Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Plant and Test Procedures
2.2. Description of Tests
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IEA | International Energy Agency |
PEMFC | Proton Exchange Membrane Fuel Cell |
PSA | Pressure Swing Adsorption |
WGS | Water–Gas Shift |
GC | Gas-chromatographic |
S/CO | Steam-to-CO ratio |
DOE | Design Of Experiment |
GHSV | Gas Hourly Space Velocity |
CAPEX | CAPital EXpenditure |
References
- Copernicus Climate Change Service. Copernicus: 2024 Virtually Certain to be Warmest Year and First Year Above 1.5 °C. 2024. Available online: https://climate.copernicus.eu/copernicus-2024-virtually-certain-be-warmest-year-and-first-year-above-15degc (accessed on 27 November 2024).
- International Energy Agency. World Energy Outlook 2024. 2024. Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 27 November 2024).
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 27 November 2024).
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Rubinsin, N.J.; Karim, N.A.; Timmiati, S.N.; Lim, K.L.; Isahak, W.N.R.W.; Pudukudy, M. An overview of the enhanced biomass gasification for hydrogen production. Int. J. Hydrogen Energy 2024, 49, 1139–1164. [Google Scholar] [CrossRef]
- Baroutaji, A.; Wilberforce, T.; Ramadan, M.; Olabi, A.G. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renew. Sustain. Energy Rev. 2019, 106, 31–40. [Google Scholar] [CrossRef]
- Rauch, R.; Kiros, Y.; Engvall, K.; Kantarelis, E.; Brito, P.; Nobre, C.; Santos, S.M.; Graefe, P.A. Hydrogen from Waste Gasification. Hydrogen 2024, 5, 70–101. [Google Scholar] [CrossRef]
- Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. [Google Scholar] [CrossRef]
- AlNouss, A.; McKay, G.; Al-Ansari, T. A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Convers. Manag. 2019, 196, 664–676. [Google Scholar] [CrossRef]
- Jamal, T.; Shafiullah, G.; Dawood, F.; Kaur, A.; Arif, M.T.; Pugazhendhi, R.; Elavarasan, R.M.; Ahmed, S.F. Fuelling the future: An in-depth review of recent trends, challenges and opportunities of hydrogen fuel cell for a sustainable hydrogen economy. Energy Rep. 2023, 10, 2103–2127. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Naquash, A.; Qyyum, M.A.; Chaniago, Y.D.; Riaz, A.; Yehia, F.; Lim, H.; Lee, M. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane- and cryogenic-assisted approaches. Chemosphere 2023, 313, 137420. [Google Scholar] [CrossRef] [PubMed]
- Naquash, A.; Haider, J.; Qyyum, M.A.; Islam, M.; Min, S.; Lee, S.; Lim, H.; Lee, M. Hydrogen enrichment by CO2 anti-sublimation integrated with triple mixed refrigerant-based liquid hydrogen production process. J. Clean. Prod. 2022, 341, 130745. [Google Scholar] [CrossRef]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Cerone, N.; Zito, G.D.; Florio, C.; Fabbiano, L.; Zimbardi, F. Recent Advancements in Pd-Based Membranes for Hydrogen Separation. Energies 2024, 17, 4095. [Google Scholar] [CrossRef]
- Król, A.; Gajec, M.; Holewa-Rataj, J.; Kukulska-Zając, E.; Rataj, M. Hydrogen Purification Technologies in the Context of Its Utilization. Energies 2024, 17, 3794. [Google Scholar] [CrossRef]
- Binazadeh, M.; Mamivand, S.; Sohrabi, R.; Taghvaei, H.; Iulianelli, A. Membrane reactors for hydrogen generation: From single stage to integrated systems. Int. J. Hydrogen Energy 2023, 48, 39225–39253. [Google Scholar] [CrossRef]
- Helmi, A. Sieverts’ Law. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Habib, M.A.; Harale, A.; Paglieri, S.; Alrashed, F.S.; Al-Sayoud, A.; Rao, M.V.; Nemitallah, M.A.; Hossain, S.; Hussien, M.; Ali, A.; et al. Palladium-Alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: A Review. Energy Fuels 2021, 35, 5558–5593. [Google Scholar] [CrossRef]
- Bosko, M.L.; Dalla Fontana, A.; Tarditi, A.; Cornaglia, L. Advances in hydrogen selective membranes based on palladium ternary alloys. Int. J. Hydrogen Energy 2021, 46, 15572–15594. [Google Scholar] [CrossRef]
- Lin, Y.S. Inorganic Membranes for Process Intensification: Challenges and Perspective. Ind. Eng. Chem. Res. 2019, 58, 5787–5796. [Google Scholar] [CrossRef]
- Khoiruddin, K.; Kadja, G.T.; Ismadji, S.; Wenten, I.G. Enhanced hydrogen production in membrane reactors: A novel approach. Int. J. Hydrogen Energy 2024, 83, 946–966. [Google Scholar] [CrossRef]
- Jokar, S.; Farokhnia, A.; Tavakolian, M.; Pejman, M.; Parvasi, P.; Javanmardi, J.; Zare, F.; Gonçalves, M.C.; Basile, A. The recent areas of applicability of palladium based membrane technologies for hydrogen production from methane and natural gas: A review. Int. J. Hydrogen Energy 2023, 48, 6451–6476. [Google Scholar] [CrossRef]
- Wang, C.; Weng, J.; Liao, M.; Luo, Q.; Luo, X.; Tian, Z.; Shu, R.; Chen, Y.; Du, Y. Configuration of coupling methanol steam reforming over Cu-based catalyst in a synthetic palladium membrane for one-step high purity hydrogen production. J. Energy Inst. 2023, 108, 101245. [Google Scholar] [CrossRef]
- Jia, H.; Xu, H.; Sheng, X.; Yang, X.; Shen, W.; Goldbach, A. High-temperature ethanol steam reforming in PdCu membrane reactor. J. Membr. Sci. 2020, 605, 118083. [Google Scholar] [CrossRef]
- Wu, H.C.; Rui, Z.; Lin, J.Y. Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane. J. Membr. Sci. 2020, 598, 117780. [Google Scholar] [CrossRef]
- Park, Y.; Cha, J.; Oh, H.T.; Lee, T.; Lee, S.H.; Park, M.G.; Jeong, H.; Kim, Y.; Sohn, H.; Nam, S.W.; et al. A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas. J. Membr. Sci. 2020, 614, 118483. [Google Scholar] [CrossRef]
- Cechetto, V.; Di Felice, L.; Gutierrez Martinez, R.; Arratibel Plazaola, A.; Gallucci, F. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. Int. J. Hydrogen Energy 2022, 47, 21220–21230. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Lee, J.; Han, G.; Harale, A.; Katikaneni, S.; Paglieri, S.N.; Bae, J. On-site hydrogen production using heavy naphtha by maximizing the hydrogen output of a membrane reactor system. J. Power Sources 2021, 508, 230332. [Google Scholar] [CrossRef]
- Cerone, N.; Zimbardi, F.; Contuzzi, L.; Tosti, S.; Fabbiano, L.; Zito, G.D.; Carnevale, M.O.; Valerio, V. Pre-pilot scale study of hydrogen production from biomass syngas via water-gas shift in Pd–Ag catalytic membrane reactor and dedicated hydrogen permeation unit. Int. J. Hydrogen Energy 2024, 95, 1204–1214. [Google Scholar] [CrossRef]
- Baraj, E.; Ciahotný, K.; Hlinčík, T. The water gas shift reaction: Catalysts and reaction mechanism. Fuel 2021, 288, 119817. [Google Scholar] [CrossRef]
- Lee, Y.L.; Kim, K.J.; Hong, G.R.; Roh, H.S. Target-oriented water–gas shift reactions with customized reaction conditions and catalysts. Chem. Eng. J. 2023, 458, 141422. [Google Scholar] [CrossRef]
- Vadrucci, M.; Borgognoni, F.; Moriani, A.; Santucci, A.; Tosti, S. Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts’ law. Int. J. Hydrogen Energy 2013, 38, 4144–4152. [Google Scholar] [CrossRef]
- Tosti, S.; Bettinali, L.; Lecci, D.; Violante, V.; Marini, F. Method of Diffusion Bonding Thin Foils Made of Metal Alloys Selectively Permeable to Hydrogen, Particularly Providing Membrane Devices, and Apparatus for Carrying out the Same. European Patent EP1184125A1, 11 July 2002. [Google Scholar]
- Cerone, N.; Zimbardi, F.; Contuzzi, L.; Prestipino, M.; Carnevale, M.O.; Valerio, V. Air-steam and oxy-steam gasification of hydrolytic residues from biorefinery. Fuel Process. Technol. 2017, 167, 451–461. [Google Scholar] [CrossRef]
- Sánchez, J.; Barreiro, M.; Maroño, M. Bench-scale study of separation of hydrogen from gasification gases using a palladium-based membrane reactor. Fuel 2014, 116, 894–903. [Google Scholar] [CrossRef]
- Easa, J.; Yan, C.; Schneider, W.F.; O’Brien, C.P. CO and C3H6 poisoning of hydrogen permeation across Pd77Ag23 alloy membranes: A comparative study with pure palladium. Chem. Eng. J. 2022, 430, 133080. [Google Scholar] [CrossRef]
- Narcisi, V.; Farina, L.; Santucci, A. On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation. Hydrogen 2024, 5, 149–162. [Google Scholar] [CrossRef]
- Wu, W.; Chen, S.; Niu, Z.; Zhang, D.; Tang, Z.; Li, W. A high-productivity PSA process configuration for H2 purification. Fuel 2024, 356, 129566. [Google Scholar] [CrossRef]
- Shabbani, H.J.K.; Othman, M.R.; Al-Janabi, S.K.; Barron, A.R.; Helwani, Z. H2 purification employing pressure swing adsorption process: Parametric and bibliometric review. Int. J. Hydrogen Energy 2024, 50, 674–699. [Google Scholar] [CrossRef]
- Amin, M.; Butt, A.S.; Ahmad, J.; Lee, C.; Azam, S.U.; Mannan, H.A.; Naveed, A.B.; Farooqi, Z.U.R.; Chung, E.; Iqbal, A. Issues and challenges in hydrogen separation technologies. Energy Rep. 2023, 9, 894–911. [Google Scholar] [CrossRef]
Membrane Permeator | Membrane Reactor | |
---|---|---|
Membrane material | Pd-Ag (Ag 23% wt.) | Pd-Ag (Ag 23% wt.) |
Length [mm] | 502 | 530 |
Internal diameter [mm] | 10 | 10 |
Wall thickness [mm] | 1.5 | 1.5 |
Membrane thickness [μm] | 120 | 170 |
Permeation surface [mm2] | 15,762 | 16,642 |
Volume [mm3] | 39,407 | 41,605 |
Catalyst | - | Pt on ZrO2 (Pt 1% wt.) |
Catalyst dimensions [mm] | - | Cylindrical pellets 1.5 × 1.5 |
Weight of loaded catalyst [g] | - | 49.5 |
Gas | Series a | Series b | ||
---|---|---|---|---|
% vol. | Molar Flow Rate | % vol. | Molar Flow Rate | |
CO | 24.8 | 2.49 | 29.5 | 2.90 |
CO2 | 10.2 | 0.97 | 27.4 | 3.14 |
CH4 | 3.4 | 0.32 | 5.8 | 0.47 |
H2 | 24.4 | 2.48 | 37.3 | 3.77 |
N2 | 37.2 | 3.93 | 0.0 | 0.00 |
Balance | 100.0 | 10.19 | 100.0 | 10.28 |
Point | T [°C] | p [bar] | S/CO [mol·mol−1] |
---|---|---|---|
1 | 300 | 4 | 1.1 |
2 | 300 | 4 | 2 |
3 | 300 | 8 | 1.1 |
4 | 300 | 8 | 2 |
5 | 325 | 6 | 1.5 |
6 | 350 | 4 | 1.1 |
7 | 350 | 4 | 2 |
8 | 350 | 8 | 1.1 |
9 | 350 | 8 | 2 |
10 | 325 | 6 | 1.5 |
Point | Series a | Series b | ||||
---|---|---|---|---|---|---|
1 | 0.10 | 0.77 | 1.81 | 0.18 | 0.91 | 1.67 |
2 | 0.10 | 1.00 | 2.39 | 0.18 | 1.22 | 2.45 |
3 | 0.17 | 1.33 | 1.86 | 0.24 | 1.43 | 2.26 |
4 | 0.16 | 1.73 | 2.44 | 0.28 | 2.04 | 2.70 |
5 | 0.21 | 1.39 | 2.23 | 0.33 | 1.60 | 2.59 |
6 | 0.18 | 1.12 | 2.07 | 0.30 | 1.50 | 2.33 |
7 | 0.18 | 1.31 | 1.92 | 0.33 | 1.60 | 2.79 |
8 | 0.35 | 1.65 | 1.90 | 0.52 | 1.96 | 2.30 |
9 | 0.35 | 1.88 | 2.45 | 0.52 | 2.27 | 2.83 |
10 | 0.18 | 1.34 | 2.22 | 0.30 | 1.58 | 2.61 |
Mean | 0.20 | 1.35 | 2.13 | 0.32 | 1.61 | 2.45 |
Point | CO Conversion Ratio, % | |
---|---|---|
Series a | Series b | |
1 | 72.5 | 57.4 |
2 | 95.8 | 84.5 |
3 | 74.5 | 77.8 |
4 | 98.1 | 93.2 |
5 | 89.6 | 89.4 |
6 | 83.1 | 80.5 |
7 | 77.2 | 96.2 |
8 | 76.2 | 79.2 |
9 | 98.4 | 97.4 |
10 | 89.0 | 90.0 |
Mean | 85.4 | 84.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerone, N.; Contuzzi, L.; Zito, G.D.; Florio, C.; Fabbiano, L.; Zimbardi, F. Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas. Hydrogen 2025, 6, 6. https://doi.org/10.3390/hydrogen6010006
Cerone N, Contuzzi L, Zito GD, Florio C, Fabbiano L, Zimbardi F. Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas. Hydrogen. 2025; 6(1):6. https://doi.org/10.3390/hydrogen6010006
Chicago/Turabian StyleCerone, Nadia, Luca Contuzzi, Giuseppe Domenico Zito, Carmine Florio, Laura Fabbiano, and Francesco Zimbardi. 2025. "Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas" Hydrogen 6, no. 1: 6. https://doi.org/10.3390/hydrogen6010006
APA StyleCerone, N., Contuzzi, L., Zito, G. D., Florio, C., Fabbiano, L., & Zimbardi, F. (2025). Multiparametric Study of Water–Gas Shift and Hydrogen Separation Performance in Membrane Reactors Fed with Biomass-Derived Syngas. Hydrogen, 6(1), 6. https://doi.org/10.3390/hydrogen6010006