Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = permeation capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2410 KiB  
Article
Nanostructured Cellulose Acetate Membranes Embedded with Al2O3 Nanoparticles for Sustainable Wastewater Treatment
by Ines Elaissaoui, Soumaya Sayeb, Mouna Mekki, Francesca Russo, Alberto Figoli, Karima Horchani-Naifer and Dorra Jellouli Ennigrou
Coatings 2025, 15(7), 823; https://doi.org/10.3390/coatings15070823 - 15 Jul 2025
Viewed by 344
Abstract
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2 [...] Read more.
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2O3) nanoparticles (NPs) at varying concentrations (0–2 wt.%). The structural, morphological, and thermal properties of the resulting CA/Al2O3 nanocomposite membranes were investigated through FTIR, XRD, SEM, water contact angle (WCA), pore size measurements, and DSC analyses. FTIR and XRD confirmed strong interactions and the uniform dispersion of the Al2O3 NPs within the CA matrix. The incorporation of Al2O3 improved membrane hydrophilicity, reducing the WCA from 107° to 35°, and increased the average pore size from 0.62 µm to 0.86 µm. These modifications led to enhanced filtration performance, with the membrane containing 2 wt.% Al2O3 achieving a 99% removal efficiency for Indigo Carmine (IC) dye, a maximum adsorption capacity of 45.59 mg/g, and a high permeate flux of 175.47 L·m−2 h−1 bar−1. Additionally, phytotoxicity tests using Lactuca sativa seeds showed a significant increase in germination index from 20% (untreated) to 88% (treated), confirming the safety of the permeate for potential reuse in agricultural irrigation. These results highlight the effectiveness of Al2O3-modified CA electrospun membranes for sustainable wastewater treatment and water reuse. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

18 pages, 2518 KiB  
Article
Injectable PEG-PCL-PEG Copolymers for Skin Rejuvenation: In Vitro Cell Studies to in Vivo Collagen Induction
by Seunghwa Lee, Aram Kim, Jimo Koo, Yunsik Kim, Sunglim Choi and Jin Cheol Cho
Polymers 2025, 17(14), 1892; https://doi.org/10.3390/polym17141892 - 8 Jul 2025
Viewed by 472
Abstract
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers [...] Read more.
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers were synthesized and structurally characterized using gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H-NMR), and Fourier transform infrared (FT-IR) spectroscopy. An optimized precipitation and drying protocol effectively reduced residual solvents, as confirmed by gas chromatography (GC). Idebenone was incorporated as an antioxidant to prevent skin aging, while hyaluronic acid (HA), L-arginine, and glycerin were included to promote collagen regeneration. In vitro assays demonstrated that idebenone-loaded samples exhibited prolonged intracellular antioxidant activity with low cytotoxicity. The collagen-promoting formulation, containing HA, glycerin, and L-arginine, enhanced the expression of transforming growth factor-β (TGF-β) and type III collagen (COL3) while suppressing inflammatory genes, suggesting a favorable environment for extracellular matrix remodeling. In vivo evaluation corroborated these outcomes, showing angiogenesis, collagen reorganization, and progressive dermal thickness. Histological analysis further confirmed sustained matrix regeneration and tissue integration. These results highlight the potential of PEG-PCL-PEG-based injectables as a multifunctional platform for collagen regeneration, offering a promising strategy for both cosmetic and clinical applications. Full article
(This article belongs to the Special Issue Polyester-Based Materials: 3rd Edition)
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Extending the Recovery Ratio of Brackish Water Desalination to Zero Liquid Discharge (>95%) Through Combination of Nanofiltration, 2-Stage Reverse-Osmosis, Silica Precipitation, and Mechanical Vapor Recompression
by Paz Nativ, Raz Ben-Asher, Yaron Aviezer and Ori Lahav
ChemEngineering 2025, 9(4), 70; https://doi.org/10.3390/chemengineering9040070 - 3 Jul 2025
Viewed by 409
Abstract
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are [...] Read more.
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are impractical in the real world. Often, the limiting parameter that determines the maximal recovery is the SiO2 concentration that develops in the RO retentate and the need to further desalinate the high osmotic pressure retentates produced in the process. This work combines well-proven treatment schemes to attain RR ≥ 95% at a realistic cost. The raw brackish water undergoes first a 94% recovery nanofiltration (NF) step, whose permeate undergoes a further 88-RR RO step. To increase the overall RR, the retentate of the 1st RO step undergoes SiO2 removal performed via iron electro-dissolution and then a 2nd, 43% recovery, RO pass. The retentate of this step is combined with the NF retentate, and the mix is treated with mechanical vapor recompression (MVR) (RR = 62.7%). The results show that >95% recovery can be attained by the suggested process at an overall cost of ~USD 0.70/m3. This is ~60% higher than the USD 0.44/m3 calculated for the baseline operation (RR = 82.7%), making the concept feasible when either the increase in the plant’s capacity is regulatorily requested, or when the available retentate discharge method is very costly. The cost assessment accuracy was approximated at >80%. Full article
Show Figures

Figure 1

27 pages, 2647 KiB  
Article
Investigating the Polystyrene (PS) Biodegradation Potential of Phanerochaete chrysosporium Strain NA3: A Newly Isolated Soil Fungus
by Muhammad Adnan Shereen, Sadia Mehmood Satti, Asim Abbasi, Naima Atiq, Qudsia Yousafi, Safia Ahmed, Kousar Parveen and Nazih Y. Rebouh
Life 2025, 15(6), 869; https://doi.org/10.3390/life15060869 - 28 May 2025
Viewed by 821
Abstract
Biochemical monomer upcycling of plastic waste and its conversion into value-added products is deemed necessary, as it provides a greener and more sustainable solution to plastic waste management. In the current study, the polystyrene (PS) biodegradation potential of the fungus Phanerochaete chrysosporium NA3 [...] Read more.
Biochemical monomer upcycling of plastic waste and its conversion into value-added products is deemed necessary, as it provides a greener and more sustainable solution to plastic waste management. In the current study, the polystyrene (PS) biodegradation potential of the fungus Phanerochaete chrysosporium NA3 was evaluated using various analytical techniques, such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gel permeation chromatography (GPC), and high-performance liquid chromatography (HPLC). The biodegradation capacity of the fungal strain was further evaluated using a carbon dioxide (CO2) evolution test, which showed that the PS films treated with NA3 produced more CO2, indicating the strain’s ability to successfully utilize PS as a carbon source. The FTIR analysis of the PS films treated with NA3 showed modifications in the polymer chemical structure, including the formation of carbonyl and hydroxyl groups, which suggests the enzymatic dissociation of the polymer and the associated biodegradation mechanism. Pretreatments were found to be effective in modifying the polymer’s properties, making it more susceptible to microbial degradation, thus further accelerating the biodegradation process. The current study strongly advocates that P. chrysosporium (NA3) can be effectively used for the biochemical monomer recovery of PS waste and could be further utilized in the upcycling of plastic waste for its conversion into value-added products under the concept of circular economy. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

14 pages, 4358 KiB  
Article
Clarification of Clove Basil Extract Using Spinel Hollow Fiber Membranes
by Kristopher Rodrigues Dorneles, Guilherme Guimarães Ascendino, Vicelma Luiz Cardoso and Miria Hespanhol Miranda Reis
Ceramics 2025, 8(2), 57; https://doi.org/10.3390/ceramics8020057 - 16 May 2025
Viewed by 514
Abstract
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at [...] Read more.
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at 1350 °C, combining alumina and dolomite as raw materials. The calcination of the powder materials at 1350 °C resulted in the spinel phase formation, as indicated by the XRD analyses. The spinel hollow fiber membrane presented a hydrophilic surface (water contact angle of 74°), moderate roughness (144.31 ± 12.93 nm), and suitable mechanical strength. The ceramic membrane demonstrated a water permeability of 35.28 ± 2.46 L h−1 m−2 bar−1 and a final permeate flux of 9.22 ± 1.64 L h−1 m−2 for filtration of clove basil extract at 1.0 bar. Fouling analysis identified cake formation as the dominant mechanism for flux decline. The membrane retained 44% of the total phenolic compounds and reduced turbidity by 60%, while preserving significant antioxidant capacity in the permeate. The results highlight the potential of spinel-based hollow fiber membranes as a cost-effective and efficient solution for clarifying bioactive plant extracts, offering enhanced mechanical properties and lower sintering temperatures compared to conventional alumina membranes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

24 pages, 2853 KiB  
Article
TEMPO-Oxidized Spruce Galactoglucomannan–Biopolymer with Enhanced Antioxidant Activity and Selective Heavy-Metal Sorption
by Vladislav A. Ionin, Yuriy N. Malyar, Valentina S. Borovkova, Dmitriy V. Zimonin and Aleksandr S. Kazachenko
Antioxidants 2025, 14(5), 569; https://doi.org/10.3390/antiox14050569 - 9 May 2025
Viewed by 566
Abstract
This study examines galactoglucomannan, a well-studied biopolymer isolated from Siberian spruce (Picea obovata Ledeb). Due to its structure, abundant with hydroxyl groups, galactoglucomannan’s properties, such as heavy-metal ion affinity, are considered to be mediocre. Nevertheless, there are various ways to enhance its [...] Read more.
This study examines galactoglucomannan, a well-studied biopolymer isolated from Siberian spruce (Picea obovata Ledeb). Due to its structure, abundant with hydroxyl groups, galactoglucomannan’s properties, such as heavy-metal ion affinity, are considered to be mediocre. Nevertheless, there are various ways to enhance its functionality via oxidative TEMPO/NaBr/NaOCl processing. This work is concerned with the determination of the oxidation effect on the structure and performance properties, such as thermal decomposition behavior, antioxidant activity, and selective heavy-metal sorption. In the results, TEMPO-oxidized galactoglucomannan yields vary in the range of 78.3 ± 6.4 wt.%. The carboxylate group in the oxidized derivative represents up to 0.084 g/1 g of the sample. According to antioxidant activity tests, the oxidized galactoglucomannan exceeds the initial sample in terms of hydroxyl radical scavenging ability. The spectral characteristics of the initial and oxidized galactoglucomannan samples reveal the differences in absorption units (1725, 1610, and 1371 cm−1). The preservation of the polymeric structure was confirmed by the gel permeation chromatography analysis results. The heavy-metal ion capacity of galactoglucomannan is higher for the oxidized derivative, which demonstrated Cd2+, Fe2+, Cu2+, and Pb2+ adsorption values of 166.8 mg/g, 142.8 mg/g, 150.0 mg/g, and 199.2 mg/g, accordingly. The obtained result of the competitive heavy-metal ion adsorption of oxidized galactoglucomannan also exceeds its initial form, as characterized by its summary 143.1 mg/g capacity. Full article
(This article belongs to the Special Issue Methodologies for Improving Antioxidant Properties and Absorption)
Show Figures

Graphical abstract

12 pages, 2284 KiB  
Article
Activated Carbon from Spartina alterniflora and Its N-Doped Material for Li-Ion Battery Anode
by Hong Shang, Xinmeng Hao, Yougui Zhou, Jia Peng, Lihua Guo, Huipeng Li and Bing Sun
Nanomaterials 2025, 15(9), 658; https://doi.org/10.3390/nano15090658 - 26 Apr 2025
Viewed by 558
Abstract
The rampant growth of Spartina alterniflora has been wreaking havoc on the coastal ecosystems, leading to a serious environmental challenge in recent years. One potential solution to this issue involves converting Spartina alterniflora into activated carbon, offering a potential remedy for pollution while [...] Read more.
The rampant growth of Spartina alterniflora has been wreaking havoc on the coastal ecosystems, leading to a serious environmental challenge in recent years. One potential solution to this issue involves converting Spartina alterniflora into activated carbon, offering a potential remedy for pollution while creating value in energy storage applications. Herein, through a facile carbonization process with sodium hydroxide activation, we successfully transformed obsolete Spartina alterniflora into a porous carbon material (called SAC) and its nitrogen-doped derivative (denoted as SANC) by using melamine as the nitrogen source in a similar procedure. The amorphous structure of these materials was confirmed to enhance lithium-ion storage and electrolyte permeation, making them ideal for use as anodes in lithium-ion batteries. As a result, both SAC and SANC, derived from Spartina alterniflora, exhibited outstanding electrochemical performance including high capacity (456.7 and 780.8 mA h g−1 for SAC and SANC, respectively, at the current density of 6 mA g−1), excellent rate performance (from 6 to 600 mA g−1) and long-term cycling stability. Notably, compared to SAC, its N-doped derivative SANC showed superior properties in the battery (retaining a reversible capacity of 412.9 mA h g−1 at the current density of 6 mA g−1 even after 600 repeated charge–discharge cycles), demonstrating the significantly positive impact of heteroatom doping. This work not only offers a strategy to mitigate environmental challenges but also demonstrates the potential for converting waste biomass into a valuable resource for energy storage applications. Full article
Show Figures

Figure 1

19 pages, 4151 KiB  
Article
Evaluation of Olive Oil-Based Formulations Loaded with Baricitinib for Topical Treatment of Alopecia Areata
by Negar Beirampour, Mireia Mallandrich, Paola Bustos-Salgado, Valeri Domínguez-Villegas, Núria Garrós, Roya Mohammadi-Meyabadi, Beatriz Clares-Naveros, Maria Nuria Romero-Olid, Francisco J. Pérez-Cano, Marina Girbal, Maria José Rodríguez-Lagunas, Joaquim Suñer-Carbó and Ana Cristina Calpena
Pharmaceutics 2025, 17(4), 475; https://doi.org/10.3390/pharmaceutics17040475 - 5 Apr 2025
Viewed by 1604
Abstract
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of [...] Read more.
Background: Alopecia areata is an autoimmune disorder that causes hair loss in clumps about the size and shape of a quarter. The estimated prevalence of the disorder is approximately 1 in 1000 people, with a lifetime risk of approximately 2 percent. One of the systemic therapies for alopecia areata consists of the use of glucocorticoids or immunosuppressants. Methods: Baricitinib (BCT) is a Janus kinase (JAK) 1 and 2 selective inhibitor used as an immunosuppressant drug. In this study, three olive oil BCT formulations (Oil A, Oil B, and Oil C, which differ in their content in squalene, tocopherol, tyrosol, and hydroxytyrosol) have been developed for topical delivery. The formulations were physicochemically characterized and the in vitro drug release and ex vivo permeation through human skin tissues were assessed. Results: The results showed nearly identical viscosity across all three formulations, exhibiting Newtonian behavior. The mathematical modeling used to describe the drug release profiles was the one-site binding hyperbola for all formulations. Oil-based formulations showed a slow BCT penetration into human skin. Skin integrity remained intact during the experiments, with no signs of irritation or alterations observed. In addition, all the formulations proved their efficacy in vivo. Conclusions: Among the formulations, Oil A demonstrated the highest ability retention capacity (Qr = 1875 ± 124.32 ng/cm2) in the skin, making it an excellent candidate for further investigation in the treatment of alopecia areata. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 3668 KiB  
Article
Hybrid Adsorption–Microfiltration Process for the Pretreatment of Sulfide-Containing Seawater: A Promising Strategy to Mitigate Membrane Fouling
by Ludi Song, Chengyi Dai, Zifei Chai, Mengzhe Cai, Huazhang Li, Sifan Wu, Lin Zhang, Yaqin Wu and Haitao Zhu
Membranes 2025, 15(4), 100; https://doi.org/10.3390/membranes15040100 - 31 Mar 2025
Viewed by 767
Abstract
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged [...] Read more.
The presence of dissolved sulfides in feed seawater causes severe elemental sulfur fouling in the reverse osmosis (RO) process. However, current pretreatment methods suffer from large footprint, high energy consumption, and limitations in effluent quality. In this study, adsorption and microfiltration are merged into a single process for the pretreatment of sulfide-containing seawater. Powdered activated carbon (PAC) was selected for its superior adsorption capacity (14.6-fold) and faster kinetics (3.9-fold) for sulfide removal compared to granular activated carbon. The high surface area and multiple pore structures of PAC facilitate surface and intraparticle diffusion, as well as anion–π conjugation likely occur between PAC and sulfide. Polypropylene microporous membranes, capable of tolerating high PAC dosages, were used in the hybrid process. Long-term pilot tests demonstrated that the effluent (turbidity < 1 NTU and SDI15 ≈ 2.50) met the quality requirements for RO unit feedwater, achieving 100% sulfide removal efficiency over 101 h, with no risk of PAC leakage throughout the entire operation process. The formation of a loose, porous PAC cake layer alleviates membrane fouling and enhances the retention and adsorption of metal(loid)s and sulfide. Moreover, the low permeate flux of the polymeric membranes significantly mitigates filter cake formation. The hybrid system adapts to variations in feedwater quality, making it highly suitable for desalination plants with limited space and budget. These findings offer valuable insights and practical guidance for advancing seawater desalination pretreatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 6742 KiB  
Article
Encapsulation of Rose Extract in Polyurethane Structures Modified for Enhanced Aqueous Solubility
by Ramona-Carmen Albulescu, Livia-Cristina Borcan, Florin Borcan and Camelia-Alexandrina Szuhanek
Appl. Sci. 2025, 15(5), 2526; https://doi.org/10.3390/app15052526 - 26 Feb 2025
Viewed by 525
Abstract
Background: The volatile compounds present in rose extracts exhibit significant potential applications in medicine and cosmetics due to their capacity to enhance skin hydration and barrier function, two factors that are crucial for anti-aging and skin protection. The antimicrobial, anti-inflammatory, and analgesic properties [...] Read more.
Background: The volatile compounds present in rose extracts exhibit significant potential applications in medicine and cosmetics due to their capacity to enhance skin hydration and barrier function, two factors that are crucial for anti-aging and skin protection. The antimicrobial, anti-inflammatory, and analgesic properties of these extracts also suggest their potential utility in oral health applications. The aim of the current study was to obtain a new type of polyurethane delivery system based on a polyaddition process in the presence of a surfactant. Methods: Lysine-diisocyanate, polyethylene glycol, polycaprolactone diol, hexanediol, glycerol-1,2-diacetate, Tween® 20, and caffeine were used to synthesize two samples of PU structures, one with and one without rose extract. The structures’ shape, size and surface charge, encapsulation efficacy, pH, solubility, release kinetics, and permeation rate were all assessed; the irritation potential of samples was verified by skin parameters testing the cytotoxicity by in vitro cell viability assay. Results: Within our findings, structures measuring between 98 and 203 nm were found, while the sample containing the rose extract showed an entrapment efficacy of 71.76%. Almost 90% of the structures penetrated the membrane in 48 h, and around 45% were released from the carrier in the same period. Biosafety evaluations conducted both in vivo and in vitro confirmed that PU structures are safe as delivery vehicles. Conclusions: This study shows the potential of polyurethane structures with rose extracts for use in biomedical applications and cosmetics. However, more research is needed to examine the clinical testing of polyurethane delivery systems and optimize release kinetics and permeation rates for particular therapeutic uses. Full article
Show Figures

Figure 1

21 pages, 5604 KiB  
Article
Gossypin-Loaded Ethosome Gel for Cutaneous Administration: A Preliminary Study on Melanoma Cells
by Agnese Bondi, Walter Pula, Mascia Benedusi, Giulia Trinchera, Anna Baldisserotto, Stefano Manfredini, Maria Grazia Ortore, Alessia Pepe, Paolo Mariani, Marc C. A. Stuart, Giuseppe Valacchi and Elisabetta Esposito
Antioxidants 2025, 14(2), 186; https://doi.org/10.3390/antiox14020186 - 5 Feb 2025
Cited by 2 | Viewed by 1574
Abstract
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation [...] Read more.
A preformulative study was conducted to produce and characterize ethosomes for the transdermal delivery of gossypin. This plant-derived compound possesses many pharmacological properties, including antitumoral potential. Ethosome dispersions were designed as transdermal delivery systems for gossypin, employing two different production procedures. The evaluation of vesicle size distribution by photon correlation spectroscopy, morphology by cryogenic transmission electron microscopy, and gossypin entrapment capacity, as well as in vitro release and permeation by vertical diffusion cells, enabled us to select a production strategy based on the injection of a phosphatidylcholine ethanolic solution in water. Indeed, vesicles prepared by this method were almost unilamellar and measured roughly 150 nm mean diameter while displaying an entrapment capacity higher than 94%. Moreover, vesicles prepared by the ethanol injection method enabled us to control gossypin release and to improve its permeation with respect to the solution of the drug. To obtain semi-solid forms suitable for cutaneous gossypin administration, ethosome dispersions were thickened with 0.5% w/w xanthan gum, selected by a spreadability test. These ethosome gels were then further characterized by small- and wide-angle X-ray scattering, while their antioxidant activity was demonstrated in vitro by a radical scavenging assay. Finally, in vitro biological studies were conducted on A375 melanoma cell lines. Namely, wound healing and cell migration assays confirmed the potential antitumoral effect of gossypin, especially when loaded in the selected ethosomal gel. The promising results suggest further investigation of the potential of gossypin-loaded ethosomal gel in the treatment of melanoma. Full article
Show Figures

Graphical abstract

16 pages, 3222 KiB  
Article
High-Throughput Microfluidic Production of Ultrasmall Lecithin Nanoliposomes for High-Efficacy Transdermal Delivery and Skin-Aging Treatment
by Xiao Liang, Chan Lu, Fangqiao Zheng, Zhengyi Lan, Haoji Wang, Muhammad Shafiq, Xinxin Pan, Hangrong Chen and Ming Ma
Biomedicines 2025, 13(2), 322; https://doi.org/10.3390/biomedicines13020322 - 30 Jan 2025
Viewed by 1519
Abstract
Background: Liposome particles with smaller sizes could increase transdermal drug delivery efficacy for enhanced skin penetration. While microfluidic methods have enabled controlled liposome synthesis, achieving efficient production of ultrasmall nanoliposomes (NLPUS) with a size smaller than 40 nm yet remains an [...] Read more.
Background: Liposome particles with smaller sizes could increase transdermal drug delivery efficacy for enhanced skin penetration. While microfluidic methods have enabled controlled liposome synthesis, achieving efficient production of ultrasmall nanoliposomes (NLPUS) with a size smaller than 40 nm yet remains an unmet challenge. Methods: In this study, we employed a helical-blade-strengthened co-flow focusing (HBSCF) device to efficiently synthesize NLPUS, which demonstrated superior skin permeation and retention. Results: Liposome formulation primarily contains unsaturated lecithin, which endows an unprecedented capacity to NLPUS to scavenge reactive oxygen species (ROS). Moreover, NLPUS can effectively encapsulate a broad spectrum of anti-aging agents, including coenzyme Q10 (CoQ10), while preserving its physical properties. In a photoaged skin model, topical application of CoQ10-loaded NLPUS (CoQ10@NLPUS) inhibited ultraviolet B (UVB)-induced matrix metalloproteinase-1 (MMP-1) production, and promoted collagen type I (Col-I) synthesis in skin cells, thereby effectively rejuvenating the photoaged skin. Conclusions: This study presents a straightforward and efficient method for the production of NLPUS, thereby offering a promising platform for transdermal delivery of diverse therapeutic agents. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
A Novel Capacitor Deionization Performance Study Based on Carbon Nanorods/MnO2 Composite Material
by Zhongkuan Wei, Yingxiang Shi, Hang Gao, Fan Wu, Huilin Xu, An Ping and Yanfeng Li
Sustainability 2025, 17(3), 1004; https://doi.org/10.3390/su17031004 - 26 Jan 2025
Viewed by 865
Abstract
The Earth abounds in water resources; however, only 0.4% of the freshwater resources are suitable for drinking. The scarcity of freshwater resources has a severe impact on the sustainable development of human society. Desalination is regarded as one of the most effective solutions. [...] Read more.
The Earth abounds in water resources; however, only 0.4% of the freshwater resources are suitable for drinking. The scarcity of freshwater resources has a severe impact on the sustainable development of human society. Desalination is regarded as one of the most effective solutions. In this study, a research approach integrating materials and devices was utilized to synthesize manganese oxide-coated carbon nanospheres (CS@MnO2). Experimental results demonstrated that the system, by combining the distinctive performance merits of the CS@MnO2 material and the balanced desalination features, exhibited outstanding desalination performance. In the EDS elemental mapping analysis, the relatively feeble signal of carbon was ascribed to the encapsulation of MnO2 on the outer surface of CS. Through computational TGA analysis, the mass fraction of carbon in CS@MnO2-2 was determined to be approximately 51.2%. The excellent hydrophilicity of the material facilitated the permeation of the salt solution throughout the electrode, thereby enhancing the capacitance. CS@MnO2-2 manifested a high salt adsorption capacity of 27.42 mg g⁻¹ and the fastest electrosorption rate of 7.81 mg g⁻¹ min⁻¹. During 50 adsorption desorption cycles, the adsorption capacity showed good results. The adsorption kinetics and adsorption isotherm fitting indicated that the desalination process involved electrostatic and multilayer adsorption. This study holds great significance for reducing the cost of desalinated water and guaranteeing a sustainable supply of freshwater resources. Full article
Show Figures

Figure 1

13 pages, 1005 KiB  
Article
Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas
by Nadia Cerone, Luca Contuzzi, Giuseppe Domenico Zito, Carmine Florio, Laura Fabbiano and Francesco Zimbardi
Hydrogen 2025, 6(1), 6; https://doi.org/10.3390/hydrogen6010006 - 22 Jan 2025
Viewed by 3852
Abstract
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) [...] Read more.
A multiparametric study was conducted on a hydrogen (H2) production rig designed to process 0.25 Nm3·h−1 of syngas. The rig consists of two Pd-Ag membrane permeator units and two Pd-Ag membrane reactor units for the water–gas shift (WGS) reaction, enabling a detailed and comprehensive analysis of its performance. The aim was to find the optimal conditions to maximize hydrogen production by WGS and its separation in a pure stream by varying the temperature, pressure, and steam-to-CO ratio (S/CO). Two syngas mixtures obtained from an updraft gasifier using different gasification agents (air–steam and oxy–steam) were used to investigate the effect of gas composition. The performance of the rig was investigated under nine combinations of temperature, pressure, and S/CO in the respective ranges of 300–350 °C, 2–8 bar, and 1.1–2 mol·mol−1, as planned with the help of design of experiment (DOE) software. The three parameters positively affected performance, both in terms of capacity to separate a pure stream of H2, reported as moles permeated per unit of surface area and time, and in producing new H2 from WGS, reported as moles of H2 produced per volume of catalyst unit and time. The highest yields were obtained using syngas from oxy–steam gasification, which had the highest H2 concentration and was free of N2. Full article
Show Figures

Figure 1

22 pages, 5770 KiB  
Article
Layer-by-Layer Biopolymer-Coated Deformable Liposomes–In Situ Gel: A Hybrid Strategy for Enhanced Ocular Delivery of Itraconazole: In Vitro and In Vivo Appraisal
by Mohamed M. Badran, Areej Alsubaie, Mounir M. Salem Bekhit, Abdullah H. Alomrani and Aliyah Almomen
Gels 2025, 11(1), 19; https://doi.org/10.3390/gels11010019 - 31 Dec 2024
Cited by 4 | Viewed by 1180
Abstract
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ’s ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on [...] Read more.
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ’s ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P). Moreover, ITZ was loaded into biopolymer-coated DLs to augment its ocular availability. ITZ-loaded DLs were coated with hyaluronic acid (HA-DLs), chitosan (CS-DLs), or a layer-by-layer coating (CS/HA-DLs). These formulations were further laden into pH-sensitive in situ gels to provide a hybrid system to intensify their ocular adhesion properties. The prepared DLs were successfully prepared with vesicle sizes in nonorange (<200 nm). The zeta potential values of DLS were negative before coating and shifted to high negativity with HA coating and positivity with CS and CS/HA bilayer coating. These variations of zeta potential indicate successful CS and HA coatings. The optimized A high EE% was achieved with DLs-T: 89% (CS/HA-DLs-T), 86% (CS-DLs-T), 85% (HA-DLs-T), and 79% (HA-DLs-T). Therefore, DLs-T were incorporated into in situ gels, displaying optimal gelling capacity and viscosity. The release rate of ITZ from the coated DLs-laden in situ gels was slower than that observed with the uncoated DLs-gel. CS/HA-DLs-T laden-in situ gels showed the highest ex vivo transcorneal permeability and antifungal efficacy. These data suggest that the layer-by-layer-CS/HA-DLs-T presents a hopeful strategy for the ocular delivery of ITZ, offering a promising approach for managing ocular fungal infections. Full article
(This article belongs to the Special Issue Designing Gels for Antibacterial and Antiviral Agents)
Show Figures

Graphical abstract

Back to TopTop