Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = periodic absorber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
Sugar Beet Profitability in Lubelskie Province, Poland
by Waldemar Samociuk, Zbigniew Krzysiak, Krzysztof Przystupa and Janusz Zarajczyk
Appl. Sci. 2025, 15(15), 8685; https://doi.org/10.3390/app15158685 - 6 Aug 2025
Abstract
The work presents a comprehensive analysis and costing of sugar beet cultivation in 2020–2022, for individual farms of the Lublin region. About 120 farms were analyzed. Based on this analysis, the criteria for a model farm were determined and adopted for the calculation [...] Read more.
The work presents a comprehensive analysis and costing of sugar beet cultivation in 2020–2022, for individual farms of the Lublin region. About 120 farms were analyzed. Based on this analysis, the criteria for a model farm were determined and adopted for the calculation of sugar beet production costs. ARIMA process modeling was performed, based on which forecasts were determined for several selected parameters. Customs tariffs introduced by the USA have a drastic impact on the economy. The effects of the COVID19 pandemic may also have a significant impact on the current market situation. Forecasting in the current geopolitical situation is very difficult because of the lack of stationarity of parameters. The financial result obtained by growers is mainly influenced by indirect costs absorbing 61.31% of total costs in 2020. In 2021 and 2022, indirect costs were 61.16% and 59.61% of production income, respectively. Among this group of costs, the largest share is accounted for by the costs of sowing services, sugar beet harvesting, and soil liming amounting from 14.27% to 15.92%. During the analyzed period, sugar beet cultivation remained profitable, with a production profitability index of 1.31 in 2020 and 2021, and 1.10 in 2022. The unit cost of production increased every year. In 2020, it was 14.27% and in 2021, it increased to 15.19%. The unit cost of production in 2022 was the highest, at 23.41%. Sugar beet cultivation is one of the profitable activities in agricultural production, but it is characterized by high production costs, which increased during the years analyzed (2020 to 2022), topping out at 90.87% of total revenue. The information and data presented in this study will be used in the development of a farmer-oriented application and will support the creation of an expert system for sugar beet growers. Cost forecasting will enable farmers to plan their production more effectively. Full article
Show Figures

Figure 1

14 pages, 2082 KiB  
Article
Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
by Tadeusz Dziok, Justyna Łaskawska and František Hopan
Energies 2025, 18(15), 4109; https://doi.org/10.3390/en18154109 - 2 Aug 2025
Viewed by 261
Abstract
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the [...] Read more.
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the leaves can change during the growth period. These changes can result from both the natural growth process and environmental factors—particulate matter adsorption. The main objective was to determine changes in the characteristics of leaves and needles during the growth period (from May to October). Furthermore, to determine the effect of adsorbed particulate matter, the washing process was carried out. Studies were carried out for three tree species: Norway maple, horse chestnut and European larch. Proximate and ultimate analysis was performed and mercury content was determined. During the growth period, beneficial changes were observed: an increase in carbon content and a decrease in hydrogen and sulphur content. The unfavourable change was a significant increase in ash content, which caused a decrease in calorific value. The increase in ash content was caused by adsorbed particulate matter. They were mostly absorbed by the tissues of the needle and leaves and could not be removed by washing the surface. Full article
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Viewed by 226
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

19 pages, 474 KiB  
Review
A Review on the Technologies and Efficiency of Harvesting Energy from Pavements
by Shijing Chen, Luxi Wei, Chan Huang and Yinghong Qin
Energies 2025, 18(15), 3959; https://doi.org/10.3390/en18153959 - 24 Jul 2025
Viewed by 412
Abstract
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) [...] Read more.
Dark asphalt surfaces, absorbing about 95% of solar radiation and warming to 60–70 °C during summer, intensify urban heat while providing substantial prospects for energy extraction. This review evaluates four primary technologies—asphalt solar collectors (ASCs, including phase change material (PCM) integration), photovoltaic (PV) systems, vibration-based harvesting, thermoelectric generators (TEGs)—focusing on their principles, efficiencies, and urban applications. ASCs achieve up to 30% efficiency with a 150–300 W/m2 output, reducing pavement temperatures by 0.5–3.2 °C, while PV pavements yield 42–49% efficiency, generating 245 kWh/m2 and lowering temperatures by an average of 6.4 °C. Piezoelectric transducers produce 50.41 mW under traffic loads, and TEGs deliver 0.3–5.0 W with a 23 °C gradient. Applications include powering sensors, streetlights, and de-icing systems, with ASCs extending pavement life by 3 years. Hybrid systems, like PV/T, achieve 37.31% efficiency, enhancing UHI mitigation and emissions reduction. Economically, ASCs offer a 5-year payback period with a USD 3000 net present value, though PV and piezoelectric systems face cost and durability challenges. Environmental benefits include 30–40% heat retention for winter use and 17% increased PV self-use with EV integration. Despite significant potential, high costs and scalability issues hinder adoption. Future research should optimize designs, develop adaptive materials, and validate systems under real-world conditions to advance sustainable urban infrastructure. Full article
Show Figures

Figure 1

18 pages, 3257 KiB  
Article
Experimental Study on the Effects of Loading Rates on the Fracture Mechanical Characteristics of Coal Influenced by Long-Term Immersion in Mine Water
by Xiaobin Li, Gan Feng, Mingli Xiao, Guifeng Wang, Jing Bi, Chunyu Gao and Huaizhong Liu
Appl. Sci. 2025, 15(15), 8222; https://doi.org/10.3390/app15158222 - 24 Jul 2025
Viewed by 239
Abstract
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates [...] Read more.
Underground pumped storage hydropower stations (UPSH) are of great significance for energy structure adjustment, and coal mine underground reservoirs are an integral part of UPSH. This study investigates the fracture mechanics behavior of coal in mine water immersion environments with varying loading rates and layer direction. Three types of samples were analyzed: Crack-arrester, Crack-splitter, and Crack-divider types. The immersion duration extended up to 120 days. The results indicate that, after immersion in mine water for 120 days, the fracture toughness (KIC), fracture modulus (ES), and absorbed energy (UT) of coal decreased by 60.87%, 53.38%, and 63.21%, respectively, compared to the unsaturated coal samples. An immersion period of 30 days significantly weakens the mechanical properties of coal fractures. The KIC, ES, and UT of coal demonstrate a positive correlation with loading rate, primarily influenced by the duration of coal damage. At the same loading rate, the order of fracture toughness among the three coal types is as follows: Crack-divider > Crack-arrester > Crack-splitter. This hierarchy is determined by the properties of the coal matrix and bedding planes, as well as the mechanical structures composed of them. This study holds significant implications for the safe construction and operational design of underground water reservoirs in coal mines. Full article
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 208
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

17 pages, 1363 KiB  
Article
Navigating Risk in Crypto Markets: Connectedness and Strategic Allocation
by Nader Naifar
Risks 2025, 13(8), 141; https://doi.org/10.3390/risks13080141 - 23 Jul 2025
Viewed by 528
Abstract
This study examined the dynamic interconnectedness and portfolio implications within the cryptocurrency ecosystem, focusing on five representative digital assets across the core functional categories: Layer 1 cryptocurrencies (Bitcoin (BTC) and Ethereum (ETH)), decentralized finance (Uniswap (UNI)), stablecoins (Dai), and crypto infrastructure tokens (Maker [...] Read more.
This study examined the dynamic interconnectedness and portfolio implications within the cryptocurrency ecosystem, focusing on five representative digital assets across the core functional categories: Layer 1 cryptocurrencies (Bitcoin (BTC) and Ethereum (ETH)), decentralized finance (Uniswap (UNI)), stablecoins (Dai), and crypto infrastructure tokens (Maker (MKR)). Using the Extended Joint Connectedness Approach within a Time-Varying Parameter VAR framework, the analysis captured time-varying spillovers of return shocks and revealed a heterogeneous structure of systemic roles. Stablecoins consistently acted as net absorbers of shocks, reinforcing their defensive profile, while governance tokens, such as MKR, emerged as persistent net transmitters of systemic risk. Foundational assets like BTC and ETH predominantly absorbed shocks, contrary to their perceived dominance. These systemic roles were further translated into portfolio design, where connectedness-aware strategies, particularly the Minimum Connectedness Portfolio, demonstrated superior performance relative to traditional variance-based allocations, delivering enhanced risk-adjusted returns and resilience during stress periods. By linking return-based systemic interdependencies with practical asset allocation, the study offers a unified framework for understanding and managing crypto network risk. The findings carry practical relevance for portfolio managers, algorithmic strategy developers, and policymakers concerned with financial stability in digital asset markets. Full article
(This article belongs to the Special Issue Cryptocurrency Pricing and Trading)
Show Figures

Figure 1

13 pages, 6483 KiB  
Article
Design of I-WP Gradient Metamaterial Broadband Electromagnetic Absorber Based on Additive Manufacturing
by Yi Qin, Yuchuan Kang, He Liu, Jianbin Feng and Jianxin Qiao
Polymers 2025, 17(14), 1990; https://doi.org/10.3390/polym17141990 - 20 Jul 2025
Viewed by 453
Abstract
The proliferation of electromagnetic wave applications has accentuated electromagnetic pollution concerns, highlighting the critical importance of electromagnetic wave absorbers (EMA). This study proposes innovative I-Wrapped Package Lattice electromagnetic wave absorbers (IWP–EMA) based on the triply periodic minimal surface (TPMS) lattice structure. Through a [...] Read more.
The proliferation of electromagnetic wave applications has accentuated electromagnetic pollution concerns, highlighting the critical importance of electromagnetic wave absorbers (EMA). This study proposes innovative I-Wrapped Package Lattice electromagnetic wave absorbers (IWP–EMA) based on the triply periodic minimal surface (TPMS) lattice structure. Through a rational design of porous gradient structures, broadband wave absorption was achieved while maintaining lightweight characteristics and mechanical robustness. The optimized three-dimensional configuration features a 20 mm thick gradient structure with a progressive relative density transition from 10% to 30%. Under normal incidence conditions, this gradient IWP–EMA basically achieves broadband absorption with a reflection loss below −10 dB across the 2–40 GHz frequency band, with absorption peaks below −19 dB, demonstrating good impedance-matching characteristics. Additionally, due to the complex interactions of electromagnetic waves within the structure, the proposed IWP–EMA achieves a wide-angle absorption range of 70° under Transverse Electric (TE) polarization and 70° under Transverse Magnetic (TM) polarization. The synergistic integration of the TPMS design and additive manufacturing technology employed in this study significantly expands the design space and application potential of electromagnetic absorption structures. Full article
Show Figures

Figure 1

20 pages, 3263 KiB  
Article
Land Cover Transformations and Thermal Responses in Representative North African Oases from 2000 to 2023
by Tallal Abdel Karim Bouzir, Djihed Berkouk, Safieddine Ounis, Sami Melik, Noradila Rusli and Mohammed M. Gomaa
Urban Sci. 2025, 9(7), 282; https://doi.org/10.3390/urbansci9070282 - 18 Jul 2025
Viewed by 316
Abstract
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), [...] Read more.
Oases in arid regions are critical ecosystems, providing essential ecological, agricultural, and socio-economic functions. However, urbanization and climate change increasingly threaten their sustainability. This study examines land cover (LULC) and land surface temperature (LST) dynamics in four representative North African oases: Tolga (Algeria), Nefta (Tunisia), Ghadames (Libya), and Siwa (Egypt) over the period 2000–2023, using Landsat satellite imagery. A three-step analysis was employed: calculation of NDVI (Normalized Difference Vegetation Index), NDBI (Normalized Difference Built-up Index), and LST, followed by supervised land cover classification and statistical tests to examine the relationships between the studied variables. The results reveal substantial reductions in bare soil (e.g., 48.10% in Siwa) and notable urban expansion (e.g., 136.01% in Siwa and 48.46% in Ghadames). Vegetation exhibited varied trends, with a slight decline in Tolga (0.26%) and a significant increase in Siwa (+27.17%). LST trends strongly correlated with land cover changes, demonstrating increased temperatures in urbanized areas and moderated temperatures in vegetated zones. Notably, this study highlights that traditional urban designs integrated with dense palm groves significantly mitigate thermal stress, achieving lower LST compared to modern urban expansions characterized by sparse, heat-absorbing surfaces. In contrast, areas dominated by fragmented vegetation or seasonal crops exhibited reduced cooling capacity, underscoring the critical role of vegetation type, spatial arrangement, and urban morphology in regulating oasis microclimates. Preserving palm groves, which are increasingly vulnerable to heat-driven pests, diseases and the introduction of exotic species grown for profit, together with a revival of the traditional compact urban fabric that provides shade and has been empirically confirmed by other oasis studies to moderate the microclimate more effectively than recent low-density extensions, will maintain the crucial synergy between buildings and vegetation, enhance the cooling capacity of these settlements, and safeguard their tangible and intangible cultural heritage. Full article
(This article belongs to the Special Issue Geotechnology in Urban Landscape Studies)
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 338
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
High-Strain-Rate Deformation Behavior and Damage Mechanisms of Ti/Al Interpenetrating Phase Composites
by Zhou Li, Zhongli Zhang, Jiahao Tian, Junhao Li, Shiqi Xia, Libo Zhou and Long Yu
Processes 2025, 13(7), 2234; https://doi.org/10.3390/pr13072234 - 12 Jul 2025
Viewed by 394
Abstract
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, [...] Read more.
Interpenetrating phase composites (IPCs) have demonstrated tremendous potential across various fields, particularly those based on triply periodic minimal surface (TPMS) structures, whose uniquely interwoven lattice architectures have attracted widespread attention. However, current research on the dynamic mechanical properties of such IPC remains limited, and their impact resistance and damage mechanisms are yet to be thoroughly understood. In this study, a novel design of two volume fractions of IPCs based on the TPMS IWP configuration is developed using Python-based parametric modeling, with the Ti6Al4V alloy TPMS scaffolds fabricated via selective laser melting (SLM) and the AlSi12 reinforcing phase through infiltration casting. The influence of Ti alloy volume fraction and strain rate on the dynamic mechanical behavior of the Ti/Al IPC is systematically investigated using a split Hopkinson pressure bar (SHPB) experimental setup. Microscopic characterization validates the effectiveness and reliability of the proposed IPC fabrication method. Results show that the increasing Ti alloy volume fraction significantly affects the dynamic mechanical properties of the IPC, and IPCs with different Ti alloy volume fractions exhibit contrasting mechanical behaviors under increasing strain rates, attributed to the dominance of different constituent phases. This study enhances the understanding of the dynamic behavior of TPMS-based IPCs and offers a promising route for the development of high-performance energy-absorbing materials. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 1822 KiB  
Article
Banking Supervision and Risk Management in Times of Crisis: Evidence from Greece’s Systemic Banks (2015–2024)
by Georgios Dedeloudis, Petros Lois and Spyros Repousis
J. Risk Financial Manag. 2025, 18(7), 386; https://doi.org/10.3390/jrfm18070386 - 11 Jul 2025
Viewed by 551
Abstract
This study examines the role of supervisory frameworks in shaping the risk management behavior of Greece’s four systemic banks during the period of 2015–2024. It explores how regulatory reforms under Capital Requirements Regulation II, Basel III, and European Central Bank oversight influenced capital [...] Read more.
This study examines the role of supervisory frameworks in shaping the risk management behavior of Greece’s four systemic banks during the period of 2015–2024. It explores how regulatory reforms under Capital Requirements Regulation II, Basel III, and European Central Bank oversight influenced capital adequacy, asset quality, and liquidity metrics. Employing a quantitative methodology, this study analyzes secondary data from Pillar III disclosures, annual financial reports, and supervisory statements. Key risk indicators (capital adequacy ratio, non-performing exposure ratio, liquidity coverage ratio, and risk-weighted assets) are evaluated in conjunction with regulatory interventions, such as International Financial Reporting Standards 9 transitional relief, the Hercules Asset Protection Scheme, and European Central Bank liquidity measures. The findings reveal that enhanced supervision contributed to improved resilience and regulatory compliance. International Financial Reporting Standards 9 transitional arrangements were pivotal in maintaining capital thresholds during stress periods. Supervisory flexibility and extraordinary European Central Bank support measures helped banks absorb shocks and improve risk governance. Differences across banks highlight the impact of institutional strategy on regulatory performance. This study offers a rare longitudinal assessment of supervisory influence on bank risk behavior in a high-volatility Eurozone context. Covering an entire decade (2015–2024), it uniquely links institutional strategies with evolving regulatory frameworks, including crisis-specific interventions such as International Financial Reporting Standards 9 relief and asset protection schemes. The results provide insights for policymakers and regulators on how targeted supervisory interventions and transitional mechanisms can enhance banking sector resilience during protracted crises. Full article
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
by Boyana Angelova, Momchil Paunov, Meglena Kitanova, Gabriela Atanasova and Nikolay Atanasov
Antioxidants 2025, 14(7), 820; https://doi.org/10.3390/antiox14070820 - 3 Jul 2025
Viewed by 451
Abstract
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at [...] Read more.
The study of the effects of 2.45 GHz electromagnetic fields on the health and safety of people and organisms as a whole is essential due to their widespread use in everyday life. It is known that they can cause thermal and non-thermal effects—at the molecular, cellular and organismal level. Yeast suspensions were treated with 2.45 GHz microwave radiation in the near-field of antenna at two distances (2 and 4 cm) and two time periods (20 and 60 min)—setups resembling the use of mobile devices. The release of UV-absorbing substances from the cells was studied as an indicator of membrane permeabilization, total intracellular antioxidant activity and reduced glutathione were determined, and a comet assay for damage to the DNA was performed. A correlation between reduced antioxidants and increased membrane permeability during EMF treatment was observed at a distance of 2 cm for 20 min, suggesting the presence of oxidative stress, while a similar effect was not observed with conventional heating. Slightly increased membrane permeability was observed after irradiation for 60 min at a distance of 4 cm, but this was not related to the antioxidant status of the cells. A trend towards increased DNA damage was observed under both conditions. Full article
Show Figures

Figure 1

12 pages, 1611 KiB  
Article
Influence of Deposition Time on Properties of Se-Doped CdTe Thin Films for Solar Cells
by Ibrahim M. Beker, Francis B. Dejene, Lehlohonolo F. Koao, Jacobus J. Terblans and Habtamu F. Etefa
Crystals 2025, 15(7), 589; https://doi.org/10.3390/cryst15070589 - 22 Jun 2025
Viewed by 332
Abstract
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) [...] Read more.
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) were used as precursors. Instruments including X-ray diffraction for structural investigation, UV-Vis spectrophotometry for optical properties, and scanning probe microscopy for morphological properties were employed to investigate the physico-chemical characteristics of the resulting Se-doped CdTe thin-film. The films are polycrystalline with a cubic phase, according to X-ray diffraction (XRD) data. More ions are deposited on the substrate, which makes the material more crystalline and intensifies the characteristic peaks that are seen. It is observed from the acquired optical characterization that the film’s bandgap is greatly influenced by the deposition time. The bandgap dropped from 1.92 to 1.62 as the deposition period increased from 25 to 45 min, making the film more transparent and absorbing less light at shorter deposition durations. Images from scanning electron microscopy (SEM) show that the surface morphology is homogenous with closely packed grains and that the grain forms become less noticeable as the deposition time increases. This work is novel in that it investigates the influence of the deposition time on the structural, optical, and morphological properties of Se-doped CdTe thin films deposited using a cost-effective, simplified two-electrode electrochemical method—a fabrication route that remains largely unexplored for this material system. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Back to TopTop