Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = peptide anticancer vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4481 KiB  
Article
Nodal Expansion, Tumor Infiltration and Exhaustion of Neoepitope-Specific Th Cells After Prophylactic Peptide Vaccination and Anti-CTLA4 Therapy in Mouse Melanoma B16
by Alexandra V. Shabalkina, Anna V. Izosimova, Ekaterina O. Ryzhichenko, Elizaveta V. Shurganova, Daria S. Myalik, Sofia V. Maryanchik, Valeria K. Ruppel, Dmitriy I. Knyazev, Nadezhda R. Khilal, Ekaterina V. Barsova, Irina A. Shagina and George V. Sharonov
Int. J. Mol. Sci. 2025, 26(13), 6453; https://doi.org/10.3390/ijms26136453 - 4 Jul 2025
Viewed by 355
Abstract
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent [...] Read more.
Peptide vaccines possess several advantages over mRNA vaccines but are generally less effective at inducing antitumor immunity. The bottlenecks limiting peptide vaccine efficacy could be elucidated by tracking and comparing vaccine-induced T-lymphocytes in successful and unsuccessful cases. Here we have applied our recent database of neoantigen-specific T cell receptors (TCRs) to profile tumor-specific T cells following vaccination with a neoantigen peptide vaccine and to correlate this with the response. Mice were vaccinated prophylactically with p30 peptide encoding B16 melanoma neoantigen (K739N mutation in Kif18b gene). The B16F0 melanoma in the vaccinated mice was additionally treated by a CTLA-4 checkpoint blockade. T cells from the tumors, tumor-draining lymph nodes (tdLNs) and vaccine depots were isolated, phenotyped, sorted by subsets and sequenced for TCR repertoires. The vaccine induced the accumulation of tumor-specific CD4+ Th cells in the tdLNs, while in the tumors these cells were present and their frequencies were not changed by the vaccine. These cells also accumulated at the vaccine depots, where they were phenotypically skewed by the vaccine components; however, these effects were minor due to approximately 50-fold lower cell quantities compared to the tdLNs. Only some of the p30-specific Th cells showed tumoricidal activity, as revealed by the reverse correlation of their frequencies in the tdLNs with the tumor size. The CTLA-4 blockade did not affect the tumor growth or the frequencies of tumor-specific cells but did stimulate Th cell motility. Thus, we have shown that tumor-specific Th clones accumulate and/or expand in the tdLNs, which correlates with tumor suppression but only for some of these clones. Tumor infiltration by these clones is not correlated with the growth rate. Full article
(This article belongs to the Special Issue New Insights in Tumor Immunity)
Show Figures

Figure 1

19 pages, 1427 KiB  
Article
Citrullinated ENO1 Vaccine Enhances PD-1 Blockade in Mice Implanted with Murine Triple-Negative Breast Cancer Cells
by Ricardo A. León-Letelier, Alejandro M. Sevillano-Mantas, Yihui Chen, Soyoung Park, Jody Vykoukal, Johannes F. Fahrmann, Edwin J. Ostrin, Candace Garrett, Rongzhang Dou, Yining Cai, Fu-Chung Hsiao, Jennifer B. Dennison, Eduardo Vilar, Banu K. Arun, Samir Hanash and Hiroyuki Katayama
Vaccines 2025, 13(6), 629; https://doi.org/10.3390/vaccines13060629 - 11 Jun 2025
Viewed by 1127
Abstract
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), [...] Read more.
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), promoting antigenicity. Methods: Here, we show the workflow of designing citrullinated enolase 1 (citENO1) vaccine peptides identified from breast cancer cells by mass spectrometry and demonstrate TNBC vaccine efficacy in the mouse model. Immunized mice with citENO1 peptides or the corresponding unmodified peptides, plus Poly I:C as an adjuvant, were orthotopically implanted with a TNBC murine cell line. Results: Vaccination with citENO1, but not unmodified ENO1 (umENO1), induced a greater percentage of activated CD8+ PD-1+ T cells and effector memory T cells in skin-draining lymph nodes (SDLNs). Remarkably, the citENO1 vaccine delayed tumor growth and prolonged overall survival, which was further enhanced by PD-1 blockade. Conclusions: Our data suggest that cancer-restricted post-translational modifications provide a source of vaccines that induce an anti-cancer immune response. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

22 pages, 9343 KiB  
Article
A DNA Vaccine Against Proadrenomedullin N-Terminal 20 Peptide (PAMP) Reduces Angiogenesis and Increases Lymphocyte and Macrophage Infiltration but Has No Effect on Tumor Burden in a Mouse Model of Lung Metastasis
by Tom Kalathil Raju, Srdan Tadic, Pablo Garrido, Laura Ochoa-Callejero, Judit Narro-Íñiguez, Josune García-Sanmartín and Alfredo Martínez
Vaccines 2025, 13(6), 586; https://doi.org/10.3390/vaccines13060586 - 30 May 2025
Viewed by 761
Abstract
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by [...] Read more.
Background/Objectives: Nucleic acid-based anticancer vaccines are becoming a very active field in the fight against cancer. Here, our goal was to generate an oral DNA vaccine targeting the angiogenic peptide, proadrenomedullin N-terminal 20 peptide (PAMP). Methods: An expression plasmid (PcPAMP) was generated by fusing the tetanus toxin epitopes P2 and P30 to the mouse PAMP sequence to counteract self-tolerance, and the empty plasmid was used as a negative control (PcNeg). The plasmids were introduced into Salmonella typhimurium bacteria that were then transformed into bacterial ghosts. C57BL/6J mice were orally immunized with the ghosts five times at 2-week intervals. Then, B16-F10 melanoma cells were injected into the tail vein to generate lung metastases. Furthermore, naïve CD4+ T cells were exposed to PAMP, and their secretome was analyzed by proximity extension assays. Results: Significant levels of anti-PAMP immunoglobulins were detected in the blood of PcPAMP-vaccinated mice and their levels of spleen CD8+ T cells were significantly higher than in those treated with PcNeg, indicating that self-tolerance was effectively broken. Although the number and size of lung metastases was similar between both experimental groups, there was a significant reduction in intratumoral angiogenesis and in cancer cell proliferation index in the PcPAMP group. Furthermore, these animals showed an intense infiltration of lymphocytes, including regulatory T cells, and M2-like macrophages into the metastases, that was not evident in the PcNeg group. In addition, PAMP induced upregulation of IL1β, IL6, IL7, IL12, IL27, TNFα, and FGF21, and downregulation of IL16 in naïve CD4+ T cells. Conclusions: Although the vaccine was not effective in reducing tumor growth, new proliferative and immune functions have been described for PAMP. These new functions include induction of melanoma proliferation and modulation of lymphocyte and macrophage tumor infiltration dynamics. Full article
Show Figures

Figure 1

23 pages, 14287 KiB  
Review
The Role of Therapeutic Vaccines in Cancer Immunotherapy
by Constantin N. Baxevanis, Ourania E. Tsitsilonis, Maria Goulielmaki, Nikolaos Tsakirakis and Angelos D. Gritzapis
Onco 2025, 5(1), 11; https://doi.org/10.3390/onco5010011 - 5 Mar 2025
Viewed by 3590
Abstract
Cancer vaccines offer an exciting option for active immunotherapy, providing a potentially safe and effective treatment that also prevents or minimizes toxic side effects in vaccinated patients. Clinical results from previous phase III clinical trials have suggested that the efficacy of cancer vaccines [...] Read more.
Cancer vaccines offer an exciting option for active immunotherapy, providing a potentially safe and effective treatment that also prevents or minimizes toxic side effects in vaccinated patients. Clinical results from previous phase III clinical trials have suggested that the efficacy of cancer vaccines largely depends on their potential to trigger robust immunological responses. A preexisting immune response to cancer-specific peptides is crucial for achieving a meaningful clinical outcome during vaccinations. However, various factors may hinder the effectiveness of therapeutic vaccines. By overcoming these challenges, cancer vaccines have the potential to become a cornerstone in immunotherapy. This review aims to share our insights on the major challenges that are encountered when optimizing the potential of cancer vaccines, particularly focusing on important aspects regulating their clinical efficacy, such as vaccine composition, the adjuvant to be used and the HLA-restricting element for the tumor peptides targeted by a particular vaccine. Additionally, we discuss several obstacles which hindered the successful clinical development of therapeutic cancer vaccines, such as the standard of care, the clinical design, and the choice of the antigen(s) to be included in vaccine formulation. The identification of patients that are most likely to respond to vaccinations by developing immunological responses and the desirable clinical efficacy are also crucial, and, therefore, predictive biomarkers are strictly required. Finally, we present our views on future prospects that may lead to an enhancement of the anticancer effects of vaccines, ensuring their pivotal role in cancer immunotherapy. Full article
(This article belongs to the Special Issue The Evolving Landscape of Contemporary Cancer Therapies)
Show Figures

Figure 1

33 pages, 8388 KiB  
Review
Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects
by Yu Lei, Jiacheng Liu, Yaowei Bai, Chuansheng Zheng and Dongyuan Wang
Pharmaceutics 2025, 17(1), 46; https://doi.org/10.3390/pharmaceutics17010046 - 1 Jan 2025
Cited by 3 | Viewed by 2640
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have [...] Read more.
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host’s immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications. Full article
(This article belongs to the Special Issue Innovative Drug Delivery Strategies for Targeted Cancer Immunotherapy)
Show Figures

Figure 1

20 pages, 8735 KiB  
Article
The Cell-Penetrating Peptide GV1001 Enhances Bone Formation via Pin1-Mediated Augmentation of Runx2 and Osterix Stability
by Meiyu Piao, Sung Ho Lee, Jin Wook Hwang, Hyung Sik Kim, Youn Ho Han and Kwang Youl Lee
Biomolecules 2024, 14(7), 812; https://doi.org/10.3390/biom14070812 - 8 Jul 2024
Cited by 1 | Viewed by 1830
Abstract
Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To [...] Read more.
Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001’s interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis. Full article
Show Figures

Figure 1

10 pages, 2600 KiB  
Case Report
Case Report: Long-Term Survival of a Patient with Cerebral Metastasized Ovarian Carcinoma Treated with a Personalized Peptide Vaccine and Anti-PD-1 Therapy
by Henning Zelba, Christina Kyzirakos, Simone Kayser, Borong Shao, Annekathrin Reinhardt, Natalia Pieper, Armin Rabsteyn, Dennis Döcker, Sorin Armeanu-Ebinger, Matthias Kloor, Dirk Hadaschik, Martin Schulze, Florian Battke, Alexander Golf and Saskia Biskup
Vaccines 2024, 12(4), 397; https://doi.org/10.3390/vaccines12040397 - 9 Apr 2024
Cited by 3 | Viewed by 2323
Abstract
Ovarian cancer is one of the most common cancers among women and the most lethal malignancy of all gynecological cancers. Surgery is promising in the early stages; however, most patients are first diagnosed in the advanced stages, where treatment options are limited. Here, [...] Read more.
Ovarian cancer is one of the most common cancers among women and the most lethal malignancy of all gynecological cancers. Surgery is promising in the early stages; however, most patients are first diagnosed in the advanced stages, where treatment options are limited. Here, we present a 49-year-old patient who was first diagnosed with stage III ovarian cancer. After the tumor progressed several times under guideline therapies with no more treatment options available at that time, the patient received a fully individualized neoantigen-derived peptide vaccine in the setting of an individual healing attempt. The tumor was analyzed for somatic mutations via whole exome sequencing and potential neoepitopes were vaccinated over a period of 50 months. During vaccination, the patient additionally received anti-PD-1 therapy to prevent further disease progression. Vaccine-induced T-cell responses were detected using intracellular cytokine staining. After eleven days of in vitro expansion, four T-cell activation markers (namely IFN-ɣ, TNF-α, IL-2, and CD154) were measured. The proliferation capacity of neoantigen-specific T-cells was determined using a CFSE proliferation assay. Immune monitoring revealed a very strong CD4+ T-cell response against one of the vaccinated peptides. The vaccine-induced T-cells simultaneously expressed CD154, TNF, IL-2, and IFN-ɣ and showed a strong proliferation capacity upon neoantigen stimulation. Next-generation sequencing, as well as immunohistochemical analysis, revealed a loss of Beta-2 microglobulin (B2M), which is essential for MHC class I presentation. The results presented here implicate that the application of neoantigen-derived peptide vaccines might be considered for those cancer stages, where promising therapeutic options are lacking. Furthermore, we provide more data that endorse the intensive investigation of B2M loss as a tumor escape mechanism in clinical trials using anti-cancer vaccines together with immune-checkpoint inhibitors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

15 pages, 2711 KiB  
Article
Local Enrichment with Convergence of Enriched T-Cell Clones Are Hallmarks of Effective Peptide Vaccination against B16 Melanoma
by Anna Vyacheslavovna Izosimova, Alexandra Valerievna Shabalkina, Mikhail Yurevich Myshkin, Elizaveta Viktorovna Shurganova, Daria Sergeevna Myalik, Ekaterina Olegovna Ryzhichenko, Alina Faritovna Samitova, Ekaterina Vladimirovna Barsova, Irina Aleksandrovna Shagina, Olga Vladimirovna Britanova, Diana Vladimirovna Yuzhakova and George Vladimirovich Sharonov
Vaccines 2024, 12(4), 345; https://doi.org/10.3390/vaccines12040345 - 22 Mar 2024
Cited by 1 | Viewed by 2214
Abstract
Background: Some peptide anticancer vaccines elicit a strong T-cell memory response but fail to suppress tumor growth. To gain insight into tumor resistance, we compared two peptide vaccines, p20 and p30, against B16 melanoma, with both exhibiting good in vitro T-cell responses but [...] Read more.
Background: Some peptide anticancer vaccines elicit a strong T-cell memory response but fail to suppress tumor growth. To gain insight into tumor resistance, we compared two peptide vaccines, p20 and p30, against B16 melanoma, with both exhibiting good in vitro T-cell responses but different tumor suppression abilities. Methods: We compared activation markers and repertoires of T-lymphocytes from tumor-draining (dLN) and non-draining (ndLN) lymph nodes for the two peptide vaccines. Results: We showed that the p30 vaccine had better tumor control as opposed to p20. p20 vaccine induced better in vitro T-cell responsiveness but failed to suppress tumor growth. Efficient antitumor vaccination is associated with a higher clonality of cytotoxic T-cells (CTLs) in dLNs compared with ndLNs and the convergence of most of the enriched clones. With the inefficient p20 vaccine, the most expanded and converged were clones of the bystander T-cells without an LN preference. Conclusions: Here, we show that the clonality and convergence of the T-cell response are the hallmarks of efficient antitumor vaccination. The high individual and methodological dependencies of these parameters can be avoided by comparing dLNs and ndLNs. Full article
(This article belongs to the Special Issue Immune Correlates of Protection in Vaccines)
Show Figures

Figure 1

14 pages, 1522 KiB  
Article
A Phase 2, Single-Arm, Open-Label Clinical Trial on Adjuvant Peptide-Based Vaccination in Dogs with Aggressive Hemangiosarcoma Undergoing Surgery and Chemotherapy
by Laura Marconato, Luca Tiraboschi, Marina Aralla, Silvia Sabattini, Alessia Melacarne, Chiara Agnoli, Andrea Balboni, Marta Salvi, Armando Foglia, Sofia Punzi, Noemi Romagnoli and Maria Rescigno
Cancers 2023, 15(17), 4209; https://doi.org/10.3390/cancers15174209 - 22 Aug 2023
Cited by 1 | Viewed by 2981
Abstract
To test the antitumor effect and safety of peptide-based anticancer vaccination in dogs with hemangiosarcoma undergoing the standard of care (SOC; surgery and doxorubicin), canine hemangiosarcoma cells were infected with Salmonella typhi Ty21a to release immunogenic endoplasmic reticulum stress-related peptides into the extracellular [...] Read more.
To test the antitumor effect and safety of peptide-based anticancer vaccination in dogs with hemangiosarcoma undergoing the standard of care (SOC; surgery and doxorubicin), canine hemangiosarcoma cells were infected with Salmonella typhi Ty21a to release immunogenic endoplasmic reticulum stress-related peptides into the extracellular milieu via CX43 hemichannels opening. The infected tumor cell secretome constituted the vaccine. Following the SOC, dogs with biologically aggressive hemangiosarcoma were vaccinated a total of five times, once every 3 weeks, and were followed up with serial imaging. A retrospective population of dogs undergoing the SOC alone served as controls. The primary endpoints were the time to progression (TTP) and overall survival (OS), and the secondary endpoints were toxicity and immune responses. A total of 28 dogs were vaccinated along with the SOC, and 32 received only the SOC. A tumor-specific humoral response along with a vaccine-specific T-cell response was observed. Toxicity did not occur. The TTP and OS were significantly longer in vaccinated versus unvaccinated dogs (TTP: 195 vs. 160 days, respectively; p = 0.001; OS: 276 vs. 175 days, respectively; p = 0.002). One-year survival rates were 35.7% and 6.3% for vaccinated and unvaccinated dogs, respectively. In dogs with hemangiosarcoma undergoing the SOC, the addition of a peptide-based vaccine increased the TTP and OS, while maintaining a safe profile. Moreover, vaccinated dogs developed a tumor-specific response, supporting the feasibility of future phase three studies. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

35 pages, 2363 KiB  
Review
Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions
by Nguyễn Thị Thanh Nhàn, Tohru Yamada and Kaori H. Yamada
Int. J. Mol. Sci. 2023, 24(16), 12931; https://doi.org/10.3390/ijms241612931 - 18 Aug 2023
Cited by 53 | Viewed by 14014
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies [...] Read more.
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide–drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment. Full article
(This article belongs to the Special Issue Peptides as Biochemical Tools and Modulators of Biological Activity)
Show Figures

Figure 1

17 pages, 7442 KiB  
Article
GV1001 Inhibits the Severity of the Ligature-Induced Periodontitis and the Vascular Lipid Deposition Associated with the Periodontitis in Mice
by Sharon Y. Kim, Yun-Jeong Kim, Suyang Kim, Mersedeh Momeni, Alicia Lee, Alexandra Treanor, Sangjae Kim, Reuben H. Kim and No-Hee Park
Int. J. Mol. Sci. 2023, 24(16), 12566; https://doi.org/10.3390/ijms241612566 - 8 Aug 2023
Cited by 5 | Viewed by 2969
Abstract
GV1001, a 16 amino acid peptide derived from the catalytic segment of human telomerase reverse transcriptase, was developed as an anti-cancer vaccine. Subsequently, it was found to exhibit anti-inflammatory and anti-Alzheimer’s disease properties. Periodontitis is a risk factor for a variety of systemic [...] Read more.
GV1001, a 16 amino acid peptide derived from the catalytic segment of human telomerase reverse transcriptase, was developed as an anti-cancer vaccine. Subsequently, it was found to exhibit anti-inflammatory and anti-Alzheimer’s disease properties. Periodontitis is a risk factor for a variety of systemic diseases, including atherosclerosis, a process in which chronic systemic and vascular inflammation results in the formation of plaques containing lipids, macrophages, foam cells, and tissue debris on the vascular intima. Thus, we investigated the effect of GV1001 on the severity of ligature-induced periodontitis, vascular inflammation, and arterial lipid deposition in mice. GV1001 notably reduced the severity of ligature-induced periodontitis by inhibiting gingival and systemic inflammation, alveolar bone loss, and vascular inflammation in wild-type mice. It also significantly lowered the amount of lipid deposition in the arterial wall in ApoE-deficient mice receiving ligature placement without changing the serum lipid profile. In vitro, we found that GV1001 inhibited the Receptor Activator of NF-κB ligand (RANKL)-induced osteoclast formation and tumor necrosis factor-α (TNF-α)-induced phenotypic changes in endothelial cells. In conclusion, our study suggests that GV1001 prevents the exacerbation of periodontitis and atherosclerosis associated with periodontitis partly by inhibiting local, systemic, and vascular inflammation and phenotypic changes of vascular endothelial cells. Full article
Show Figures

Figure 1

17 pages, 1991 KiB  
Article
Vaccination against Epstein–Barr Latent Membrane Protein 1 Protects against an Epstein–Barr Virus-Associated B Cell Model of Lymphoma
by Wesley I. Soo Hoo, Kaylie Higa and Alison A. McCormick
Biology 2023, 12(7), 983; https://doi.org/10.3390/biology12070983 - 11 Jul 2023
Cited by 1 | Viewed by 2465
Abstract
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B [...] Read more.
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

16 pages, 1330 KiB  
Article
Co-Delivery of the Human NY-ESO-1 Tumor-Associated Antigen and Alpha-GalactosylCeramide by Filamentous Bacteriophages Strongly Enhances the Expansion of Tumor-Specific CD8+ T Cells
by Roberta Manco, Luciana D’Apice, Maria Trovato, Lucia Lione, Erika Salvatori, Eleonora Pinto, Mirco Compagnone, Luigi Aurisicchio, Piergiuseppe De Berardinis and Rossella Sartorius
Viruses 2023, 15(3), 672; https://doi.org/10.3390/v15030672 - 2 Mar 2023
Cited by 1 | Viewed by 2773
Abstract
Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in [...] Read more.
Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells. The immune response to phage expressing the human TAA NY-ESO-1 and delivering α-GalCer, namely fdNY-ESO-1/α-GalCer, was analyzed either in vitro or in vivo, using an HLA-A2 transgenic mouse model (HHK). By using NY-ESO-1-specific TCR-engineered T cells and iNKT hybridoma cells, we observed the efficacy of the fdNY-ESO-1/α-GalCer co-delivery strategy at inducing activation of both the cell subsets. Moreover, in vivo administration of fdNY-ESO-1 decorated with α-GalCer lipid in the absence of adjuvants strongly enhances the expansion of NY-ESO-1-specific CD8+ T cells in HHK mice. In conclusion, the filamentous bacteriophage delivering TAA-derived peptides and the α-GalCer lipid may represent a novel and promising anti-tumor vaccination strategy. Full article
Show Figures

Figure 1

20 pages, 1851 KiB  
Review
Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies
by Lorella Tripodi, Emanuele Sasso, Sara Feola, Ludovica Coluccino, Maria Vitale, Guido Leoni, Barbara Szomolay, Lucio Pastore and Vincenzo Cerullo
Cancers 2023, 15(4), 1297; https://doi.org/10.3390/cancers15041297 - 17 Feb 2023
Cited by 11 | Viewed by 3925
Abstract
Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact [...] Read more.
Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli. Full article
(This article belongs to the Special Issue Oncolytic Viruses as Cancer Immunotherapy Agents)
Show Figures

Figure 1

15 pages, 1892 KiB  
Article
Liposomal Formulations of a Polyleucine–Antigen Conjugate as Therapeutic Vaccines against Cervical Cancer
by Farrhana Z. Firdaus, Stacey Bartlett, Waleed M. Hussein, Lantian Lu, Quentin Wright, Wenbin Huang, Ummey J. Nahar, Jieru Yang, Mattaka Khongkow, Margaret Veitch, Prashamsa Koirala, Uracha R. Ruktanonchai, Michael J. Monteiro, Jazmina L. Gonzalez Cruz, Rachel J. Stephenson, James W. Wells, Istvan Toth and Mariusz Skwarczynski
Pharmaceutics 2023, 15(2), 602; https://doi.org/10.3390/pharmaceutics15020602 - 10 Feb 2023
Cited by 15 | Viewed by 3776
Abstract
Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and [...] Read more.
Human papilloma virus (HPV) is responsible for all cases of cervical cancer. While prophylactic vaccines are available, the development of peptide-based vaccines as a therapeutic strategy is still under investigation. In comparison with the traditional and currently used treatment strategies of chemotherapy and surgery, vaccination against HPV is a promising therapeutic option with fewer side effects. A peptide derived from the HPV-16 E7 protein, called 8Qm, in combination with adjuvants showed promise as a therapeutic vaccine. Here, the ability of polymerized natural amino acids to act as a self-adjuvating delivery system as a therapeutic vaccine was investigated for the first time. Thus, 8Qm was conjugated to polyleucine by standard solid-phase peptide synthesis and self-assembled into nanoparticles or incorporated in liposomes. The liposome bearing the 8Qm conjugate significantly increased mice survival and decreased tumor growth after a single immunization. Further, these liposomes eradicated seven-day-old well-established tumors in mice. Dendritic cell (DC)-targeting moieties were introduced to further enhance vaccine efficacy, and the newly designed liposomal vaccine was tested in mice bearing 11-day-old tumors. Interestingly, these DCs-targeting moieties did not significantly improve vaccine efficacy, whereas the simple liposomal formulation of 8Qm-polyleucine conjugate was still effective in tumor eradication. In summary, a peptide-based anticancer vaccine was developed that stimulated strong cellular immune responses without the help of a classical adjuvant. Full article
(This article belongs to the Special Issue Chemically Enhanced Peptide and Protein Therapeutics)
Show Figures

Graphical abstract

Back to TopTop