Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = permanent magnet (PM) power loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4153 KiB  
Article
Analysis of Electromagnetic Characteristics of Outer Rotor Type BLDC Motor Based on Analytical Method and Optimal Design Using NSGA-II
by Tae-Seong Kim, Jun-Won Yang, Kyung-Hun Shin, Gang-Hyeon Jang, Cheol Han and Jang-Young Choi
Machines 2025, 13(6), 440; https://doi.org/10.3390/machines13060440 - 22 May 2025
Cited by 1 | Viewed by 516
Abstract
This study investigates the electromagnetic analysis and optimal design of outer rotor type brushless DC (BLDC) motors for fan filter applications. The primary objective is to develop a method that integrates three-dimensional (3D) structural effects with efficient two-dimensional (2D) equivalent analysis. This study [...] Read more.
This study investigates the electromagnetic analysis and optimal design of outer rotor type brushless DC (BLDC) motors for fan filter applications. The primary objective is to develop a method that integrates three-dimensional (3D) structural effects with efficient two-dimensional (2D) equivalent analysis. This study proposes a 2D equivalent analysis method that addresses the unique features of outer rotor type BLDC motors, particularly the permanent magnet (PM) overhang structure. This approach transforms the operating point on the B–H curve to facilitate accurate modeling in a 2D framework, overcoming traditional analysis limitations. An analytical method using spatial harmonics is introduced to derive essential electromagnetic quantities, namely flux linkage and back electromotive force (EMF). The method compensates for slot effects using the Carter coefficient, ensuring precise evaluation of circuit parameters and electromagnetic losses. To optimize motor performance, a multi-objective optimization technique is implemented using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), aiming to maximize both efficiency and power density. The research validates the proposed analytical approach against the finite element analysis method (FEM) results to confirm its accuracy. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

30 pages, 12182 KiB  
Article
Electromagnetic Investigation of Innovative Stator–Permanent Magnet Motors
by Mohammad Reza Sarshar, Mohammad Amin Jalali Kondelaji, Pedram Asef and Mojtaba Mirsalim
Energies 2025, 18(9), 2400; https://doi.org/10.3390/en18092400 - 7 May 2025
Viewed by 690
Abstract
Owing to the distinct advantages of stator–permanent magnet (PM) motors over other PM machines, their prominence in high-power-density applications is surging dramatically, capturing growing interest across diverse applications. This article proposes an innovative design procedure for two primary stator–PM motor types, flux switching [...] Read more.
Owing to the distinct advantages of stator–permanent magnet (PM) motors over other PM machines, their prominence in high-power-density applications is surging dramatically, capturing growing interest across diverse applications. This article proposes an innovative design procedure for two primary stator–PM motor types, flux switching and biased flux, yielding 30 novel motor designs. The procedure involves splitting teeth, incorporating a flux reversal effect, and embedding flux barriers into the conventional structure. The analytical reasons behind the novel motors’ architecture are mathematically expressed and verified using finite element analysis (FEA). Through an effective optimisation based on a multi-objective genetic algorithm, various feasible stator/rotor pole combinations are explored, with over 36,000 samples evaluated using FEA coupled with the algorithm. The electromagnetic characteristics of promising motors are analysed, revealing that adding the flux reversal effect and flux barriers, which reduce PM volume while decreasing leakage flux and enhancing air gap flux, improves torque production by up to 68%. Beyond torque enhancement, other electromagnetic parameters, including torque ripple, core loss, and the power factor, are also improved. The proposed motors enhance the PM torque density significantly by about 115% compared to conventional motors and reduce the motor costs. A generalised decision-making process and thermal analysis are applied to the top-performing motors. Additionally, the prototyping measures and considerations are thoroughly discussed. Finally, a comprehensive conclusion is reached. Full article
Show Figures

Figure 1

25 pages, 3366 KiB  
Review
An Overview of the R&D of Flywheel Energy Storage Technologies in China
by Xingjian Dai, Xiaoting Ma, Dongxu Hu, Jibing Duan and Haisheng Chen
Energies 2024, 17(22), 5531; https://doi.org/10.3390/en17225531 - 5 Nov 2024
Cited by 5 | Viewed by 3039
Abstract
The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental [...] Read more.
The literature written in Chinese mainly and in English with a small amount is reviewed to obtain the overall status of flywheel energy storage technologies in China. The theoretical exploration of flywheel energy storage (FES) started in the 1980s in China. The experimental FES system and its components, such as the flywheel, motor/generator, bearing, and power electronic devices, were researched around thirty years ago. About twenty organizations devote themselves to the R&D of FES technology, which is developing from theoretical and laboratory research to the stage of engineering demonstration and commercial application. After the research and accumulation in the past 30 years, the initial FES products were developed by some companies around 10 years ago. Today, the overall technical level of China’s flywheel energy storage is no longer lagging behind that of Western advanced countries that started FES R&D in the 1970s. The reported maximum tip speed of the new 2D woven fabric composite flywheel arrived at 900 m/s in the spin test. A steel alloy flywheel with an energy storage capacity of 125 kWh and a composite flywheel with an energy storage capacity of 10 kWh have been successfully developed. Permanent magnet (PM) motors with power of 250–1000 kW were designed, manufactured, and tested in many FES assemblies. The lower loss is carried out through innovative stator and rotor configuration, optimizing magnetic flux and winding arrangement for harmonic magnetic field suppression. Permanent magnetic bearings with high load ability up to 50–100 kN were developed both for a 1000 kW/16.7 kWh flywheel used for the drilling practice application in hybrid power of an oil well drilling rig and for 630 kW/125 kWh flywheels used in the 22 MW flywheel array applied to the flywheel and thermal power joint frequency modulation demonstration project. It is expected that the FES demonstration application power stations with a total cumulative capacity of 300 MW will be built in the next five years. Full article
(This article belongs to the Special Issue Flywheel Energy Storage Systems and Applications Ⅱ)
Show Figures

Figure 1

18 pages, 7690 KiB  
Article
A Parameterized Modeling Method for Magnetic Circuits of Adjustable Permanent Magnet Couplers
by Dazhi Wang, Wenhui Li, Jiaxing Wang, Keling Song, Yongliang Ni and Yanming Li
Mathematics 2023, 11(23), 4793; https://doi.org/10.3390/math11234793 - 27 Nov 2023
Viewed by 1324
Abstract
The contactless transmission between the conductor rotor and the permanent magnet (PM) rotor of an adjustable permanent magnet coupler (APMC) provides the device with significant tolerance for alignment errors, making the performance estimation complicated and inaccurate. The first proposal of an edge coefficient [...] Read more.
The contactless transmission between the conductor rotor and the permanent magnet (PM) rotor of an adjustable permanent magnet coupler (APMC) provides the device with significant tolerance for alignment errors, making the performance estimation complicated and inaccurate. The first proposal of an edge coefficient in this paper helps to describe the edge effect with better accuracy. Accurate equivalent magnetic circuit (EMC) models of the APMC are established for each region. Models of magnetic flux, magnetic resistance, and eddy current density are established by defining the equivalent dimensional parameters of the eddy current circuit. Furthermore, the concept of magnetic inductance is proposed for the first time, parameterizing eddy currents that are difficult to describe with physical models and achieving the modeling of the dynamic eddy current circuit. The magnetic resistance is subdivided into two parts corresponding to the output and slip according to the power relationship. Furthermore, eddy current loss and dynamic torque models are further derived. The method proposed in this paper enables the APMC to be modeled and calculated in a completely new way. The correctness and accuracy of the model have been fully demonstrated using finite element simulation and an experimental prototype. In addition, the limitations of the proposed method and the reasons are fully discussed and investigated. Full article
Show Figures

Figure 1

22 pages, 7419 KiB  
Article
Material Tradeoff of Rotor Architecture for Lightweight Low-Loss Cost-Effective Sustainable Electric Drivetrains
by Ahmed Selema
Sustainability 2023, 15(19), 14413; https://doi.org/10.3390/su151914413 - 1 Oct 2023
Cited by 4 | Viewed by 2310 | Correction
Abstract
The art of the successful design of high-speed electrical machines comes with many challenges in the mass, size, reliability, and energy efficiency. Material engineering of electrical machines has been identified as a key solution for higher power dense electric drivetrains. One of the [...] Read more.
The art of the successful design of high-speed electrical machines comes with many challenges in the mass, size, reliability, and energy efficiency. Material engineering of electrical machines has been identified as a key solution for higher power dense electric drivetrains. One of the main challenges at high speed is the eddy-current losses in the active electromagnetic parts, especially magnetic materials and permanent magnets (PMs). This study is devoted to the selection of PM rotor materials using multidisciplinary design optimization for a high-speed electric drivetrain. Beside AC loss minimization, more disciplines are considered, such as the minimization of weight, and cost. Different laminations are investigated with different magnetic properties as well as cost. Additionally, different PMs are optimized considering low-cost ferrite and high-coercivity permanent magnets (HCPMs). Moreover, the optimal materials are identified which have the best balance between loss, weight, cost, ripples. Finally, different rotor designs are prototyped, assembled, and tested using the same stator configuration. Also, the best rotor design is selected, and the electromagnetic performance is measured and compared with conventional designs. The optimal design results in 8% extra torque with at least 20% weight reduction. Full article
Show Figures

Figure 1

23 pages, 8712 KiB  
Article
System-Level Consideration and Multiphysics Design of Propulsion Motor for Fully Electrified Battery Powered Car Ferry Propulsion System
by Vu-Khanh Tran, Sarbajit Paul, Jae-Woon Lee, Jae-Hak Choi, Pil-Wan Han and Yon-Do Chun
Electronics 2023, 12(6), 1491; https://doi.org/10.3390/electronics12061491 - 22 Mar 2023
Cited by 2 | Viewed by 2996
Abstract
The Korean government is facing growing concern over the increasing levels of fine dust. A significant contribution to this problem comes from coastal vessels. To mitigate this, an electric ship propulsion system has been proposed as a solution to reduce air pollution. The [...] Read more.
The Korean government is facing growing concern over the increasing levels of fine dust. A significant contribution to this problem comes from coastal vessels. To mitigate this, an electric ship propulsion system has been proposed as a solution to reduce air pollution. The application of a fully electric propulsion system in a ship is challenging due to size, capacity limitations, and the cost investment of the battery system. To address the challenges of battery limitation and initial investment costs, the development and supply of removable battery supply systems (RBSSs) for fully electrified battery powered (F-EBP) car ferries are studied. A permanent magnet synchronous motor (PMSM) for the F-EBP car ferry using a roll-on/roll-off-type RBSS is developed in this work. Firstly, the concept of the F-EBP car ferry is discussed, and the specifications of the electric car ferry propulsion system are provided. Secondly, motor design and electromagnetic analysis are performed using finite-element analysis (FEA), where the heat sources including copper loss, core loss, and PM loss are calculated. Mechanical loss is also considered. Finally, a thermal network of the motor is built considering the lumped-parameter model. The results of the thermal analysis indicate that the motor operates within the safe region and can perform well in rated working conditions. Full article
Show Figures

Figure 1

16 pages, 7225 KiB  
Article
Coupled Electromagnetic–Thermal Modelling of Dynamic Performance for Modular SPM Machines
by Wei Zhang, Guang-Jin Li, Zi-Qiang Zhu, Bo Ren and Yew Chuan Chong
Energies 2023, 16(6), 2516; https://doi.org/10.3390/en16062516 - 7 Mar 2023
Cited by 2 | Viewed by 1808
Abstract
This paper presents coupled electromagnetic (EM)–thermal modelling of the steady-state dynamic performances, such as torque speed curve and the efficiency map, for surface-mounted permanent magnet machines. One important feature of such a model is that it considers the demagnetization caused by magnet temperature [...] Read more.
This paper presents coupled electromagnetic (EM)–thermal modelling of the steady-state dynamic performances, such as torque speed curve and the efficiency map, for surface-mounted permanent magnet machines. One important feature of such a model is that it considers the demagnetization caused by magnet temperature rise at different rotor speeds. EM-only simulations, which often assume that the machines operate under constant temperature, have been widely used in the literature. However, the interaction between EM and thermal performances could lead to very different dynamic performance prediction. This is because the material properties, e.g., magnet remanence, coercivity, and copper resistivity are temperature-dependent. The temperature rise within electrical machines reduces torque/power density, PM eddy current losses, and iron losses but increases copper loss. Therefore, the coupled EM–thermal modelling is essential to determine accurate temperature variation and to obtain accurate EM performances of electrical machines. In this paper, the coupled EM–thermal modelling is implemented for both modular and non-modular machines to reveal the advantages of the modular machine under different operating conditions. The results show that the modular machine generally has better dynamic performance than the non-modular machine because the introduced flux gaps in alternate stator teeth can boost both EM and thermal performance. Full article
Show Figures

Figure 1

14 pages, 13789 KiB  
Article
Characteristics Evaluation of a Segmental Rotor Type Switched Reluctance Motor with Concentrated Winding for Torque Density and Efficiency Improvement
by Zhenyao Xu, Tao Li, Fengge Zhang, Huijun Wang, Dong-Hee Lee and Jin-Woo Ahn
Energies 2022, 15(23), 8915; https://doi.org/10.3390/en15238915 - 25 Nov 2022
Cited by 4 | Viewed by 2707
Abstract
With the rapid development of power electronic techniques and the increasing cost of permanent magnets (PMs) materials, switched reluctance motors (SRMs) have recently gained more attention. However, traditional SRMs have a relatively low torque density. For the sake of increasing the motor torque [...] Read more.
With the rapid development of power electronic techniques and the increasing cost of permanent magnets (PMs) materials, switched reluctance motors (SRMs) have recently gained more attention. However, traditional SRMs have a relatively low torque density. For the sake of increasing the motor torque density, this paper proposes a novel segmental rotor type SRM. The proposed motor adopts hybrid stator poles and concentrated windings in the stator side and a segmental rotor structure in the rotor side, which is completely different from the structures of the traditional SRM. The special structure of the motor shortens the magnetic flux paths of the motor, separates the parts of the magnetic flux paths from one another, and eradicates the magnetic flux reversal in the motor stator in order to improve the electric utilization and output torque density of the motor. Meanwhile, the requirement of the magneto-motive force and the core loss of the motor is also decreased, thereby improving the efficiency of the motor. For the purpose of proving the proposed structure, the characteristics of the motor are analyzed using the finite element method and are compared to those of the traditional 12/8 SRM, which is designed for the same application. Moreover, the prototypes of the traditional 12/8 and proposed SRMs are manufactured, and experiments based on the prototypes are performed. Finally, the effectiveness of the structure of the proposed motor is further proven by the experimental results. Full article
(This article belongs to the Special Issue Regulations and Advances in High Performance Electric Motor and Drive)
Show Figures

Figure 1

51 pages, 16431 KiB  
Perspective
Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures
by Zi-Qiang Zhu and Dawei Liang
Energies 2022, 15(21), 8189; https://doi.org/10.3390/en15218189 - 2 Nov 2022
Cited by 37 | Viewed by 5264
Abstract
Permanent magnet (PM) machines have been extensively used for various applications. Nevertheless, thermal effect, particularly hotspot temperature, not only severely restricts power/torque density but also leads to deteriorations in electromagnetic performance, service life, and reliability. Starting with foundations of PM machines and heat [...] Read more.
Permanent magnet (PM) machines have been extensively used for various applications. Nevertheless, thermal effect, particularly hotspot temperature, not only severely restricts power/torque density but also leads to deteriorations in electromagnetic performance, service life, and reliability. Starting with foundations of PM machines and heat transfer mechanisms, this paper reviews the development of thermal analysis methods over the last thirty years and the state-of-the-art research achievements, and the hotspot temperatures of winding and PM are particularly evaluated. In the overview, various machine losses and cooling techniques are first introduced, which are the essential reasons for temperature rise and the most straightforward way to remove the generated heat. Afterwards, the mainstream thermal analysis techniques, i.e., numerical techniques, lumped-parameter thermal model, and hybrid thermal models, as well as the online electrical parameter-based and thermal model-based temperature monitoring techniques, are reviewed and assessed in depth. In addition, this paper also reviews the analytical thermal modelling methods for winding and PM. Finally, future research trends are highlighted. Full article
Show Figures

Figure 1

9 pages, 6101 KiB  
Article
Design of a Chamfered Structure on Consequent-Pole Vernier Permanent-Magnet Machine
by Jien Ma, Bowen Xu, Qiyi Wu, Chao Luo, Qiu Lin and Youtong Fang
Energies 2022, 15(20), 7780; https://doi.org/10.3390/en15207780 - 20 Oct 2022
Cited by 2 | Viewed by 1994
Abstract
The consequent-pole (CP) Vernier permanent-magnet (VPM) machine has been developed over the last decade. In VPM machine, the CP structure can produce considerable torque with a half volumn of the PMs compared with the regular structure, so the cost is reduced and the [...] Read more.
The consequent-pole (CP) Vernier permanent-magnet (VPM) machine has been developed over the last decade. In VPM machine, the CP structure can produce considerable torque with a half volumn of the PMs compared with the regular structure, so the cost is reduced and the mechanical strength is increased. In this paper, an improvement of chamfering structure on a CPVPM machine is proposed to alleviate the flux leakage and increase the torque density. The chamfered structure is easily machined and will not influence the robustness of the rotor. The comparison results show that under the same volume and copper loss constraint, the proposed structure has smaller cogging torque, smaller torque ripple, larger torque density and larger power factor. Full article
Show Figures

Figure 1

17 pages, 3812 KiB  
Review
Modeling Push–Pull Converter for Efficiency Improvement
by Zeljko Ivanovic and Mladen Knezic
Electronics 2022, 11(17), 2713; https://doi.org/10.3390/electronics11172713 - 29 Aug 2022
Cited by 8 | Viewed by 9283
Abstract
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses [...] Read more.
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

18 pages, 1847 KiB  
Article
Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles
by Hassam Muazzam, Mohamad Khairi Ishak, Athar Hanif, Ali Arshad Uppal, AI Bhatti and Nor Ashidi Mat Isa
Energies 2022, 15(5), 1773; https://doi.org/10.3390/en15051773 - 28 Feb 2022
Cited by 2 | Viewed by 2419
Abstract
The highly efficient Interior Permanent Magnet Synchronous Motor (IPMSM) is ubiquitous choice in Electric Vehicles (EVs) for today’s automotive industry. IPMSM control requires accurate knowledge of an immeasurable critical Permanent Magnet (PM) flux linkage parameter. The PM flux linkage is highly influenced by [...] Read more.
The highly efficient Interior Permanent Magnet Synchronous Motor (IPMSM) is ubiquitous choice in Electric Vehicles (EVs) for today’s automotive industry. IPMSM control requires accurate knowledge of an immeasurable critical Permanent Magnet (PM) flux linkage parameter. The PM flux linkage is highly influenced by operating temperature which results in torque derating and hence power loss, unable to meet road loads and reduced life span of electrified powertrain in EVs. In this paper, novel virtual sensing scheme for estimating PM flux linkage through measured stator currents is designed for an IPMSM centric electrified powertrain. The proposed design is based on a Uniform Robust Exact Differentiator (URED) centric Super Twisting Algorithm (STA), which ensures robustness and finite-time convergence of the time derivative of the quadrature axis stator current of IPMSM. Moreover, URED is able to eliminate chattering without sacrificing robustness and precision. The proposed design detects variation in PM flux linkage due to change in operating temperature and hence is also able to establish characteristics of fault detection. The effectiveness and accuracy in different operating environments of the proposed scheme for nonlinear mathematical IPMSM model with complex EV dynamics are verified thorough extensive simulation experiments using MATLAB/Simulink. Full article
Show Figures

Figure 1

38 pages, 11928 KiB  
Review
Permanent Magnet Machines for High-Speed Applications
by Tianran He, Ziqiang Zhu, Fred Eastham, Yu Wang, Hong Bin, Di Wu, Liming Gong and Jintao Chen
World Electr. Veh. J. 2022, 13(1), 18; https://doi.org/10.3390/wevj13010018 - 7 Jan 2022
Cited by 40 | Viewed by 16830
Abstract
This paper overviews high-speed permanent magnet (HSPM) machines, accounting for stator structures, winding configurations, rotor constructions, and parasitic effects. Firstly, single-phase and three-phase PM machines are introduced for high-speed applications. Secondly, for three-phase HSPM machines, applications, advantages, and disadvantages of slotted/slotless stator structures, [...] Read more.
This paper overviews high-speed permanent magnet (HSPM) machines, accounting for stator structures, winding configurations, rotor constructions, and parasitic effects. Firstly, single-phase and three-phase PM machines are introduced for high-speed applications. Secondly, for three-phase HSPM machines, applications, advantages, and disadvantages of slotted/slotless stator structures, non-overlapping/overlapping winding configurations, different rotor constructions, i.e., interior PM (IPM), surface-mounted PM (SPM), and solid PM, are summarised in detail. Thirdly, parasitic effects due to high-speed operation are presented, including various loss components, rotor dynamic and vibration, and thermal aspects. Overall, three-phase PM machines have no self-starting issues, and exhibit high power density, high efficiency, high critical speed, together with low vibration and noise, which make them a preferred choice for high-performance, high-speed applications. Full article
Show Figures

Figure 1

17 pages, 6306 KiB  
Article
Design Issues of a Rotating to Linear Motion Magnetic Converter for Short-Distance Transport Applications
by Mauro Andriollo, Simone Bernasconi and Andrea Tortella
Energies 2021, 14(24), 8464; https://doi.org/10.3390/en14248464 - 15 Dec 2021
Viewed by 3181
Abstract
This paper discusses some design issues of a magnetic rotating to linear motion converter (RLMC), suitable for the propulsion system of a short-distance low-capacity vehicle. It basically operates like a magnetic rack, which executes the contactless conversion of the motor torque into a [...] Read more.
This paper discusses some design issues of a magnetic rotating to linear motion converter (RLMC), suitable for the propulsion system of a short-distance low-capacity vehicle. It basically operates like a magnetic rack, which executes the contactless conversion of the motor torque into a propulsion thrust, deriving from the interaction of on-board permanent magnet (PM) modules and stationary ferromagnetic steel pieces. A design procedure is set up that deals with both the PM module arrangement and the geometric shape of the steel pieces to optimize different performance aspects. A simplified modeling based on 2D transient finite element analyses is carried out to determine the thrust profile and the RLMC losses, which are essential to assess its practical feasibility. Finally, the characteristics as functions of the load angle and speed are determined to enable the prediction of the dynamic power exchange and then of the net energy demand useful to size the on-board source. Full article
(This article belongs to the Special Issue New Advances in Permanent Magnet Electrical Machines)
Show Figures

Graphical abstract

19 pages, 7441 KiB  
Article
Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors
by Jean-Michel Grenier, Ramón Pérez, Mathieu Picard and Jérôme Cros
Energies 2021, 14(18), 5939; https://doi.org/10.3390/en14185939 - 18 Sep 2021
Cited by 8 | Viewed by 3590
Abstract
Hybrid electric aero-propulsion requires high power-density electric motors. The use of a constrained optimization method with the finite element analysis (FEA) is the best way to design these motors and to find the best solutions which maximize the power density. This makes it [...] Read more.
Hybrid electric aero-propulsion requires high power-density electric motors. The use of a constrained optimization method with the finite element analysis (FEA) is the best way to design these motors and to find the best solutions which maximize the power density. This makes it possible to take into account all the details of the geometry as well as the non-linear characteristics of magnetic materials, the conductive material and the current control strategy. Simulations were performed with a time stepping magnetodynamic solver while taking account the rotor movement and the stator winding was connected by an external electrical circuit. This study describes the magnetic FEA direct optimization approach for the design of Halbach array permanent magnet synchronous motors (PMSMs) and its advantages. An acceptable compromise between precision and computation time to estimate the electromagnetic torque, iron losses and eddy current losses was found. The finite element simulation was paired with analytical models to compute stress on the retaining sleeve, aerodynamic losses, and copper losses. This type of design procedure can be used to find the best machine configurations and establish design rules based on the specifications and materials selected. As an example, optimization results of PM motors minimizing total losses for a 150-kW application are presented for given speeds in the 2000 rpm to 50,000 rpm range. We compare different numbers of poles and power density between 5 kW/kg and 30 kW/kg. The choice of the number of poles is discussed in the function of the motor nominal speed and targeted power density as well as the compromise between iron losses and copper losses. In addition, the interest of having the current-control strategy as an optimization variable to generate a small amount of flux weakening is clearly shown. Full article
(This article belongs to the Special Issue All-Electric Propulsion Technology for Electrified Aviation)
Show Figures

Figure 1

Back to TopTop