range of [0.01, 1] is evenly divided into 3 non-overlapping
sub-ranges. The scale range of each cropping operation is as follows: (0.01, 0.34) (0.34, 0.67)
(0.67, 1).

This division method not only ensures “non-overlapping property” (i.e., the start of
each sub-range completely coincides with the end of the previous sub-range; for example,
0.34 is both the end of the 1st cropping and the start of the 2nd cropping), avoiding
redundant capture of the same scale information by different cropping operations, but also
ensures “effective coverage” (i.e., the 3 sub-ranges fully cover the total scale interval of
[0.01, 1] and are distributed in a gradient from low to high scales, enabling comprehensive
extraction of local and global features of the image).

Implementation of Multi-Scale Cropping: For a given image I, we sequentially
apply the cropping operations in the set O to obtain a set V = {r(om(I))}M

m=1 containing
M cropped views. Among them, r(·) is a resizing operation used to adjust all cropped
images to a fixed size Hfixed ×Wfixed to meet the input requirements of subsequent models.
Small-scale cropping operations can focus on the fine details of the image, which helps to
capture the subtle features around the occluded parts of pedestrians in occluded person
re-identification; large-scale cropping operations can retain more overall information of the
image, which helps to grasp the overall context features of pedestrians.
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(2) Image Mixing Stage
In this stage, we mix the multiple image views obtained in the multi-scale cropping

stage according to specific rules to fuse the image information at different scales. We provide
two optional mixing strategies: the linear fusion strategy and the region-replacement
fusion strategy.

• Linear Fusion Strategy For two cropped views Vi and Vj of the same size, we generate
a mixed view Vmix−linear through linear interpolation. The formula is as follows:

Vmix−linear = β ·Vi + (1− β) ·Vj (7)

where β is the mixing weight, which is randomly sampled from the Beta distribu-
tion Beta(γ, γ), and γ is an adjustable hyperparameter. This linear fusion method
can smoothly merge the information of the two views, enabling the training sam-
ples to contain features from cropped views at different scales and enhancing the
generalization ability of the model.

• Region-Replacement Fusion Strategy Given two cropped views Vx and Vy of the
same size, we first randomly generate a binary mask b for a rectangular region. Then,
we generate a mixed view Vmix−replace according to the following formula:

Vmix−replace = b⊙Vx + (1− b)⊙Vy (8)

where ⊙ represents element-wise multiplication. The values of the mask b are either
0 or 1, which are used to indicate the positions where the corresponding regions
in Vy should be replaced into Vx. Specifically, we first randomly select a rectan-
gular region in Vx. Let the coordinates of the top-left corner be (xstart, ystart) and
the coordinates of the bottom-right corner be (xend, yend). The area of this region
is A = (xend − xstart)(yend − ystart), and it satisfies A = θH f ixedW f ixed, where θ is a
probability value randomly sampled from the Beta distribution Beta(γ, γ). This
region-replacement fusion strategy simulates the changes in local regions of the image,
which helps the model to enhance its ability to recognize local features and better
handle local occlusion problems in occluded Re-ID.

Through the above multi-scale cropping and flexible image mixing strategies, we con-
struct a new input distribution, which is used as training data. It is expected to significantly
improve the performance and robustness of the occluded Re-ID model.

3.5. Parallel Integration Mechanism

In existing research, traditional data augmentation methods mostly adopt a serial
execution logic: that is, raw samples are processed sequentially according to a preset
augmentation pipeline (such as operations like random cropping, brightness adjustment,
and rotation) to generate a single augmented sample. Although this serial mode achieves
the basic function of data expansion, it has obvious limitations. On the one hand, it can
only generate one type of augmented sample at a time, making it difficult to fully cover
the diversity of data distribution, which limits the model’s adaptability to different data
variants. On the other hand, the temporal dependence of serial operations leads to low
overall data processing efficiency. Especially in the scenario of large-scale datasets, it is
likely to become a performance bottleneck in the model training process.

Our Parallel Integration Mechanism comprises two independent parallel data aug-
mentation branches: the aforementioned Frequency–Style–Position Data Augmenta-
tion (FSPDA) mechanism and Multi-Scale Crop Data Augmentation (MSCDA). These
two branches perform simultaneous enhancement on each original input image P, thereby
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generating two distinct augmented image results in a single processing cycle. This process
can be formulated as

Ppasted = FSPDA(P), Pcropped = MSCDA(P) (9)

Subsequently, these two augmented images, along with the original input image P,
are fed into a shared-parameter network for feature extraction. Specifically, the shared-
parameter network processes P, Ppasted, and Pcropped, respectively, to generate three sets of
feature maps. After undergoing the same series of convolutional operations and global
pooling, these feature maps are transformed into three independent global feature vectors,
denoted as f1

g, f2
g,f3

g. These three global features, each preserving distinct characteristics de-
rived from the original and augmented inputs, are subsequently concatenated or processed
as separate entities to participate in the subsequent stages of the network.

3.6. Loss Design

We select the classification loss Lid and triplet losses Ltri for network training. All
global and local features within this network are utilized to compute the aforementioned
losses. The overall loss function can be formulated as follows:

L f inal =
3

∑
i=1

Lid(pi
g, y) +

4

∑
j=1

Lid(pj
l , y) +

3

∑
i=1

Ltri( f i
g) +

4

∑
j=1

Ltri( f j
l ) (10)

where p represents the prediction results of global feature fg and local feature fl , y represents
basic facts.

4. Experiment
To comprehensively verify the effectiveness and superiority of the proposed MA–

MSA framework in the occluded person re-identification (Occluded Person Re-ID) task,
this chapter designs multi-dimensional experiments: First, the adaptability of the model
to non-occluded scenarios is verified on mainstream holistic person datasets (Market-
1501 and DukeMTMC-reID), and then its occlusion resistance is tested on specialized
occluded datasets (Occluded-Duke and Occluded-REID). Meanwhile, ablation experiments
are conducted to decompose the contribution of each module, hyperparameter analysis is
performed to optimize parameter settings, visualization analysis is carried out to reveal
the model’s decision-making mechanism, and performance comparisons are conducted
with current mainstream methods. The experiments strictly follow the standard evaluation
system in the field of person re-identification to ensure the objectivity and comparability of
the results. Ultimately, it is proven that, without auxiliary models, MA–MSA can effectively
solve the “dual inconsistency” problem in occluded data augmentation and enhance the
robustness and generalization of the model.

4.1. Datasets and Evaluation Metrics

Occluded-REID [37] represents a specialized image-based dataset for occluded person
Re-ID. This dataset was collected using mobile cameras from diverse viewpoints, capturing
individuals with various forms of substantial occlusion. Comprising a total of 2000 images,
it encompasses 200 distinct people, where each person is represented by 5 full-body images
and 5 occluded images. For the experimental setup involving this dataset, the employed
framework was trained on the Market-1501 [35] training dataset.

Occluded-DukeMTMC [35] is an image-based dataset designed for occluded person
Re-ID, which is derived from the DukeMTMC-reID dataset [38]. This dataset provides
a comprehensive resource for research, with 15,618 training images featuring 708 indi-
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viduals. For the testing phase, it offers 2210 query images corresponding to 519 persons
and 17,661 gallery images representing 1110 persons. Notably, the dataset has a specific
distribution of occluded images: 9% of the training set, all of the query set, and 10% of the
gallery set contain occluded images. This unique composition makes it an essential tool for
evaluating and developing algorithms capable of handling occluded person Re-ID tasks.

DukeMTMC-reID [38] is composed of 36,411 images depicting 1404 individuals,
which were taken by 8 cameras. A subset of 16,522 images representing 702 individuals
is selected at random as the training set from the dataset, while the rest of the images are
distributed into 2228 query images and 17,661 gallery images for testing purposes, ensuring
that gallery images do not overlap with the training set.

Market-1501 [39] stands as an extensively utilized holistic person Re-ID dataset taken
by 6 cameras. It comprises 12,936 training images belonging to 751 individuals, along
with 3368 query images from 750 individuals, and 19,732 gallery images representing
750 individuals. Non-occluded images predominantly constitute the dataset.

Evaluation Metrics: In order to ensure a level playing field for comparing our results
with those of existing approaches, we utilize two widely recognized evaluation metrics: Cu-
mulative Matching Characteristic (CMC) curves and mean Average Precision (mAP). These
metrics are employed to assess the performance of various Re-ID models. It should be noted
that all the experimental evaluations are carried out under the single-query scenario, which
helps in maintaining consistency and comparability across different model evaluations.

4.2. Implementation Details

We chose a ViT-Base model pre-trained on the ImageNet dataset as the benchmark
for our method. The model has 12 transform coding layers, 12 multi-head attention heads,
and the eigenvector size is set to 768. Scale each input pedestrian image to 256 × 128. Set
the batch size to 32. The model is trained using the Stochastic Gradient Descent (SGD)
optimizer. The initial learning rate is set to 0.08, and a cosine learning rate attenuation
strategy is applied. Our method is implemented using PyTorch (version 1.8.0), and all
experiments are performed on a GeForce RTX 3090 (NVIDIA, Santa Clara, CA, USA). The
operating system was Ubuntu 20.04 LTS, with CUDA 11.4 and cuDNN 8.2.4 installed to
support GPU acceleration.

4.3. Comparison with State-of-the-Art Methods

Results on Holistic Datasets. To further validate the efficacy of our proposed method,
we conducted comprehensive evaluations on two widely recognized datasets, namely
Market-1501 [39] and DukeMTMC-reID [38], benchmarking our approach against sev-
eral state-of-the-art algorithms. The detailed results are presented in Table 1. On the
DukeMTMC-reID dataset, our method delivered outstanding performance, attaining an
mAP of 82.9% and a Rank-1 accuracy of 91.2%. Likewise, on the Market-1501 dataset, our
method achieved remarkable results, with an mAP of 89.5% and a Rank-1 score of 96.1%.

These findings unequivocally demonstrate that our method exhibits superior perfor-
mance across all datasets, showcasing formidable competitiveness. Whether confronted
with the intricate scenarios inherent in the DukeMTMC-reID dataset or the diverse charac-
teristics of the commonly utilized Market-1501 dataset, our method is capable of accurately
performing object identification, thereby validating its efficacy and robustness.

Results on Occluded Datasets. In complex real-world application scenarios, an ideal
model should possess strong generalization and adaptation capabilities to accurately
and efficiently handle various challenges. Based on this, we conducted experiments
on the Occluded-Duke [35] dataset and the Occluded-ReID [37] dataset. As shown in
Tables 2 and 3, our method significantly outperforms recent algorithms. On the Occluded
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Duke dataset, it achieves an mAP of 62.9% and a Rank-1 score of 73.3%; on the Occluded
Re-ID dataset, the corresponding mAP is 82.1% and the Rank-1 score is 87.3%, fully demon-
strating the high robustness of the model in occluded environments.

Table 1. Results on holistic datasets. † means that the results are from our own program runs. Bold
indicates the best results.

Methods Auxiliary Clues Publication Backbone Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

PCB [25] No ECCV 2018 CNN 92.3 77.4 81.8 66.1
MoS [40] No AAAI 2021 CNN 95.4 89 90.6 80.2
TransREID † [41] No ICCV 2021 VIT 95.2 88.9 90.7 82
PAT [42] No CVPR 2021 VIT 95.4 88 88.8 78.2
DRL-Net [43] No TMM 2022 VIT 94.7 86.9 88.1 76.6
FED [33] No CVPR 2022 VIT 95.0 86.3 89.4 78
DPM [44] No ACMMM 2022 VIT 95.5 89.7 91.0 82.6
MHSA-Net [31] No TNNLS 2022 CNN 94.6 84.0 87.3 73.1
OAT [45] No TIP 2024 VIT 95.7 89.9 91.2 82.3
PADE † [46] No ICASSP 2024 VIT 95.8 89.7 91.3 82.8

PGFA [35] Yes ICCV 2019 CNN 91.2 76.8 82.6 65.5
HOREID [13] Yes CVPR 2020 CNN 94.2 84.9 86.9 75.6
PFD † [14] Yes AAAI 2022 VIT 95.5 89.7 91.2 83.2
HCGA [47] Yes TIP 2022 CNN 95.2 88.4 — —
bpbreid † [48] Yes WACV 2023 CNN 95.1 87 89.6 78.3
MAHATMA [12] Yes TCSVT 2025 VIT 95.2 88.2 91.2 81.2

MA–MSA No — VIT 96.1 89.5 91.2 82.9

Table 2. Results on Occluded-Duke datasets. † means that the results are from our own program runs.
Bold indicates the best results.

Methods Auxiliary Clues Publication Backbone Rank-1 Rank-5 Rank-10 mAP

PCB [25] No ECCV 2018 CNN 42.6 57.1 62.9 33.7
MoS [40] No AAAI 2021 CNN 61.0 – – 49.2
TransREID † [41] No ICCV 2021 VIT 64.2 – – 55.7
PAT [42] No CVPR 2021 VIT 64.5 – – 53.6
DRL-Net [43] No TMM 2022 VIT 65.8 79.3 83.6 53.9
FED [33] No CVPR 2022 VIT 68.1 – – 56.4
DPM [44] No ACMMM 2022 VIT 71.4 – – 61.8
MHSA-Net [31] No TNNLS 2022 CNN 59.7 73.2 78.4 44.8
RTGTA [49] No TIP 2023 CNN 61.0 69.7 73.6 50.1
OAT [45] No TIP 2024 VIT 71.8 – – 62.2
PADE † [46] No ICASSP 2024 VIT 71.7 83.1 86.4 62.5

PGFA [35] Yes ICCV 2019 CNN 51.4 68.6 74.9 37.3
HOREID [13] Yes CVPR 2020 CNN 55.1 – – 43.8
PVPM [50] Yes CVPR 2020 CNN 47.0 – – 37.7
SORN [51] Yes TCSVT 2021 CNN 57.6 – – 46.3
PFD † [14] Yes AAAI 2022 VIT 67.7 80.1 85.0 60.1
HCGA [47] Yes TIP 2022 CNN 70.2 83.3 87.0 57.5
bpbreid † [48] Yes WACV 2023 CNN 66.7 81.7 85.5 54.1
MAHATMA [12] Yes TCSVT 2025 VIT 73.3 – – 62.3

MA–MSA No — VIT 73.3 84.4 87.1 62.9

Table 3. Results on Occluded-REID datasets. † means that the results are from our own program runs.
Bold indicates the best results.

Methods Auxiliary Clues Publication Backbone Rank-1 mAP

PCB [25] No ECCV 2018 CNN 41.3 38.9
MoS [40] No AAAI 2021 CNN — —
TransREID † [41] No ICCV 2021 VIT 70.2 67.3
PAT [42] No CVPR 2021 VIT 81.6 72.1
DRL-Net [43] No TMM 2022 VIT — —
FED [33] No CVPR 2022 VIT 86.3 79.3
DPM [44] No ACMMM 2022 VIT 85.5 79.7
MHSA-Net [31] No TNNLS 2022 CNN — —
RTGTA [49] No TIP 2023 CNN 71.8 51.0
OAT [45] No TIP 2024 VIT 82.6 78.2
PADE † [46] No ICASSP 2024 VIT 84.7 80.3
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Table 3. Cont.

Methods Auxiliary Clues Publication Backbone Rank-1 mAP

PGFA [35] Yes ICCV 2019 CNN 80.7 70.3
HOREID [13] Yes CVPR 2020 CNN 80.3 70.2
PVPM [50] Yes CVPR 2020 CNN 70.4 61.2
SORN [51] Yes TCSVT 2021 CNN — —
PFD † [14] Yes AAAI 2022 VIT 79.8 81.3
HCGA [47] Yes TIP 2022 CNN 88.0 —
bpbreid † [48] Yes WACV 2023 CNN 76.9 68.6
MAHATMA [12] Yes TCSVT 2025 VIT 85.8 79.5

MA–MSA No — VIT 87.3 82.1

This is mainly attributed to the occluded data augmentation module we designed.
In person Re-ID, the interference of occlusions and the insufficient proportion of occluded
data are prominent issues. This module focuses on improving the quality of augmented
images. Compared with traditional solutions, it effectively avoids problems such as poor
authenticity of synthesized images, imbalanced intensity distribution, and loss of key
information, generating high-quality training data that helps the model to accurately extract
pedestrian features. In addition, we innovatively improved the random cropping strategy,
replacing single cropping with multi-scale and multiple cropping, which overcomes the
drawback of missing key region information and enhances the model’s ability to extract
key information at different scales, significantly improving the recognition accuracy and
robustness of the model in occluded environments.

4.4. Ablation Study

To demonstrate the necessity of each component in the proposed method, we
conducted ablation experiments on the Occluded-REID and Occluded-Duke datasets.
As shown in rows (b), (c), (d), and (e) of Table 4, models trained with occlusion-related data
featuring different operations of location, style, and frequency in the FSPDA component,
along with the crop operation in the MSCDA component, achieved better results compared
to the baseline (row (a)). When the operations related to location, style, and frequency in
the FSPDA component, as well as the crop operation in the MSCDA component, were all
enabled (row (f)), the model achieved optimal values in terms of the mAP and Rank-1, fully
demonstrating the importance of each component in enhancing the performance of the
model for occluded person Re-ID.

Table 4. Ablation study results. This table presents the outcomes of ablation experiments on the
Occluded-REID and Occluded-Duke datasets. The experiments aim to verify the contribution of each
component in the proposed method for occluded person Re-ID. Bold indicates the best results.

Ablation Study
FSPDA MSCDA Occluded-REID Occluded-Duke

Location Style Frequency Crop mAP Rank-1 mAP Rank-1

(a) × × × × 80.3 84.7 62.5 71.7
(b) ✓ × × × 81.1 85.5 62.7 72.4
(c) ✓ ✓ × × 81.1 85.7 62.7 72.7
(d) ✓ × ✓ × 81.3 85.9 62.6 72.8
(e) ✓ ✓ ✓ × 81.5 85.9 62.7 73.0

(f) ✓ ✓ ✓ ✓ 82.1 87.3 62.9 73.3

4.5. Qualitative Analysis

Figure 5 shows the visualization results on the Occluded-REID dataset and Occluded-
Duke dataset. Among them, the green boxes represent correct matching results, and the
red boxes represent incorrect matching results. For the results in the first two rows of both
datasets, it is evident that, compared with the baseline method, the matching results of
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the method proposed in our paper are more accurate. This is mainly attributed to the
more realistic texture mapping method adopted in this paper, which enables the model
to simulate more diverse visual scenes closer to the real world, allowing the model to
be exposed to a richer variety of samples during training. As a result, the model can
adapt to changes in various conditions, such as different lighting, angles, and backgrounds,
and can stably identify and match targets when facing complex and changeable situations
in practical applications. Meanwhile, the multi-scale cropping technique proposed in this
paper exhibits significant advantages. It can adaptively focus on the key areas of the human
body. Different from the single or unreasonable cropping strategy used by the baseline
method, multi-scale cropping can capture human body information at different scales,
effectively avoiding the loss of important information such as body shape and clothing
details, thereby extracting more discriminative features to improve matching performance.

In addition, regarding the visualization results in the third row of both datasets,
the method proposed in our paper also shows a certain effect in handling person-to-person
occlusion. From the perspective of feature interference, when a pedestrian is occluded by
others, the features of the occluder’s clothing, accessories, etc., may be similar to those of
the occluded person, leading to feature interference. Through analysis at different scales,
our multi-scale cropping can better distinguish the features of the occluded person and the
occluder: small scales focus on differences in detailed features, while large scales clarify
the distinction in overall outlines, thereby reducing the impact of feature interference
on recognition. Moreover, in a multi-pedestrian environment, multiple pedestrians are
intertwined, with numerous instances of person-to-person occlusion, and the scales and
positions of different pedestrians vary. For images processed through multi-scale cropping
and fusion, the cropping and fusion of regions at different scales can also effectively
simulate multi-pedestrian scenes.

4.6. Analysis of the Impact of Hyperparameter γ on Model Performance

In the process of model construction and optimization, we introduce the hyperpa-
rameter γ, which plays a crucial role in the data augmentation stage. Specifically, γ is
used to define the proportion of images subjected to occlusion processing during data
augmentation. To thoroughly explore the impact of γ on model performance, we conducted
detailed experiments on our method and the baseline method.

As shown in Figure 6, our method shows a trend of first fluctuating, then rising,
and finally slightly declining. When γ is in the range of 0.7–0.8, the Rank-1 accuracy of our
method reaches its peak, approaching 87.5. This fully demonstrates that, within this range,
our method can achieve the most accurate first-place matching recognition of the target.
When the value of γ is small, it means that only a small number of images are subjected
to occlusion processing during data augmentation, and our method does not fully exploit
and utilize the features, resulting in limited recognition accuracy. When the value of γ is
too large, a large number of images are occluded, and the model may introduce too many
complex and interfering factors during the learning process, making it difficult to maintain
the accuracy at a high level or even causing it to decline.

Focusing on the mAP accuracy index, our method shows a steady upward trend
as γ increases. When γ approaches 1, the mAP accuracy reaches approximately 82.2.
This strongly indicates that, by reasonably adjusting γ, that is, reasonably controlling the
proportion of images subjected to occlusion processing, our method can more efficiently
integrate various feature information and significantly improve the comprehensive accuracy
of object detection. However, when the value of γ continues to increase beyond a certain
extent, the rate of performance improvement gradually slows down, which indicates
that the model has approached the optimal state under the current architecture. At this
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time, further adjusting γ is unlikely to provide substantial performance improvements to
the model.
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Figure 5. Qualitative analysis of Occluded-REID dataset and Occluded-Duke dataset. The green
boxes represent correct matching results, and the red boxes represent incorrect matching results.
It is evident that, compared with the baseline method, the results of our proposed method are
more accurate.
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Figure 6. Impact of hyperparameter γ (defining occlusion proportion in data augmentation) on
model performance.

In conclusion, the hyperparameter γ has a profound impact on our method. By skill-
fully and reasonably regulating γ, that is, scientifically controlling the proportion of images
with occlusion processing during data augmentation, our method demonstrates more
outstanding optimization potential and superior performance compared to the baseline
method in terms of both the Rank-1 accuracy and mAP accuracy indices.

4.7. Exploring the Results of Different Mixing Methods on Various Datasets

Table 5 presents the performance of mixup and cutmix techniques on Occluded-REID
and Occluded-Duke datasets, measured by mAP and Rank-1 accuracy. On the Occluded-
REID dataset, mixup outperforms cutmix, achieving an mAP of 82.1% and a Rank-1 score
of 87.3% compared to cutmix’s 81.9% mAP and 86.2% Rank-1. This indicates that mixup is
more effective in enhancing feature representation for object Re-ID in this dataset. On the
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Occlude-Duke dataset, cutmix shows a marginal advantage, with an mAP of 62.9% and a
Rank-1 of 73.3%, surpassing mixup’s 62.3% mAP and 72.8% Rank-1. These results highlight
the dataset-specific effectiveness of the two mixing methods, suggesting that the choice
between mixup and cutmix should be tailored according to the characteristics of the dataset
to optimize Re-ID performance.

This performance disparity can potentially be attributed to the differences in the char-
acteristics of the two datasets. The images in the Occluded-REID dataset have relatively
clean backgrounds, with minimal interference between the main subjects and the back-
ground. In this scenario, the mixup technique, which linearly combines two images and
their labels, can preserve the features of the main subjects while smoothing the feature
space. This effectively enhances the feature representation ability, thus achieving superior
Re-ID performance. Conversely, the Occluded-Duke dataset features more cluttered back-
grounds, where complex background information can easily interfere with the extraction of
target features. The cropmix technique, by cropping and stitching image regions, can selec-
tively retain and integrate the key features of the target areas. This allows it to effectively
avoid the interference caused by the cluttered backgrounds. In such complex backgrounds,
cropmix can highlight the target subjects more effectively than mixup, thereby improving
the accuracy of person Re-ID.

Table 5. Results of different mixing methods on Occluded-REID and Occluded-Duke datasets.

Occluded-REID Occluded-Duke

mAP Rank-1 mAP Rank-1

mixup 82.1 87.3 62.3 72.8
cutmix 81.9 86.2 62.9 73.3

4.8. Experiments of the Values of M and Ratio

To determine the optimal values of M and Ratio, we meticulously analyze the experi-
mental results across multiple metrics (mAP and Rank-1) on both the Occluded-REID and
Occluded-Duke datasets. As shown in Table 6, the goal is to find the combination that
yields the best performance consistently across these datasets as this would indicate the
most robust and effective choice for the relevant task.

For M = 3 and Ratio = 0.01: On the Occluded-REID dataset, an mAP of 82.1 and a
Rank-1 of 87.3 are achieved. When M = 2 (with any Ratio), the mAP and Rank-1 values are
lower (e.g., M = 2, Ratio = 0.01 has mAP 81.5, Rank-1 84.1). For M = 4 (with any Ratio),
performance also declines (e.g., M = 4, Ratio = 0.01 has mAP 81.2, Rank-1 85.7). On the
Occluded-Duke dataset, this combination achieves an mAP of 62.9 and a Rank-1 of 73.3.
Other M values at Ratio = 0.01, M = 2 (mAP 62.0, Rank-1 73.1) and M = 4 (mAP 62.6,
Rank-1 73.3) show that M = 3 either matches or exceeds in performance.

According to our analysis, this is because, when M is 3, the number of croppings is more
moderate. It will not lose key information due to too few croppings, nor will it introduce
redundancy or interference due to too many croppings. When the Ratio is 0.01, the effective
range that can be retained is larger, which helps to make fuller use of the useful content in the
image, thereby achieving better performance in person re-identification works.

In conclusion, across both datasets, M = 3 and Ratio = 0.01 consistently yield the
highest or among the highest mAP and Rank-1 values. This superior performance across
different evaluation criteria and datasets demonstrates that this combination is the most
effective for the experiments conducted, making it the logical choice for further use or
analysis in the context of the task.
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Table 6. Experiments of the values of M and ratio on Occluded-REID and Occluded-Duke datasets.
Bold indicates the best results.

M Ratio
Occluded-REID Occluded-Duke

mAP Rank-1 mAP Rank-1

2 0.01 81.5 84.1 62.0 73.1
3 0.01 82.1 87.3 62.9 73.3
4 0.01 81.2 85.7 62.6 73.3

2 0.1 78.3 83.6 62.1 73.0
3 0.1 80.8 86.9 62.7 72.9
4 0.1 79.9 84.6 62.5 73.1

2 0.2 77.9 82.5 61.7 72.5
3 0.2 78.5 83.7 61.7 72.8
4 0.2 76.8 81.9 61.6 72.6

2 0.5 77.2 81.8 60.6 71.7
3 0.5 78.1 82.9 60.8 72.0
4 0.5 76.1 80.7 60.5 71.6

4.9. Complexity Analysis

As shown in Table 7, compared with other models, the proposed MA–MSA model
exhibits lower computational complexity, which is mainly reflected in two aspects: (1) The
model acquires occlusion-aware capability through occlusion data simulation processing
(FSPDA module) and multi-scale crop data augmentation (MSCDA strategy), and, unlike
SOTA models, it does not introduce auxiliary models. Existing SOTA methods for occluded
person re-identification (such as HOREID [13], PFD [14], etc.) often rely on auxiliary models
like human pose estimators and semantic segmentation networks to locate visible regions.
In contrast, MA–MSA does not require such external auxiliary models. It only enables the
model to fully learn occlusion patterns and feature extraction rules during the training
phase through constructing an occlusion sample generation mechanism that conforms to
real-world scene distribution (the FSPDA module optimizes occlusion simulation through
triple consistency of frequency, style, and position) and a multi-scale view fusion strategy
(the MSCDA explores multi-granular information through non-overlapping ratio cropping
and dynamic fusion). Without increasing network parameters, MA–MSA achieves the
elimination of occlusion noise and the restoration of occluded person features relying on
its own module design. Additionally, a comparison of model size and computational
complexity between MA–MSA and four recently proposed methods is conducted. Model
size and computational complexity are measured by the number of parameters and the
FLOP value during the inference process.

Table 7. Comparison of different methods in terms of parameters, FLOPs, Rank-1, and mAP.

Methods Parameters FLOPs Rank-1 mAP

PGFA [35] 84.326 M 25.95 G 51.4 37.3
HoReID [13] 144.263 M 22.65 G 55.1 43.8

FED [33] 151.0 M 17.3 G 68.1 56.4
PFD [14] 107.574 M 17.34 G 67.7 60.1

MA–MSA (Ours) 100.127 M 16.27 G 73.3 62.9

4.10. Visualization Analysis

We visualize the attention heatmaps via Grad-CAM [52] in Figure 7. As can be seen
from the Grad-CAM heatmaps, in the scenarios of the Occluded-Duke and Occluded-
REID datasets, compared with the baseline, our method has significant advantages: When
pedestrians are occluded by cars, umbrellas, and other objects, the heatmaps of the baseline
are often scattered over both the occluders and the human body, while our method makes
the heat more focused on the human body region and weakens the interference of the
occluders. For example, in the case of pedestrians with umbrellas, the baseline pays
more attention to the umbrellas, vehicle bodies, and other occluders, while our method
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accurately anchors on the human body, extracts effective features, helps the model to more
reliably recognize pedestrians in occluded scenarios, and improves the ability to capture
key information of the human body in Re-ID tasks. The feature space (t-SNE [53] mapping)
of the MA–MSA method on two datasets is shown in Figure 8. It can be clearly seen that
MA–MSA makes the positive sample points between pedestrians closer. This proves the
effectiveness of our method in solving the occlusion problem.
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Figure 7. Attention heatmaps of the baseline method and our method by Grad-CAM [52].

Occluded-Duke Occluded-REID

Figure 8. The t-SNE visualization results of 10 identities with the highest occurrence frequencies
selected from the Occluded-Duke and Occluded-REID datasets. The first and second rows correspond
to the initialization and final well-trained results of our method, respectively.
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5. Conclusions
To solve “scarce real occluded training samples” and “dual inconsistencies in augmen-

tation” in occluded person Re-ID, this study proposes the MA–MSA framework. The key
points are as follows: (1) FSPDA (triple constraints: frequency/style/position) resolves
intra-sample inconsistency, boosting synthetic sample authenticity via real occlusion li-
braries, AdaIN style alignment, and hierarchical placement. (2) MSCDA (multi-scale
cropping + dynamic fusion) addresses inter-sample inconsistency, preserving critical fea-
tures and avoiding single-scale information loss. (3) Parallel FSPDA–MSCDA enables
“realistic occlusion + complete feature preservation” optimization. It achieves SOTA perfor-
mance on occluded datasets (Occluded-Duke: 73.3% Rank-1, 62.9% mAP; Occluded-REID:
87.3% Rank-1, 82.1% mAP) without auxiliary models. Methodologically, the proposed
“authenticity–integrity” collaborative augmentation paradigm breaks the limitations of
traditional occlusion augmentation, providing a reusable technical framework for high-
fidelity data synthesis. Domestically, it advances occluded Re-ID from an “auxiliary model-
dependent” paradigm to a “lightweight data-driven” one, reducing technical deployment
costs. In practical applications, it enhances the model’s robustness in real occluded scenar-
ios, offering a reliable solution for cross-camera pedestrian matching in intelligent security
and smart transportation.

The current framework has limitations in simulating feature changes under com-
plex multi-occluder combinations, leading to reduced recognition accuracy. Future efforts
should explore paths to balance “privacy and performance”. Subsequent research can inte-
grate differential privacy and anonymization in dataset construction, expand training data
sources via federated learning, and develop methods for adaptive selection of occlusion
positions to improve the model’s adaptability to complex occluded scenarios.
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