Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = periodic magnetic flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6896 KiB  
Article
Relationship Between Recurrent Magnetic Flux Rope and Moving Magnetic Features
by Yin Zhang, Jihong Liu, Quan Wang, Suo Liu, Jing Huang, Jie Chen and Baolin Tan
Universe 2025, 11(7), 222; https://doi.org/10.3390/universe11070222 - 3 Jul 2025
Viewed by 262
Abstract
Large-scale magnetic flux ropes (MFRs) usually become visible during an eruption and are the core structures of coronal mass ejections, but the nature of MFRs is still a mystery. Here, we identify a large transequatorial MFR that spans across NOAA 13373 (in the [...] Read more.
Large-scale magnetic flux ropes (MFRs) usually become visible during an eruption and are the core structures of coronal mass ejections, but the nature of MFRs is still a mystery. Here, we identify a large transequatorial MFR that spans across NOAA 13373 (in the Northern Hemisphere) and NOAA 13374 (in the Southern Hemisphere). Here, NOAA 13373 is a growing, newly emerging active region with a leading sunspot moving rapidly to the southwest, and it is surrounded by a highly dynamic moving magnetic feature (MMF), while NOAA 13374 is a decaying active region with a tiny leading negative sunspot and a large fading area. Recurrent reconnection, which occurs under the MFRs around the leading sunspot of NOAA 13373, results in local energy release, appearing as local EUV brightening, and it is related to the appearance of a transequatorial MFR. The appearance of this MFR involves several stages: EUV brightening, the slow rising and expansion of the MFR and its hosted filament, and, eventually, fading and shrinking. These observations demonstrate that a large-scale MFR can exist for a long-term period and that MMFs play a key role in building up free energy and triggering small-scale reconnections in the lower atmosphere. The energy released by these reconnection events is insufficient for triggering the eruption of an MFR but results in local disturbances. Full article
Show Figures

Figure 1

16 pages, 3301 KiB  
Article
Crystal Chemistry and Thermodynamic Properties of Mineralogically Probable Phosphate Ca2.62Cu1.94Co1.44(PO4)4—Structurally Related to Natural Arsenate Zubkovaite
by Olga Yakubovich, Galina Kiriukhina, Larisa Shvanskaya and Alexander Vasiliev
Minerals 2025, 15(6), 645; https://doi.org/10.3390/min15060645 - 13 Jun 2025
Viewed by 339
Abstract
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in [...] Read more.
In this paper, we report the details of the synthesis, single crystal X-ray diffraction study, comparative crystal chemical analysis, and magnetic behavior of a new phosphate variation of the arsenate mineral zubkovaite. The title compound was obtained as a high-temperature flux product in the form of a partly ordered solid solution and was studied using scanning electron microscopy and microprobe analysis. It possesses a monoclinic symmetry with a P21/n space group; the unit cell parameters are a = 8.8040 (2), b = 4.8970 (1), c = 14.5772 (3), and β = 93.993(2)°. The Ca2.62Cu1.94Co1.44(PO4)4 crystal structure exhibits some statistical disorder. Our refinement showed that two positions are mixed, being occupied by Cu/Co (M1) and Ca/Co (M2) atoms. Two types of layers that are nearly parallel to the (101) plane can be distinguished in the structure. One of them is built by sharing corners of CuO4 squares, M1O5 square pyramids, and PO4 tetrahedra. The second type of layer formed from Ca2+- and M2+-centered polyhedra alternates in the [1¯01] direction to construct a tri-periodic framework. Ca2.62Cu1.94Co1.44(PO4)4 experiences long-range antiferromagnetic ordering at low temperatures, as evidenced by both dc— and ac—magnetic susceptibilities, as well as by the specific heat measurements. Full article
Show Figures

Figure 1

16 pages, 66642 KiB  
Article
Counterintuitive Particle Confinement in a Helical Force-Free Plasma
by Adam D. Light, Hariharan Srinivasulu, Christopher J. Hansen and Michael R. Brown
Plasma 2025, 8(2), 20; https://doi.org/10.3390/plasma8020020 - 26 May 2025
Cited by 1 | Viewed by 968
Abstract
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated [...] Read more.
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated with particle motion, and gyroradii at measured conditions can be large relative to the gradient scale lengths of the magnetic field. Individual particle motion is largely unexplored in force-free systems without axisymmetry, and it is unclear how the large gradients influence confinement. To understand more about how particles remain confined in these configurations, we simulate a thermal distribution of protons moving in a high-aspect-ratio force-free magnetic field using a Boris stepper. The particle loss is logarithmic in time, which suggests trapping and/or periodic orbits. Many particles do remain confined in particular regions of the field, analogous to trapped particles in other magnetic configurations. Some closed flux surfaces can be identified, but particle orbits are not necessarily described by these surfaces. We show examples of orbits that remain on well-defined surfaces and discuss the statistical properties of confined and escaping particles. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

17 pages, 11005 KiB  
Article
Pervasive Millennial-Scale Interstadial/Interglacial Climate Variability in the High-Latitude Northern Hemisphere
by Steve P. Lund, Norbert Nowaczyk, Lloyd Keigwin and Jens Gruetzner
J. Mar. Sci. Eng. 2025, 13(3), 594; https://doi.org/10.3390/jmse13030594 - 17 Mar 2025
Viewed by 455
Abstract
IODP Ex. 323 to the Bering Sea recovered a detailed record of Quaternary environmental variability adjacent to Alaska and eastern Siberia. The deep-sea sediment records show a dramatic bimodal environmental record of alternating high versus low magnetic susceptibility. Oxygen isotope records indicate that [...] Read more.
IODP Ex. 323 to the Bering Sea recovered a detailed record of Quaternary environmental variability adjacent to Alaska and eastern Siberia. The deep-sea sediment records show a dramatic bimodal environmental record of alternating high versus low magnetic susceptibility. Oxygen isotope records indicate that the interglacials are times of high clastic flux (high magnetic susceptibility) from the adjacent continents into the Bering Sea. Subsequent, more detailed chronostratigraphy indicates that Interstadial 3 and Interglacials 5, 7, and 9 are also intervals of large-amplitude, millennial-scale environmental variability alternating between warmer/wetter and cooler/drier intervals, with a quasi-cyclicity of ~5000 years. Comparative studies of North Atlantic Quaternary sediments associated with ODP Leg 172, with a similar dramatic glacial/interglacial variation in carbonate, show an almost identical millennial-scale (~5000 yrs) pattern of variability that we attribute to alternating warmer/cooler intervals in Interstadial 3 and Interglacials 5, 7, and 9. These results can also be compared to findings for Lake Elgygytgyn in Siberia. The chronology of this record is less certain than those of the other two regions, but it, too, shows large-amplitude changes in magnetic susceptibility in Interstadial 3 and Interglacials 5, 7, and 9 that can be attributed to oscillating warmer/cooler conditions on a millennial scale. These results suggest a coherent, hemispheric-scale pattern of climate variability in interstadial/interglacial periods of the last 400 ka with a quasi-cyclicity of ~5000 years. We speculate that this cyclicity is driven by a harmonic of the chaotic precession Milankovich cyclicity. Full article
Show Figures

Figure 1

19 pages, 9572 KiB  
Article
Logarithmic Separable Solutions of Force-Free Magnetic Fields in Plane-Parallel and Axial Symmetry
by Konstantinos N. Gourgouliatos
Symmetry 2025, 17(2), 175; https://doi.org/10.3390/sym17020175 - 24 Jan 2025
Viewed by 760
Abstract
This work introduces a systematic method for identifying analytical and semi-analytical solutions of force-free magnetic fields with plane-parallel and axial symmetry. The method of separation of variables is used, allowing the transformation of the non-linear partial differential equation, corresponding to force-free magnetic fields, [...] Read more.
This work introduces a systematic method for identifying analytical and semi-analytical solutions of force-free magnetic fields with plane-parallel and axial symmetry. The method of separation of variables is used, allowing the transformation of the non-linear partial differential equation, corresponding to force-free magnetic fields, to a system of decoupled ordinary differential equations, which nevertheless, are in general non-linear. It is then shown that such solutions are feasible for configurations where the electric current has a logarithmic dependence to the magnetic field flux. The properties of the magnetic fields are studied for a variety of physical parameters, through solution of the systems of the ordinary differential equations for various values of the parameters. It is demonstrated that this new logarithmic family of solutions has properties that are highly distinct from the known linear and non-linear equations, as it allows for bounded solutions of magnetic fields, for periodic solutions and for solutions that extend to infinity. Possible applications to astrophysical fields and plasmas are discussed as well as their use in numerical studies, and the overall enrichment of our understanding of force-free configurations. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

32 pages, 47694 KiB  
Article
Comparative Analysis of Analogue and Digital Methods for Magnetic Flux Estimation in the Core of a Medium-Voltage Voltage Transformer Operating Under Ferroresonance Conditions
by Piotr Suchorolski, Adam Smolarczyk, Piotr Łukaszewski, Sebastian Łapczyński, Michał Szulborski, Maciej Owsiński, Artur Łukaszewski, Łukasz Kolimas and Łukasz Nogal
Appl. Sci. 2024, 14(23), 11304; https://doi.org/10.3390/app142311304 - 4 Dec 2024
Viewed by 889
Abstract
The main objective of the research described in the article was to determine the following: Is it possible to estimate the magnetic flux linkage in the core of a voltage transformer using analogue or digital methods? Will it be possible to estimate it [...] Read more.
The main objective of the research described in the article was to determine the following: Is it possible to estimate the magnetic flux linkage in the core of a voltage transformer using analogue or digital methods? Will it be possible to estimate it approximately both in the normal state and in the state of deep core saturation (ferroresonant state)? The research aimed to identify the advantages and disadvantages of both proposed estimation methods. As part of the research described in this paper, a simulation model was developed and executed in the MATLAB/Simulink environment to generate a series of secondary voltage and flux waveforms in voltage transformers. The secondary voltage and flux waveforms were modelled under ground fault conditions, initiating ferroresonance oscillations in the medium-voltage network. To determine the associated flux from the simulated secondary voltages of the voltage transformers, an analogue integration circuit, a voltage analogue input circuit and a numerical integration algorithm with offset elimination were developed and implemented in an STM32 microcontroller. The obtained reference flux waveforms were used to verify the accuracy of the estimation of flux waveforms obtained using the analogue and digital methods. As a result, it was determined that both methods allow for a relatively accurate estimation of the periodic component of the magnetic flux. It also presented how both methods respond to the presence of slowly changing (aperiodic) components. Possible applications were proposed in order to create an innovative criterion for detecting ferroresonance oscillations. Full article
Show Figures

Figure 1

35 pages, 7319 KiB  
Article
Searching for Hadronic Signatures in the Time Domain of Blazar Emission: The Case of Mrk 501
by Margaritis Chatzis, Stamatios I. Stathopoulos, Maria Petropoulou and Georgios Vasilopoulos
Universe 2024, 10(10), 392; https://doi.org/10.3390/universe10100392 - 10 Oct 2024
Cited by 1 | Viewed by 1030
Abstract
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time [...] Read more.
Blazars—a subclass of active galaxies—are intrinsically time-variable broadband sources of electromagnetic radiation. In this contribution, we explored relativistic proton (hadronic) signatures in the time domain blazar emission and searched for those parameter combinations that unveil their presence during flaring epochs. We generated time series for key model parameters, like magnetic field strength and the power-law index of radiating particles, which were motivated from a simulated time series with statistical properties describing the observed GeV gamma-ray flux. We chose the TeV blazar Mrk 501 as our test case, as it had been the study ground for extensive investigations during individual flaring events. Using the code LeHaMoC, we computed the electromagnetic and neutrino emissions for a period of several years that contained several flares of interest. We show that for both of those particle distributions the power-law index variations that were tied to moderate changes in the magnetic field strength of the emitting region might naturally lead to hard X-ray flares with very-high-energy γ-ray counterparts. We found spectral differences measurable by the Cherenkov Telescope Array Observatory at sub-TeV energies, and we computed the neutrino fluence over 14.5 years. The latter predicted ∼0.2 muon and anti-muon neutrinos, consistent with the non-detection of high-energy neutrinos from Mrk 501. Full article
(This article belongs to the Special Issue Blazar Bursts: Theory and Observation)
Show Figures

Figure 1

10 pages, 6834 KiB  
Article
A Rectified Linear Unit-Based Memristor-Enhanced Morris–Lecar Neuron Model
by Othman Abdullah Almatroud, Viet-Thanh Pham and Karthikeyan Rajagopal
Mathematics 2024, 12(19), 2970; https://doi.org/10.3390/math12192970 - 25 Sep 2024
Cited by 1 | Viewed by 1045
Abstract
This paper introduces a modified Morris–Lecar neuron model that incorporates a memristor with a ReLU-based activation function. The impact of the memristor on the dynamics of the ML neuron model is analyzed using bifurcation diagrams and Lyapunov exponents. The findings reveal chaotic behavior [...] Read more.
This paper introduces a modified Morris–Lecar neuron model that incorporates a memristor with a ReLU-based activation function. The impact of the memristor on the dynamics of the ML neuron model is analyzed using bifurcation diagrams and Lyapunov exponents. The findings reveal chaotic behavior within specific parameter ranges, while increased magnetic strength tends to maintain periodic dynamics. The emergence of various firing patterns, including periodic and chaotic spiking as well as square-wave and triangle-wave bursting is also evident. The modified model also demonstrates multistability across certain parameter ranges. Additionally, the dynamics of a network of these modified models are explored. This study shows that synchronization depends on the strength of the magnetic flux, with synchronization occurring at lower coupling strengths as the magnetic flux increases. The network patterns also reveal the formation of different chimera states, such as traveling and non-stationary chimera states. Full article
(This article belongs to the Special Issue Chaotic Systems and Their Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 946 KiB  
Article
Supercurrent and Superconducting Diode Effect in Parallel Double Quantum Dots with Rashba Spin–Orbit Interaction
by Feng Chi, Yaohong Shen, Yumei Gao, Jia Liu, Zhenguo Fu, Zichuan Yi and Liming Liu
Materials 2024, 17(18), 4497; https://doi.org/10.3390/ma17184497 - 13 Sep 2024
Viewed by 1384
Abstract
We study theoretically the supercurrent and the superconducting diode effect (SDE) in a structure comprising parallel-coupled double quantum dots (DQDs) sandwiched between two superconductor leads in the presence of a magnetic flux. The influence of the Rashba spin–orbit interaction (RSOI), which induces a [...] Read more.
We study theoretically the supercurrent and the superconducting diode effect (SDE) in a structure comprising parallel-coupled double quantum dots (DQDs) sandwiched between two superconductor leads in the presence of a magnetic flux. The influence of the Rashba spin–orbit interaction (RSOI), which induces a spin-dependent phase factor in the dot–superconductor coupling strength, is taken into account by adopting the nonequilibrium Green’s function technique. This RSOI-induced phase factor serves as a driving force for the supercurrent in addition to the usual superconducting phase difference, and it leads to the system’s left/right asymmetry. Correspondingly, the magnitude of the positive and negative critical currents become different from each other: the so-called SDE. Our results show that the period, magnitude, and direction of the supercurrents depend strongly on the RSOI-induced phase factor, dots’ energy levels, interdot coupling strengths, and the magnetic flux. In the absence of magnetic flux, the diode efficiency is negative and may approach 2, which indicates the perfect diode effect with only negative flowing supercurrent in the absence of a positive one. Interestingly enough, both the sign and magnitude of the diode efficiency can be efficiently adjusted with the help of magnetic flux, the dots’ energy levels and the interdot coupling strength and thus provide a controllable SDE by rich means, such as gate voltage or host materials of the system. Full article
Show Figures

Figure 1

19 pages, 8083 KiB  
Article
Magnetodielectric and Rheological Effects in Magnetorheological Suspensions Based on Lard, Gelatin and Carbonyl Iron Microparticles
by Octavian Madalin Bunoiu, Ioan Bica, Eugen Mircea Anitas and Larisa Marina Elisabeth Chirigiu
Materials 2024, 17(16), 3941; https://doi.org/10.3390/ma17163941 - 8 Aug 2024
Cited by 1 | Viewed by 1415
Abstract
This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used [...] Read more.
This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr) and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr, η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace. Full article
Show Figures

Figure 1

11 pages, 2922 KiB  
Article
The Algorithm of the Two Neutron Monitors for the Analysis of the Rigidity Spectrum Variations of Galactic Cosmic Ray Intensity Flux in Solar Cycle 24
by Krzysztof Iskra, Marek Siluszyk and Witold Wozniak
Universe 2024, 10(8), 311; https://doi.org/10.3390/universe10080311 - 30 Jul 2024
Cited by 2 | Viewed by 932
Abstract
The method of the two neutron monitors was used to analyze the parameters of the rigidity spectrum variations (RSV) of galactic cosmic ray intensity (GCR) flux in solar cycle 24 based on the data from the global network of neutron monitors. This method [...] Read more.
The method of the two neutron monitors was used to analyze the parameters of the rigidity spectrum variations (RSV) of galactic cosmic ray intensity (GCR) flux in solar cycle 24 based on the data from the global network of neutron monitors. This method is an alternative to the least squares method when there are few monitors working stably in a given period, and their use in the least squares method is impossible. Analyses of the changes in exponent γ in the RSV of GCR flux from 2009 to 2019 were studied. The soft RSV (γ = 1.2–1.3) of the GCR flux around the maximum epoch and the hard RSV (γ = 0.6–0.9) around the minimum epoch of solar activity (SA) is the general feature of GCR modulation in the GeV energy scale (5, 50), to which neutron monitors were found to correspond. Therefore, various values of the RSV γ in the considered period show that during the decrease and increase period of SA, the essential changes in the large-scale structure of the heliospheric magnetic field (HMF) fluctuations/turbulence take place. The exponent γ of the RSV of the GCR flux can be considered a significant parameter to investigate the long-period changes in the GCR flux. Full article
Show Figures

Figure 1

11 pages, 1606 KiB  
Article
Josephson Diode Effect in Parallel-Coupled Double-Quantum Dots Connected to Unalike Majorana Nanowires
by Yu-Mei Gao, Hu Xiao, Mou-Hua Jiang, Feng Chi, Zi-Chuan Yi and Li-Ming Liu
Nanomaterials 2024, 14(15), 1251; https://doi.org/10.3390/nano14151251 - 25 Jul 2024
Cited by 2 | Viewed by 1592
Abstract
We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin–orbit interaction, and [...] Read more.
We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin–orbit interaction, and the Zeeman splitting inside the nanowires, a pair of Majorana bound states (MBSs) may possibly emerge at opposite ends of each nanowire. Different phase factors arising from the superconductor substrate can be generated in the coupling amplitudes between the DQDs and MBSs prepared at the left and right nanowires, and this will result in the Josephson current. We find that the critical Josephson currents in positive and negative directions are different from each other in amplitude within an oscillation period with respect to the magnetic flux penetrating through the system, a phenomenon known as the JDE. It arises from the quantum interference effect in this double-path device, and it can hardly occur in the system of one QD coupled to MBSs. Our results also show that the diode efficiency can reach up to 50%, but this depends on the overlap amplitude between the MBSs, as well as the energy levels of the DQDs adjustable by gate voltages. The present model is realizable within current nanofabrication technologies and may find practical use in the interdisciplinary field of Majorana and Josephson physics. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications (Second Edition))
Show Figures

Figure 1

8 pages, 1064 KiB  
Article
Inhibition of Acute mGluR5-Dependent Depression in Hippocampal CA1 by High-Frequency Magnetic Stimulation
by Norman Holl, Marco Heerdegen, Volker Zschorlich, Rüdiger Köhling and Timo Kirschstein
Brain Sci. 2024, 14(6), 603; https://doi.org/10.3390/brainsci14060603 - 14 Jun 2024
Cited by 1 | Viewed by 1474
Abstract
High-frequency magnetic stimulation (HFMS) applied directly to the hippocampal slice preparation in vitro induces activity-dependent synaptic plasticity and metaplasticity. In addition, changes in synaptic transmission following HFMS involve the activation of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluR). Here, we asked whether a short [...] Read more.
High-frequency magnetic stimulation (HFMS) applied directly to the hippocampal slice preparation in vitro induces activity-dependent synaptic plasticity and metaplasticity. In addition, changes in synaptic transmission following HFMS involve the activation of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluR). Here, we asked whether a short period of HFMS (5 × 10 delta-burst trains, duration of ~1 min) could alter mGluR5-mediated depression at Schaffer collateral–CA1 synapses in the acute brain slice preparation at 30 min after HFMS. To this end, we obtained field excitatory postsynaptic potential (fEPSP) slopes from Schaffer collateral–CA1 synapses after HFMS or control. First, we demonstrated that activity-dependent plasticity following HFMS depends on the slice orientation towards the magnetic coil indicating specific ion fluxes induced by magnetic fields. Second, we found that the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine reduced the field excitatory postsynaptic potential (fEPSP) slopes in control slices but rather enhanced them in HFMS-treated slices. In contrast, the compound (S)-3,5-dihydroxyphenylglycine acting at both mGluR1 and mGluR5 reduced fEPSP slopes in both control and HFMS-treated slices. Importantly, the mGluR-dependent effects were independent from the slice-to-coil orientation indicating that asynchronous glutamate release could play a role. We conclude that a short period of HFMS inhibits subsequently evoked mGluR5-dependent depression at Schaffer collateral–CA1 synapses. This could be relevant for repetitive transcranial magnetic stimulation in psychiatric disorders such as major depression. Full article
Show Figures

Figure 1

23 pages, 15343 KiB  
Article
Numerical Study on Electromagnetic Thermal Performance of Non-Metallic Armoured Optoelectronic Cable Winch System
by Wenhua Li, Huaizhao Wu, Shanying Lin, Weiwei Shen and Qingtao Lv
J. Mar. Sci. Eng. 2024, 12(6), 895; https://doi.org/10.3390/jmse12060895 - 28 May 2024
Cited by 2 | Viewed by 1633
Abstract
Non-metallic armoured optoelectronic cable winch systems (NAOCWSs) play critical roles in facilitating signal transmission and powering subsea equipment. Due to the varying depths in these applications, deploying the entire cable length is unnecessary. However, the portion of the cable that remains coiled around [...] Read more.
Non-metallic armoured optoelectronic cable winch systems (NAOCWSs) play critical roles in facilitating signal transmission and powering subsea equipment. Due to the varying depths in these applications, deploying the entire cable length is unnecessary. However, the portion of the cable that remains coiled around the winch can generate an electromagnetic field, which may interfere with signal transmission and induce electromagnetic heating. This can lead to elevated temperatures within the system, affecting the cable’s lifespan. Consequently, this study examines the distributions of magnetic and temperature fields within the NAOCWS with different currents (10–30 A) and numbers of winding layers (1–10). Findings indicate that the magnetic flux density (MFD) changes periodically, and the period is closely related to the distance between the cables. At the centre of the cable, the flux density is minimum. Temperature distribution correlates with both current amplitude and the number of winding layers, where an increase in either parameter amplifies the temperature variance between the edge and intermediate cables within the same layer. The current does not affect the internal temperature distribution pattern. With the number of winding layers determined, the layer where the highest temperature of the system is located is well defined and does not vary with current. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 18328 KiB  
Article
Investigation of Macroscopic Mechanical Behavior of Magnetorheological Elastomers under Shear Deformation Using Microscale Representative Volume Element Approach
by Ilda Abdollahi and Ramin Sedaghati
Polymers 2024, 16(10), 1374; https://doi.org/10.3390/polym16101374 - 11 May 2024
Cited by 2 | Viewed by 1850
Abstract
Magnetorheological elastomers (MREs) are a class of smart materials with rubber-like qualities, demonstrating revertible magnetic field-dependent viscoelastic properties, which makes them an ideal candidate for development of the next generation of adaptive vibration absorbers. This research study aims at the development of a [...] Read more.
Magnetorheological elastomers (MREs) are a class of smart materials with rubber-like qualities, demonstrating revertible magnetic field-dependent viscoelastic properties, which makes them an ideal candidate for development of the next generation of adaptive vibration absorbers. This research study aims at the development of a finite element model using microscale representative volume element (RVE) approach to predict the field-dependent shear behavior of MREs. MREs with different elastomeric matrices, including silicone rubber Ecoflex 30 and Ecoflex 50, and carbonyl iron particles (CIPs) have been considered as magnetic particles. The stress–strain characteristic of the pure silicon rubbers was evaluated experimentally to formulate the nonlinear Ogden strain energy function to describe hyper-elastic behavior of the rubbery matrix. The obtained mechanical and magnetic properties of the matrix and inclusions were integrated into COMSOL Multiphysics to develop the RVE for the MREs, in 2D and 3D configurations, with CIP volume fraction varying from 5% to 40%. Periodic boundary condition (PBC) was imposed on the RVE boundaries, while undergoing shear deformation subjected to magnetic flux densities of 0–0.4 T. Comparing the results from 2D and 3D modeling of isotropic MRE-RVE with the experimental results from the literature suggests that the 3D MRE-RVE can be effectively used to accurately predict the influence of varying factors including matrix type, volume fraction of magnetic particles, and applied magnetic field on the mechanical behavior of MREs. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Figure 1

Back to TopTop