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Abstract: Peptide-based strategies have received an enormous amount of attention because of their
specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis
and treatment for cancer patients. In this review, we will summarize recent advancements and
future perspectives on peptide-based strategies for cancer treatment. The literature search was
conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was
performed using PubMed for articles in English until June 2023. Information on clinical trials was
also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages
such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple
production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs)
have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor
targeting is essentially useful for peptide–drug conjugates (PDCs), diagnosis, and image-guided
surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials.
Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review
will provide a detailed overview of current approaches, design strategies, routes of administration,
and new technological advancements. We will highlight the success and limitations of peptide-based
therapies for cancer treatment.

Keywords: amino acid; tumor; targeting delivery; diagnosis; imaging; chemical modification

1. Introduction

Cancer represents a profound worldwide public health challenge, demanding signif-
icant attention and resources [1]. According to a recent study conducted in 21 countries
across five continents, cancer emerges as the primary reason for mortality in numerous
nations [2]. Major challenges in cancer treatment include the emergence of multidrug
resistance and the scarcity of tumor-specific therapies that exhibit minimal side effects.
Cancer therapy has undergone significant advancements, but the need for more effective
and targeted treatments remains [3]. One of the key aspects of cancer therapy is the targeted
delivery of chemotherapeutic agents to cancer cells, maximizing treatment effectiveness
while minimizing harm to healthy tissue. Bioactive peptides have gained attention due to
their potential anticancer properties. Peptide-based approaches offer several advantages in
cancer treatment, including enhanced specificity, reduced toxicity to normal tissues, and
versatility in targeting various molecular pathways involved in cancer progression [4–7].

Diverse natural and modified peptides have been extensively studied and acquired,
spanning numerous therapeutic areas. Therapeutic peptides act as hormones, growth
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factors, neurotransmitters, ion channel ligands, or anti-infective agents. They possess high
affinity and specificity when binding to cell surface receptors, triggering specific intra-
cellular effects. In terms of their mode of action, therapeutic peptides share similarities
with biologics like therapeutic proteins and antibodies, offering targeted and specific thera-
peutic approaches. Peptides have certain drawbacks compared to antibodies, including a
shorter half-life due to rapid excretion and susceptibility to protease degradation. However,
peptides offer advantages such as low cost, the ability to penetrate deep tissue, efficient
internalization into cells, lower immunogenicity and reduced toxicity towards bone marrow
and the liver, and ease of modification using chemical methods, setting them apart from
antibodies [8,9].

In this review, we will describe the peptide-based approaches for cancer diagnosis
and treatment, the design strategies, and summarize peptide-based-cancer diagnosis and
therapies in clinical and pre-clinical to provide an overview of peptide-based agents for
cancer treatment.

2. Peptide-Based Approaches for Cancer Treatment

Peptide-based therapeutic approaches for cancer treatment encompass a wide range of
strategies that leverage the unique properties of peptides to target and combat cancer cells.

2.1. Anti-Cancer Peptides (ACPs)

ACPs have undergone recent enhancements to be transformed into drugs and vaccines,
subsequently undergoing evaluation through different stages of clinical trials [10]. ACPs
are short bioactive peptides composed of 10–60 amino acids, which exert their therapeu-
tic effects through various mechanisms that specifically target cancer cells while sparing
normal cells. Common mechanisms of action for anti-cancer peptides are apoptosis in-
duction, membrane disruption, angiogenesis inhibition, signaling pathway modulation,
and immunomodulation. In addition, ACPs can interfere with key signaling pathways
that promote cancer cell survival, proliferation, and metastasis. These peptides may target
proteins involved in cell cycle regulation, growth factor signaling, or survival pathways,
leading to the inhibition of cancer cell growth and survival.

2.1.1. Induction of Apoptosis

ACPs can trigger programmed cell death, known as apoptosis, in cancer cells. They
can directly target specific intracellular components involved in apoptosis regulation,
such as mitochondrial membranes or caspases, leading to the activation of apoptotic
pathways. This results in the controlled elimination of cancer cells. Out of the various
bioactivities, the apoptosis pathway is recognized as the most efficacious strategy in non-
surgical cancer therapies because of its ability to cause minimal inflammation and damage
to the targeted regions [11,12]. The anti-apoptotic B-cell lymphoma 2 (BCL-2) family
proteins primarily regulate the intrinsic apoptosis pathway, whereas the extrinsic apoptosis
pathway involves Tumor necrosis factor (TNF) receptor (TNFR), FAS (CD95), and Death
receptor 3 (DR3)/WSL [13] (Figure 1A). Peptide-based cancer therapy can target both
apoptosis pathways. Antimicrobial peptides from Anabas testudineus AtMP1 and AtMP2
(Table 1 for peptides tested in pre-clinical settings) induce apoptosis of breast cancer
cells MCF7 and MDA-MB-231 by down-regulating BCL-2 gene [14]. In contrast, another
antimicrobial peptide from Nile tilapia (Oreochromis niloticus), MSP-4, induces the apoptosis
of osteosarcoma MG63 cells through a Fas/FasL-mediated pathway [15].

A peptide fragment, p28 (NSC745104) (CDG Therapeutics Inc., Elk Grove Village, IL,
USA) (Table 2 for peptides tested in clinical trials) derived from bacterial protein azurin
also induces cell cycle arrest in various types of human cancer cells [16,17]. Cupredoxin
azurin is secreted by the opportunistic pathogen Pseudomonas aeruginosa in response to
increasing numbers of and proximity to cancer cells [18–22]. Secreted azurin preferentially
enters a variety of solid tumor cell lines including breast cancers and induces p53-mediated
apoptosis [18,19,23–25]. A fragment of azurin, amino acids 50 to 77 (p28), is responsible



Int. J. Mol. Sci. 2023, 24, 12931 3 of 35

for azurin’s preferential penetration and anti-proliferative activity [16,26]. As a single
therapeutic agent, p28 (NSC745104) was tested in two Phase I clinical trials (NCT00914914,
NCT01975116) and granted the FDA Orphan Drug and Rare Pediatric Disease Designa-
tions since it showed preliminary efficacy without apparent adverse effects, toxicity, or
immunogenicity in patients with advanced solid tumors and in pediatric patients with
recurrent and refractory central nervus system (CNS) tumors (NCI and Pediatric Brain
Tumor Consortium) [27–29].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 37 
 

 

18F-RGD-K5 
Siemens Molecular Imag-
ing Inc., Knoxville, TN, 

USA 
PET Early Phase I (NCT00743353) [120] 

68Ga-BNOTA-PRGD2  PET Phase I (NCT01542073, NCT01527058) [121] 
18F-FPPRGD2  PET Early Phase I (NCT01806675), [122,123] 

68Ga-RM26-RGD  PET Early Phase I (NCT05549024) [124] 
DNX-2401 (Delta-24-
RGD, tasadenoturev) 

DNAtrix Inc., Houston, 
TX, USA 

Drug de-
livery 

Phase I (NCT00805376, NCT01582516, NCT03178032, 
NCT 03896568), Phase I/II (NCT02798406) 

[125–129] 

2B3-101 
2-BBB, Leiden, The Neth-

erlands 
therapy Open-label, Phase I/IIa (NCT01386580) [130] 

Examples of peptides tested in clinical trials are shown. 

ATSP-7041 (Aileron Therapeutics, Watertown, MA, USA) is also activating the p53 
pathway by interacting and inhibiting mouse double minute 2 (MDM2) and MDMX 
(MDM4) [131]. MDM2 is an E3 ubiquitin ligase that inhibits p53 by targeting it for degra-
dation. MDMX inhibits p53’s transactivation activity and promotes MDM2 activity via 
direct protein–protein interactions. ATSP-7041 and its derivative ALRN-6924 were devel-
oped from N-terminal α-helical domain of the p53 tumor suppressor protein, which di-
rectly binds to MDM2/MDMX [132] and inhibits growth of solid tumors and lymphomas 
[133–135]. ALRN-6924 was tested in Phase I/II clinical trial for patients with solid tumors 
and lymphomas (NCT02264613). ALRN-6924 was well-tolerated as there was evidence of 
single-agent anti-tumor activity, including complete and partial responses [103,104]. 
However, Phase Ib chemoprotection trial in patients with p53-mutated breast cancer 
(NCT05622058) was terminated as patients experienced severe, grade 4 neutropenia and 
alopecia, failing to meet the main end points of the trial [136]. 

Additionally, some ACPs can interact with DNA molecules within cancer cells. They 
can bind to the DNA helix, induce conformational changes, or interfere with DNA repli-
cation, transcription, or repair processes. This disruption of DNA integrity can lead to 
DNA damage, genomic instability, and subsequent cell cycle arrest or cell death. For in-
stance, White et al. discovered a peptide that specifically targets the C-terminal domain of 
breast cancer-associated protein 1 (BRCA1) in breast cancer, which altered the DNA dam-
age response [30]. 
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Table 1. Examples of peptides in pre-clinical tests.

Name Sequence Effects Refs.

AtMP1 THPPTTTTTTTTTTTTTAAPATTT Apoptosis [14]

AtMP2 TGIATSGLATFTLHTGSLAPAT Apoptosis [14]

MSP-4 FIHHIIGGLFSAGKAIHRLIRRRRR Apoptosis [15]

peptide 8.6 Ac-MCTIDFDEYRFRKT-NH2 Apoptosis [30]

HPRP-A1-TAT Ac-FKKLKKLFSKLWN WK-RKKRRQRRR-NH2 Membrane disruption [31]

melittin NH2-GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 Membrane disruption [32]

QR-KLU QKRKRKKSRY-KLUKLUKKLUKLUK Angiogenesis inhibition [33]

KV11 YTMNPRKLFDY Angiogenesis inhibition [34]

KAI SRGTPVDERLFLIVRVTVQLSHP-NH2 Angiogenesis inhibition [35–37]

LFcinB26–36 RRWQWRMKKLG Immunomodulation [38,39]

LFcinB17–41 FKCRRWQWRMKKLGAPSITCVRRAF Immunomodulation [38,39]

CREKA CREKA Tumor-homing [40]

RGD-4C CDCRGDCFCG Tumor-homing [41]

c(RGDyK) c(RGDyK) Tumor-homing [42]

CCK8 DY(SO3H)MGWMDF-NH2 Tumor-homing [43]

TAT YGRKKRRQRRR CPP [44]

Penetratin RQIKIWFQNRRMKWKK CPP [45,46]

Transportan GWTLNSAGYLLGKINLKALAALAKKIL-NH2 CPP [47]

M13 AGYLLGKINLKACAALAKKCL CPP [48,49]
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Table 1. Cont.

Name Sequence Effects Refs.

pA cNGQGEQc Targeting integrins [50]

NKTP-3 kkRRuPLBIUBDPVdRRKrgerppr Inhibits tumor growth [51]

KRpep-2d Ac-RRRRCPLYISYDPVCRRRR-NH2 Inhibits tumor growth [52]

HVGGSSV HVGGSSV Imaging [53,54]

X4-2-6 LLFVITLPFWAVDAVANWYFGNDD-PEG27 Preventing metastasis [55]

CLT1 CGLIIQKNEC Tumor-homing [56]

C5C2 SSVVQSTGHMQSKVYESVLALSAEVQAAR-NH2 BBB permeabilization [57]

HAV6 Ac-SHAVSS-NH2 BBB permeabilization [58–60]

K16ApoE KKKKKKKKKKKKKKKKLRVRLASHLRKLRKRLLRDA RMT [61]

AEP LRKLRKRLLR RMT [62]

RAP12 EAKIEKHNHYQK RMT [63]

melanotransferrin (MTf)-derived
peptide DSSHAFTLDELR RMT [64]

Peptide-22 (VH434) Ac-[CMPRLRGC]c-NH2 RMT [49,65]

L57 TWPKHFDKHTFYSILKLGKH-OH RMT [66]

M1 TFYGGRPKRNNFLRGIR RMT [67]

LRPep2 HPWCCGLRLDLR RMT [68]

TfR-T12 THRPPMWSPVWP RMT [69]

T7 HAIYPRH RMT [69]

B6 G GHKAKGPRKLGS RMT [70]

CRT peptide CRTIGPSVC RMT [71]

NanoLigand Carriers (NLC) CGYRPVHNIRGHWAPG RMT [72]

Leptin30 YQQILTSMPSRNVIQISNDLENLRDLLHVL RMT [73,74]

g21 TLIKTIVTRINDISHTQSVSA RMT [75]

A7R ATWLPPR RMT [76,77]

IL-13p TAMRAVDKLLLHLKKLFREGQFNRNFESIIICRDRT RMT [78]

Pep-1 CGEMGWVRC RMT [79,80]

G7 GFtGFLS RMT [81,82]

RVG-9R YTIWMPENPRPGTPCDIFTNSRGKRASNGGGGRRRRRRRR RMT [83]

RDP MGKSVRTWNEIIPSKGCLRVGGRCHPHVNGGG-RRRRRRRRR RMT [84]

39 mer RDP KSVRTWNEIIPSKGCLR VGGRCHPH VNGGGRRRRRRRRR RMT [85]

KC2S YTKTWCDGFCSSRGKRIDLG RMT [86]

CDX FKESWREARGTRIERG RMT [87,88]

MiniAp-4 H-[Dap]KAPETALD-NH2 RMT [89]

TGN TGNYKALHPHNG RMT [90]

SynB1 RGGRLSYSRRRFSTSTGR AMT [91]

CAQK CAQK AMT [92]

G23 HLNILSTLWKYR AMT [93,94]

PepH3 AGILKRW AMT [95]

N-methyl phenylalanine-rich peptide
* N-MePhe-(N-MePhe)3-CONH2 AMT [96]

phenylproline tetrapeptide * (PhPro)4 AMT [97]

NegPep SGTQEEY AMT [98]

Porphyrin AGILKRWK-NH2 AMT [99]

NFL-TBS.40–63 YSSYSAPVSSSLSVRRSYSSSSGS AMT [100,101]

LMWP CVSRRRRRRGGRRRR AMT [102]

Small letter indicates D amino acids. C indicates cyclized peptide. * indicates peptides described as 3 letter code
and functional groups. Ph, Me, CONH2, NH2, SO3H, OH, Ac are functional groups. Some modifications may not
be depicted here such as disulfide bond or PEGylation.
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Table 2. Examples of peptides tested in clinical trials.

Name Company Type Clinical Trials Refs.

p28 (NSC745104) CDG Therapeutics, Elk Grove
Village, IL, USA ACS Phase I (NCT00914914, NCT01975116) [28,29]

ALRN-6924 Aileron Therapeutics,
Watertown, MA, USA ACS

Phase I/II (NCT02264613), Phase I (NCT02909972,
NCT03654716, NCT03725436, NCT04022876,

NCT05622058)
[103,104]

LUNA18 Chugai Pharmaceutical,
Tokyo, Japan ACS Phase I (NCT05012618) [105]

E75 (Nelipepimut-S,
HER2/Neu, NeuVax)

SELLAS Life Sciences, New
York, NY, USA Peptide vaccine

Phase I (NCT00841399, NCT00091286,
NCT01532960), Phase I/II (NCT00791037), Phase

IIb (NCT01570036), Phase III (NCT01479244)
[106–110].

iRGD, CEND-1 Cend Therapeutics, San
Diego, CA, USA

Phase I (NCT03517176), Phase I/II (NCT05052567,
NCT05121038), Phase 2 (NCT05042128) [111]

Cilengitide™ (cRGDfV, EMD
121974)

ICENI Pharma, Edinburgh,
UK Phase III (NCT00689221) [112]

RMP-7, Cereport Alkermes, Dublin, Ireland Phase I (NCT00001502, NCT00005602), Phase II
(NCT00019422) [113–116]

IM862 Cytran, Kirkland, WA, USA anti-angiogenesis Phase III (NCT00002445) [117]

Angiopep-2 Angiochem Inc., Montreal,
QC, Canada Drug delivery Phase I (NCT01480583) [118,119]

18F Fluciclatide (AH111585) GE Healthcare, Chicago, IL,
USA PET Phase II (NCT00565721)

18F-RGD-K5 Siemens Molecular Imaging
Inc., Knoxville, TN, USA PET Early Phase I (NCT00743353) [120]

68Ga-BNOTA-PRGD2 PET Phase I (NCT01542073, NCT01527058) [121]

18F-FPPRGD2 PET Early Phase I (NCT01806675), [122,123]

68Ga-RM26-RGD PET Early Phase I (NCT05549024) [124]

DNX-2401 (Delta-24-RGD,
tasadenoturev)

DNAtrix Inc., Houston, TX,
USA Drug delivery

Phase I (NCT00805376, NCT01582516,
NCT03178032, NCT 03896568), Phase I/II

(NCT02798406)
[125–129]

2B3-101 2-BBB, Leiden, The
Netherlands therapy Open-label, Phase I/IIa (NCT01386580) [130]

Examples of peptides tested in clinical trials are shown.

ATSP-7041 (Aileron Therapeutics, Watertown, MA, USA) is also activating the p53
pathway by interacting and inhibiting mouse double minute 2 (MDM2) and MDMX
(MDM4) [131]. MDM2 is an E3 ubiquitin ligase that inhibits p53 by targeting it for
degradation. MDMX inhibits p53’s transactivation activity and promotes MDM2 ac-
tivity via direct protein–protein interactions. ATSP-7041 and its derivative ALRN-6924
were developed from N-terminal α-helical domain of the p53 tumor suppressor protein,
which directly binds to MDM2/MDMX [132] and inhibits growth of solid tumors and
lymphomas [133–135]. ALRN-6924 was tested in Phase I/II clinical trial for patients
with solid tumors and lymphomas (NCT02264613). ALRN-6924 was well-tolerated as
there was evidence of single-agent anti-tumor activity, including complete and partial
responses [103,104]. However, Phase Ib chemoprotection trial in patients with p53-mutated
breast cancer (NCT05622058) was terminated as patients experienced severe, grade 4
neutropenia and alopecia, failing to meet the main end points of the trial [136].

Additionally, some ACPs can interact with DNA molecules within cancer cells. They
can bind to the DNA helix, induce conformational changes, or interfere with DNA replica-
tion, transcription, or repair processes. This disruption of DNA integrity can lead to DNA
damage, genomic instability, and subsequent cell cycle arrest or cell death. For instance,
White et al. discovered a peptide that specifically targets the C-terminal domain of breast
cancer-associated protein 1 (BRCA1) in breast cancer, which altered the DNA damage
response [30].

2.1.2. Membrane Disruption

Negatively charged, low cholesterol, and aberrant microvilli content cancer cell sur-
faces could facilitate the specific activity of ACPs against cancer cells [137,138]. (i) In healthy



Int. J. Mol. Sci. 2023, 24, 12931 6 of 35

cells, negatively charged phospholipids are mainly found in the inner membrane leaflets,
but in cancer cells, this asymmetry is disrupted, causing overexpression of negatively
charged phosphatidylserine on the cell membrane surface (Figure 1B). Additionally, other
anionic molecules, such as O-glycosylated mucins, and the glycosaminoglycan side chains
mainly in the form of heparin sulfate, further increasing the negative charges on cancer
cells. (ii) Furthermore, in healthy cell membranes, cholesterol serves as a crucial regulator
of fluidity, contributing to the inhibition of cationic peptide entry or translocation. The
lower cholesterol content in cancer cell membranes compromises this protective mecha-
nism, thereby augmenting their vulnerability to the cytolytic effects of ACPs (Figure 1B).
Most membrane-disrupting ACPs possess amphipathic properties, meaning they have both
hydrophobic and hydrophilic regions. These peptides can interact with the lipid bilayer of
cancer cell membranes, causing disruption and destabilization. This disruption can lead to
increased permeability, leakage of intracellular components, and, ultimately, cell lysis. (iii)
Moreover, the increased abundance and aberrant morphology of microvilli on cancer cells
augment the cell surface area and contact with ACPs, further enhancing their interaction
with these peptides.

One example of ACPs targeting cancer cell membranes is HPRP-A1-TAT [31], a hybrid
peptide that can destroy the cell membrane to cause rapid leakage of cytoplasmic contents
and has a strong anti-cancer activity. The IC50 value of this ACP in melanoma, gastric, liver,
and cervical cancer cells is less than 10 µM [31]. Another example of membrane-disrupting
peptide is melittin [32]. To reduce the hemolytic side effect of melittin, encapsulating
melittin in hydrogel by conjugating with hydrogel self-assembling peptide RADA32 and
loading doxorubicin reduced side effects and selectively inhibited tumor growth, recruited
activated natural killer (NK) cells in the primary melanoma tumor, activated dendritic cells,
and generated cytotoxic T-cells against remaining tumors [139].

2.1.3. Inhibition of Tumor Angiogenesis

Angiogenesis is the process where new capillaries are formed from pre-existing blood
vessels, and it has a vital function in cancer by providing oxygen and nutrients necessary
for tumor growth and metastasis [140,141]. Angiogenesis is controlled by various signaling
pathways, such as vascular endothelial growth factor (VEGF), fibroblast growth factor
(FGF), platelet-derived growth factor (PDGF), and angiopoietins [141]. Of these pathways,
VEGF holds particular significance. In both preclinical tumor models and human cancer pa-
tients, the exclusive inhibition of VEGF by antibodies or small molecules has demonstrated
notable effectiveness in antiangiogenic therapy, yielding positive outcomes [142]. However,
resistance to VEGF inhibitors occurs through various mechanisms [143]. ACPs are studied
as alternative approaches which suppress angiogenesis by targeting and inhibiting specific
signaling pathways involved in angiogenesis, thereby reducing the blood supply to tumors
and impeding their progression (Figure 1C). Wang et al. developed a VEGFR targeting
PDC, which suppresses tumor angiogenesis in transcatheter arterial chemoembolization
(TACE) model for hepatocellular carcinoma therapy [33]. KV11, an 11-amino acid peptide
derived from apolipoprotein A (ApoA), inhibits angiogenesis both in vitro and in vivo,
specifically targeting the c-Src/ERK signaling pathways [34].

Another example of the small peptide angiogenesis inhibitor, KAI, was designed
to inhibit KIF13B-mediated VEGFR2 trafficking to the cell surface, thereby inhibiting
receiving VEGF [144,145]. The peptide KAI, a kinesin-derived angiogenesis inhibitor,
inhibits trafficking of VEGFR2 from the Golgi apparatus and recycling of internalized
VEGFR2 and inhibits pathological angiogenesis and vascular leakage in wet age-related
macular degeneration, blinding eye disease [35,36]. KAI also successfully penetrates the
cell membrane by utilizing cationic residues, resulting in inhibiting tumor angiogenesis
and tumor growth [144] and metastasis in cancer models in mice [37].
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2.1.4. Immunomodulation

Cancer cells can evade the immune system’s detection and response mechanisms, al-
lowing them to escape elimination [146,147]. Immunotherapies employ various approaches
to target immune cells and enhance their ability to kill cancer [148]. ACPs can modulate
the immune response against cancer cells by stimulating the activation and proliferation of
immune cells, such as T cells and NK cells, leading to enhanced recognition and elimination
of cancer cells by the immune system (Figure 1D). Additionally, ACPs may modulate
immune checkpoints, enhancing the antitumor immune response [149,150]. Bovine lacto-
ferrin (LfcinB), a peptide derived from lactoferrin, hinders the growth of head and neck
squamous cell carcinoma by inducing increased lymphocyte infiltration to inhibit head and
neck squamous cell carcinoma in vivo [38,39].

2.1.5. Peptide Vaccine

Among immunotherapies, in addition to immunomodulators, peptide vaccines play a
crucial role in educating the immune system to generate anti-cancer activity. By stimulating
specific immune responses against cancer cells, peptide vaccines enhance the body’s capac-
ity to recognize and effectively target them. The efficacy of cancer vaccines is closely linked
to the recognition of tumor antigens by T lymphocytes. The ideal antigen for cancer vaccines
should exhibit exclusive expression in cancer cells and possess high immunogenicity [151].
Peptide-based cancer vaccines typically consist of 20–30 amino acids containing specific epi-
topes from highly immunogenic antigens, aiming to induce the desired immune response.
Compared to other vaccine types, peptide vaccines offer several benefits, particularly re-
garding safety and production simplicity [152]. The E75 peptide breast cancer vaccine (Her2
p369–p377) [153] with polyactin A has been demonstrated to increase CD4+ and CD8+

T lymphocytes, enhance splenocyte proliferation, and elevate interferon-γ levels [154].
Nelipepimut-S (E75, HER2/Neu, NeuVax) (SELLAS Life Sciences, New York, NY, USA) has
been tested in clinical trials (NCT00841399 [106], NCT00091286 [107], NCT00791037 [107],
NCT01532960 [108]). However, the Phase III clinical trial (NCT01479244) failed to show the
difference in disease-free survival between Nelipepimut-S and placebo [109]. Combination
therapies with trastuzumab Phase IIb (NCT01570036) showed clinical benefit in patients
with triple-negative breast cancer (TNBC) [110].

2.2. Tumor-Homing Peptides

Tumor-homing peptides (THPs) are oligopeptides, usually consisting of 30 or fewer
amino acids that are efficiently and specifically incorporated into tumor cells [155]. They are
designed to be tumor cell-specific to enhance the internalization of small-molecule drugs or
chemotherapeutic agents by creating PDC, enabling targeted delivery of therapeutic pay-
loads to cancer cells [156]. Additionally, nanoparticles or liposomes can be modified with
peptides to deliver the chemotherapeutic agents loaded in the nanoparticles/liposomes into
tumor cells. [156]. CREKA (CREKA) can recognize clotted plasma proteins and selectively
homes to tumors, where it binds to vessel walls and tumor stroma [40]. This peptide
successfully amplified nanoparticles home to tumors in vivo [40].

RGD peptide (Arg-Gly-Asp), derived from integrin-binding motif from extracellu-
lar matrix proteins [157], specifically targets integrin αVβ3 receptors, which is highly
expressed in several types of tumors. RGD is widely tested for potential use in diag-
nostic imaging [158,159] and therapies by conjugating with drugs or coating nanoparti-
cles/liposomes [160]. The αv integrin-specific internalizing RGD (iRGD) (CRGD R/K GP
D/E C) [161] (was fused with exosome membrane protein Lamp2 to make tumor-targeting
exosome [162]. This strategy enabled effective and targeted delivery of drugs (e.g., dox-
orubicin) to breast cancer cells expressing αv integrin, resulting in the inhibition of tumor
growth in mice [162]. The iRGD (Cend-1, Cend Therapeutics, San Diego, CA, USA) has been
tested in clinical trials for the treatment of metastatic pancreatic cancer [111]. RGD peptides,
including RGD-4C (ACDCRGDCFCG) peptide [41], c(RGDyK) [42], and small molecules
Cilengitide™ (cRGDfV, EMD 121974) (ICENI Pharma, Edinburgh, UK) [163], target tumor
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vasculature by binding overexpressed αvβ3 integrin in the angiogenic endothelial cells
and inhibit angiogenesis [164–166]. Cilengitide has been tested in clinical trials. However,
a multicenter randomized open-label Phase III clinical trial (NCT00689221) failed to show
any improvement. Thus, Cilengitide is not further developed as an anti-cancer [112].

THPs are also used for peptide receptor radionuclide therapy (PRRT), which combines
a tumor-homing peptide with a radionuclide or radioactive isotope as the therapeutic
substance [167]. Cholecystokinin (CCK) receptors bind to gastrin, a 33 amino acid peptide
hormone, and CCK2 receptor is abundant in tumors [168]. Human colorectal and pancreatic
tumors have been treated using 111In-labeled CCK8 and minigastrin (LEEEEEAYGWMDF),
a peptide specifically designed to target CCK-2 receptors, in mice [43].

PRRT is used in clinics. [177Lu]-DOTATATE (Lutathera) (Novartis, Basel, Switzerland)
(Table 3 for peptides in clinics) was approved by FDA in 2018 for PRRT for gastroenteropan-
creatic neuroendocrine tumors (GEP-NET) after showing improved survival in NETTER-1
Phase III clinical trial (NCT01578239) [169,170]. DOTATATE [DOTA-(Tyr3)-octreotate] is
an 8 aa cyclic disulfide peptide with a covalently bonded DOTA bifunctional chelator
[2,2′,2′′,2′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetral) tetraacetic acid, tetraxetan]. The
peptide octreotate (octreotide acid) mimics natural somatostatin targeting the somatostatin
receptors (SSTR).

Another example of recently approved PRRT is [177Lu] Lu-PSMA-617 (Pluvicto) (No-
vartis), which targets prostate-specific membrane antigen (PSMA), thus showing efficacy in
inhibiting prostate cancer growth [171,172].

Table 3. Peptides in clinics for cancer treatment and diagnosis.

Name Company Year Targets Used for Refs.

Leuprorelin, Lupron,
Viadur, Eligard,

Fensolvi
Abbott Laboratories, Abbott Park, IL, USA 1985 GnRH receptor Prostate cancer, breast

cancer [173,174]

Goserelin, Zoladex TerSera therapeutics, Deerfield, IL, USA 1997 GnRH receptor Prostate cancer, breast
cancer, endometriosis [175,176]

Octreotide, Sandostatin Novartis, Basel, Switzerland 1998 Reduction of growth
hormone

treat diarrhea or
diarrhea associated with

some types of cancer
[177]

Cetrorelix, Cetrotide Merck Serono, Darmstadt, Germany 2000 GnRH receptor In vitro fertilization [175]

Abarelix, Plenaxis Praecis Pharmaceuticals, Waltham, MA, USA 2003 GnRH receptor Advanced prostate
cancer [9]

Degarelix, Firmagon Ferring pharmaceuticals, Saint-Prex,
Switzerland 2008 GnRH receptor Advanced prostate

cancer
[173,175,

178]

Carfilzomib, Kyprolis Onyx Pharmaceuticals, Newbury Park, CA,
USA, and Amgen, Thousand Oaks, CA, USA 2012 Proteasome inhibitor multiple myeloma [179]

Netspot, 68Ga
DOTATATE Novartis, Basel, Switzerland 2016 SSTR PET diagnostics of

neuroendocrine tumor [180,181]

Lutathera,
177Lu-DOTATATE Novartis, Basel, Switzerland 2018 SSTR

PRRT for
gastroenteropancreatic
neuroendocrine tumors

[169,170]

Edotreotide gallium,
68Ga-DOTATOC ITM Radiopharma, München, Germany 2019 SSTR PET for neuroendocrine

tumors [182]

Detectnet,
64Cu-DOTATATE RadioMedix, Houston, TX, USA 2020 SSTR PET for neuroendocrine

tumors [183,184]

Gallium gozetotide,
68Ga-PSMA-11 Novartis, Basel, Switzerland 2020 PSMA PET for recurrent

prostate cancer [185–187]

Pylarify, piflufolastat
F18, Lantheus, Billerica, MA, USA 2021 PSMA PET for recurrent

prostate cancer [188,189]

Pluvicto,
177Lu-PSMA-617 Novartis, Basel, Switzerland 2022 PSMA

PRRT for metastatic
castration-resistant

prostate cancer
[171,172]

SSTR: somatostatin receptors, PSMA: the prostate-specific membrane antigen.

3. Peptide Design Strategies

In recent decades, there has been a notable increase in the availability of peptide drugs
in the market. However, peptide drugs face challenges in formulation and delivery com-
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pared to small molecules, limiting their development. Factors such as shorter circulation
half-lives, lower cell permeability, enzymatic degradation, and limitations in oral delivery
hinder the efficient administration and absorption of therapeutic peptides [190,191]. In-
deed, therapeutic peptides offer advantages such as high target specificity and low toxicity,
making them promising candidates for drug development [192]. Overcoming the current
limitations associated with their formulation and delivery would unlock their full potential,
leading to the development of safer and more effective drugs. By improving the delivery
mechanisms, enhancing stability, prolonging circulation half-lives, and optimizing routes of
administration, the limitations of therapeutic peptides can be addressed, resulting in the de-
velopment of advanced cancer therapies with improved clinical outcomes. Various design
strategies have been developed to improve the effectiveness of bioactive peptides [193].

3.1. Cell-Penetrating Peptides

Cell-penetrating peptides (CPPs) are short peptides containing fewer than 30 amino
acid residues, with a high content of basic amino acids like arginine and lysine. These
peptides possess the remarkable ability to transport various cargo across cellular mem-
branes while maintaining their functional integrity. CPPs can be utilized as either ACPs or
THPs [194].

The first CPP, human immunodeficiency virus (HIV) TAT, can deliver the biologically
active fusion protein to all tissue in mice [44]. Penetratin is a 16 aa CPP derived from
Drosophila Antennapedia homeodomain and widely used in preclinical settings [45,46].
Transportan is a CPP derived from galanin, a natural peptide distributed throughout the
nervous system [47].

The aforementioned p28 is also a CPP, which preferentially penetrates into cancer
cells [16]. CPP p28 enhances the cytotoxic activity of temozolomide in the glioblastoma
multiforme model [195]. Additionally, p28 can cross the blood–brain barrier (BBB) to
enhance the efficacy of DNA-damaging agents by activating the p53-p21 axis [196].

3.2. Peptide Cyclization

Peptide cyclization involves the transformation of linear peptides into cyclic peptides,
which helps mitigate proteolytic degradation caused by amino- and carboxypeptidases.
This process masks both the N-terminal amino group and the C-terminal carboxyl group,
resulting in enhanced stability against enzymatic degradation. Cyclic peptides also have
a limited number of conformations in solution, allowing them to bind more efficiently to
the active site of the desired target [197]. For example, cyclic peptides with the sequence
cNGXGXXc, specifically targeting integrin α3β1, were found to enhance cell adhesion by
selectively binding to the over-expressed integrin α3β1 in non-small lung cancer cells [50].

Cyclic peptides have been used for tough targets such as the Ras family GTPases [198].
NKTP-3, a cyclic D-peptide, inhibited the growth of A427 cells carrying the KRASG12D

mutation by specifically targeting NRP1 and KRASG12D. It also exhibited potent antitumor
activity in xenograft models derived from A427 cells and primary lung cancer models
driven by KRASG12D, all while displaying no apparent toxicity [51]. KRpep-2d (Takeda,
Tokyo, Japan) was developed from screening of cyclic peptides on phage displaying inter-
action to recombinant K-RasG12D [52]. LUNA18 (Chugai Pharmaceutical, Tokyo, Japan) is
also a cyclic peptide targeting KRAS [105]. LUNA18 is currently tested in a Phase I clinical
trial for solid tumors (NCT05012618) and is likely for progressing into Phase II [199].

3.3. Manipulation of the Amino Acid Sequence

Replacing partly or fully the L-amino acids with D-amino acids in peptide structures
is a viable approach to enhance stability and decrease immunogenicity [200]. Examples
include octreotide, a modified version of somatostatin with all L-amino acids replaced by
D-amino acids, resulting in increased enzymatic stability and a longer plasma half-life [201].
Octreotide (Sandostatin) (Novartis) was first approved by FDA to reduce growth hormone
in patients with acromegaly in 1998. Octreotide is used in clinics to treat the symptoms as-
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sociated with metastatic carcinoid tumors (flushing and diarrhea) and vasoactive intestinal
peptide (VIP) secreting adenomas (watery diarrhea). Octreotide acid (octreotate) is used
as [177Lu]-DOTATATE (Lutathera) (Novartis) for PRRT in clinics. Octreotide conjugated
with DOTA, DOTATOC (DOTA-[Tyr3]-octreotide), is extensively tested in clinical trials for
diagnostic imaging as described in Section 4.2.

The use of D-amino acids in antifouling peptide biosensors and antimicrobial peptides
has shown enhanced stability and activity. However, complete substitution with D-amino
acids may lead to reduction in vivo activity and potential toxicity [202,203].

3.4. Peptides Conjugated with Polymers

The bioavailability and stability of peptide drugs can be improved through polymer–
peptide conjugations. This approach involves attaching therapeutic peptides to polymers
such as polyethylene glycol (PEG), poly(amidoamine) (PAMAM), poly(β-amino ester)
(PAE), and natural polysaccharides, which leads to nanoscale self-assemblies and larger
sizes that prevent renal filtration [204–206]. For example, A 40 kD PEG linked to the
HVGGSSV peptide efficiently targets Tax-Interacting Protein 1 (TIP1), which is known to
be overexpressed in human-invasive breast cancer cells [53,54].

3.5. Peptide-Assembled Nanoparticles

Peptides can be designed to self-assemble or be combined with polymeric molecules to
create nanoparticles through non-covalent bonds. These nanoparticles have demonstrated
attractive properties, including improved recognition of targeted cells, responsiveness to
microenvironments, facilitation of internalization, and enhanced therapeutic effects [207].
X4-2-6, a PEG-modified 24-amino acid peptide analog of the second transmembrane helix
of CXCR4, forms nanoparticles that inhibit CXCR4 function, prevent bone metastasis, and
serve as a drug delivery system [55].

4. Peptides in Applications
4.1. Routes of Administration

Recent advancements in biopharmaceutical engineering have resulted in the develop-
ment of various drugs based on peptides or proteins [7,167,194,208,209]. The route of drug
administration significantly affects its effectiveness as a treatment [210,211]. Currently, sev-
eral peptide-based drugs are on the market. For instance, Leuprorelin (Abbott Laboratories,
Abbott Park, IL, USA), Goserelin (TerSera therapeutics, Deerfield, IL, USA), and Cetrore-
lix (Merck Serono, Darmstadt, Germany) have been used for breast cancer and prostate
cancer patients. They are designed as hormone analogs and rapidly absorbed following
subcutaneous injection [173–176]. Although the traditional route of administering protein
and peptide-based drugs using a needle and syringe is commonly practiced, it has certain
limitations, such as patient comfort, cost, sterility, etc. In this section, we review alternative
routes that have been proposed for peptides or proteins (Figure 2).

4.1.1. Oral Route

This is one of the most convenient routes for administration of common drugs
(Figure 2A). However, the administration of peptide drugs through this route poses chal-
lenges due to poor membrane permeability, denaturation of peptides due to an acidic
environment in the stomach, and the susceptibility of peptides to enzymatic degradation in
the gastrointestinal tract (GIT) [212,213]. In general, as the molecular weight increases, the
permeability decreases. To overcome these limitations, several formulation technologies
have been proposed. For example, to enhance the stability of peptide- or protein-based
drugs, co-administered enzyme inhibitor(s) have been studied. Codelivery of therapeutic
peptides with enzyme/protease inhibitors can inhibit degradation in the intestinal lumen,
leading to greater absorption and bioavailability. Some examples of such inhibitors are soy-
bean trypsin inhibitors, aprotinin, and leupeptin [214]. Aprotinin is currently withdrawn
from the market due to the negative mortality trend [215]. To improve therapeutic peptide
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stability without undesirable adverse effects, it is crucial to select appropriate protease
inhibitors based on the sequence/structure of therapeutic peptide drugs and to optimize a
balance between the efficacy and safety of peptidase inhibitors.
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The other type of co-administrative materials for peptide oral delivery have also been
studied. Chitosan nanoparticles are proposed to use as a carrier for orally delivering pep-
tides and vaccines. They possess remarkable biocompatibility, controlled release of peptides,
and promote absorption in the GIT. Also, enclosed peptides within these nanoparticles can
endure enzymatic degradation and withstand different pH conditions [216].

Various types of compounds with diverse chemical properties, including surfactants,
fatty acids, medium chain glycerides, steroidal detergents, acylcarnitine and alkanoyl-
cholines, N-acetylated α-amino acids and N-acetylated non-α-amino acids, and mucoadhe-
sive polymers have been studied to enhance the intestinal absorption of large polypeptide
drugs. Although some of these have been tested in clinical trials [217], the challenge of
low bioavailability in peptide drugs persists, and a comprehensive breakthrough with
wide-ranging applicability to various peptides has not been fully achieved yet.

4.1.2. Nasal Route

The epithelium of the nose is loosely packed with high permeable vasculature. This
route can deliver peptides by transport mechanisms, including passive diffusion, carrier-
mediated transport, and transcytosis [208,218,219] (Figure 2B). In general, peptides admin-
istered via the nasal route demonstrate increased permeation and faster absorption when
peptides have a lower molecular weight. Clinically, IM862 (Cytran Inc., Kirkland WA,
USA), a synthetic dipeptide (L-glutamine L-tryptophan), was previously tested. IM862 is
a naturally occurring peptide with antiangiogenic properties by reducing the production
of VEGF [220,221]. In the animal models, the antitumor activity of IM862 was similar,
irrespective of the route of administration, including intranasal, subcutaneous, intravenous,
and intramuscular [117]. Due to its convenient administration and relatively high bioavail-
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ability (71%) after intranasal administration, the nasal route was chosen for human trials
Phase III (NCT00002445) [117].

Despite the potential of this delivery route, there are several challenges associated
with the nasal route of administration for peptides or proteins [219]. After administration,
bioavailability is significantly affected by the peptides’ surface, size, lipophilicity, and pI
(isoelectric point). The enzymatic degradation in the mammalian olfactory mucosa is also
an important factor [219]. The limitation of this route is associated with the restricted
amount of dosage that can be administered. Consequently, it still requires the development
and formulation of a drug with a high dose capacity [222]. In spite of such limitations,
several advantages of this pain-free and non-invasive administration are evident. Hence,
delivering the peptides through the nasal route is a potential alternative to drug delivery
strategies.

4.1.3. Ocular Route

This route is particularly useful in treating ocular malignant tumors such as intraoc-
ular melanoma (uveal) (Figure 2C) [192]. Drug administration through the eye presents
challenges due to its natural processes, such as blinking, tearing, and drainage.

As mentioned above, the bioavailability of peptides or proteins is generally low in
most of the non-invasive routes (e.g., oral and nasal) [223]. The other current limitation
in delivering peptide- and protein-based drugs through noninvasive routes may arise
from the considerable expense, which could restrict the number of economically feasible
options. Although the dosage form of the non-invasive routes can be self-administered by
patients, the manufacturing cost of peptide and protein drugs would be less compared to
the traditional injections at healthcare facilities. While considerable progress has been made
previously, further advancements in formulation technology, such as the development of
new penetration enhancers, enzyme inhibitors, etc., are still needed.

4.2. Diagnostics—Imaging

Cancer detection and management have been facilitated by the utilization of var-
ious imaging modalities. Molecular imaging with targeted probes or contrast agents
has proven to be a valuable tool in diagnosing various types of cancer. Advances in
molecular imaging technology may increase the precision with which therapies can be im-
plemented [224]. However, the efficacy of molecular imaging is dependent on the imaging
modalities and probes/contrast agents employed to specifically target, detect, and visualize
cancer biomarkers. Typical imaging modalities in oncology include magnetic resonance
imaging (MRI), positron emission tomography (PET), computed tomography (CT), optical
fluorescence imaging, and ultrasound sonography. Imaging probes or contrast agents
are predominantly composed of target-specific molecules that are designed to recognize
and bind to tumors, enabling their visibility in various imaging modalities [225]. They
can also participate in metabolic pathways. In many cases, they are labeled with metals,
radioactive, or fluorescent materials. Although hardware such as highly sensitive detection
sensors or scanners are also important factors in molecular imaging, in this review, we
focus on imaging probes, particularly peptide-based agents on MRI, and nuclear medicine
techniques such as single-photon emission computed tomography (SPECT) and PET, and
optical/near-infrared (NIR) imaging.

4.2.1. MRI

MRI utilizes a high magnetic field and creates images by applying specific radiofre-
quency pulses, resulting in distinct signal patterns across various tissues. These patterns
depend on the composition of the tissues, specifically the types and concentrations of nuclei
within them. MRI is a powerful non-invasive imaging technique that takes advantage of
a very high spatial and temporal resolution and can provide detailed molecular/cellular
information when combined with a contrast agent. MRI contrast agents are molecules or
particles that influence the relaxation of water protons. They can be T1- or T2-weighted,
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affecting the longitudinal or transverse relaxation times, respectively. T1-weighted contrast
agents are mostly small gadolinium (Gd3+) or manganese (Mn2+) paramagnetic com-
plexes, while the majority of the T2-weighted ones are iron oxide-based superparamagnetic
nanoparticles [226,227]. Due to the lack of sensitivity of MRI, relatively high concentrations
of a contrast agent (mM range) need to be injected to generate local variation in the signal
intensity. To achieve a specific binding to the target biomarker, different approaches (e.g.,
nanoparticles, antibodies, or peptides) have been studied [228–231]. In general, the use of
peptides instead of small molecules to target the same biomarker leads to stronger binding
affinity and selectivity [232,233]. In addition, compared to proteins, peptides have advan-
tages such as low immunogenicity, more resistance to enzymatic degradation, favorable
pharmacokinetics, and biodistribution [232,234].

Gadolinium (III) is often used as an MRI contrast agent since it has seven unpaired
electrons and a high magnetic moment [235]. Presently, to avoid free Gd (III) and nephro-
toxicity, the approved Gd contrast agents are chelated with a total of eight nitrogen and
oxygen from the chelator function as Gd3+-binding ligands [236]. Two of the most common
Gd-based contrast agents are Gd-DTPA (diethylene triamine pentaacetic acid, Magnevist)
and Gd-DOTA (Dotarem) [237]. Although they are useful and have been used clinically,
their elimination half-life is relatively short (~1.3 h in humans) [238]. In addition to delivery
strategies, by attaching targeting moieties, optimizing the half-life and pharmacokinetic
properties of these contrast agents can substantially improve the imaging quality and
eliminate repeated dose injections. The modifications with several antibodies [e.g., target-
ing VEGF, epidermal growth factor receptor (EGFR), or human epidermal growth factor
receptor 2 (HER2)] have been proposed to improve the MRI contrast agents [239]. The
Gd modifications with peptides for MRI applications have also been studied. For in-
stance, peptides conjugated with DTPA (Gd) or DOTA (Gd) by a PEG linker improved the
activity suggesting their potential application as diagnostic agents for MRI [56,240,241].
Tumor-homing peptide, such as CREKA [40], is promising for detecting cancer by MRI
in vivo [240,241].

4.2.2. SPECT

Radionuclides are unstable nuclides that emit α, β+/− charged particles, Auger elec-
trons, and/or γ rays with radioactive decay processes. Radionuclides used in medical
imaging can be categorized into two types based on their emissions; the first type consists
of radionuclides that emit γ rays, which can be detected using SPECT. The second type
includes radionuclides that primarily emit β+ rays, which can be detected through tech-
niques such as PET [242]. Although the sensitivity, resolution, and fast acquisition of SPECT
due to the solid-state detector technology provide a great impact on nuclear diagnosis [243],
various carrier molecules to target tumors have been proposed. As proteins, radiolabeled
trastuzumab and pertuzumab antibodies have shown high accumulation in tumor tis-
sues [244]. In this case, the optimum timeframe for evaluating antibody-based imaging
with favorable tumor-to-organ ratios is typically 3–5 days following administration. Given
that the smaller molecular size can alter the clearance pathway and peptides have relatively
shorter circulation time, peptides can be suitable molecules for imaging procedures [245].
Peptide-based probes for SPECT have been developed in several preclinical and clinical
studies [246,247]. For example, RGD tri-amino acids peptide can specifically bind to the
integrin αVβ3 receptors, which is highly expressed in several types of tumors. 99mTc-PEG4-
E[PEG4-c(RGDfK)]2 (99mTc-3PRGD2) is proposed as an RGD containing SPECT radiotracer.
Multicenter studies suggest that imaging with 99mTc-3PRGD2 is sensitive for the detection
of lung malignancies [248].

4.2.3. PET

As noted above, the basic principle of PET is that proton-rich radionuclides decay by
emitting positrons (β+), which subsequently travel a short distance and annihilate with
an electron (β−) to create two 511-kilo electron volt photons that arise almost exactly
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180 degrees apart [249]. The properties of some radionuclides that decay via β+ decay are
shown in Table 4 [250,251].

Table 4. Properties of commonly used PET radionuclides.

Nuclide Half-Life (min) Emission Type Mode of Decay (%β) Energy (MeV)
11C 20.3 β+ 99.77 0.97
13N 10 β+ 100 1.20
15O 2 β+ 100 1.74
18F 110 β+ 96.7 0.64

64Cu 762 β+/electron capture 17.87 0.66
68Ga 68.1 β+/electron capture 87.7 1.90
124I 60,192 β+/electron capture 11.0 2.14

Similar to SPECT, peptides have been used as carrier molecules to deliver these ra-
dionuclides for PET. Various labeling methods have been designed [209]. In clinical studies,
various peptides have been explored for tumor diagnosis [232,252]. For example, pep-
tides targeting somatostatin receptors (SSTR), the prostate-specific membrane antigen
(PSMA), integrins, chemokines, urokinase-type plasminogen activator receptors (uPAR),
and cholecystokinin receptors (CCK2-R) serve as notable examples [253–258]. Among them,
Netspot (68Ga-DOTATATE) (Novartis) [180,181], Edotreotide gallium (68Ga-DOTATOC)
(ITM Radiopharma, München, Germany) [182,259], and Detectnet (64Cu-DOTATATE)
(Radio-Medix, Houston, TX, USA) [183,184] target SSTR and approved by FDA for PET
in 2016, 2019, and 2020, respectively. Gallium gozetotide (Locametz, Illuccix, 68Ga-PSMA-
11) (Novartis) [185–187] and Pylarify (piflufolastat F18, 18F-DCFPyL) (Lantheus, Biller-
ica, MA, USA) [188,189,260–262] targets PSMA and is approved by FDA in 2020 and
2022, respectively.

Radionuclides-labeled peptide probes are important tools in molecular imaging using
SPECT and PET. Given the extensive exploration of novel labeling strategies and the
ongoing optimization of associated peptides, the advancement of peptide-based tracers
will continue to be a pivotal area of focus in imaging research with radionuclides.

4.2.4. Optical/NIR Imaging

Optical imaging incorporates multiple modalities, including bioluminescence imag-
ing (BLI), fluorescence, and chemiluminescence [263]. They are often used in preclinical
studies. Among them, fluorescence imaging has been used in clinical studies. In particular,
fluorescent agents that are emitted in the NIR region (700–900 nm) enable sufficient depth
of light penetration allowing for real-time surgical guidance. Imaging in the NIR region
offers several advantages, such as the presence of minimal tissue absorbance, scattering,
and autofluorescence. These unique features establish a minimal background, providing
an ideal basis for incorporating tissue-specific contrast. Due to these properties, such as
high sensitivity, contrast, and resolution, intraoperative fluorescence imaging is particu-
larly well-studied for surgical applications. Accurate detection of visually hidden tumor
lesions and tumor margins during surgery can lead to a significant impact on overall cancer
survival/outcomes. Among various types of solid tumors, the highest positive margin
rate following tumor resection in the US is oral cavity tumors [264]. Ovarian and prostate
cancers had the highest positive margin rate prevalence in women and men, respectively.
Bladder, thyroid, colorectal, kidney, lung cancer, and breast cancer are common types of
tumors with the highest positive margin rates [264,265]. The substantial increase in the
number of early-phase clinical trials for image-guided surgery with NIR agents reflects a
significant potential to develop novel methods for visualizing and accurately identifying tu-
mor margins in specific cancer types. Indocyanine green (ICG) is one of the most commonly
used NIR dyes. While it has an excellent safety profile in humans, ICG is a non-specific
agent that is rapidly cleared by the liver and excreted in bile [266,267]. Currently, most
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strategies for NIR dyes, including ICG, use conjugation technologies with targeting motifs
such as peptides [268].

Because the positive margin rate following breast-conserving surgery (lumpectomy) is
unignorably high, we developed a new near-infrared fluorescence imaging probe ICG-p28
by utilizing ICG labeled with the cell-penetrating peptide p28 carrying a tumor-targeting
motif [16]. As described earlier in the sections of ACP and CPP, p28 crosses the BBB
and selectively enters cancer cells in mouse models [195,196]. Due to such unique tumor-
targeting properties, ICG-p28 was developed and tested in clinically relevant preclinical
settings [269,270]. These studies demonstrated that intraoperative imaging with ICG-p28
accurately identified the tumor margins, improving tumor recurrence rate in multiple
breast cancer animal models independent of the receptor expression status [269,270]. These
results emphasize the importance of the imaging approach and its translational potential.

4.3. Targeting Delivery

Drug delivery is critically important for optimizing the efficacy of drugs while reducing
toxic adverse effects. Several approaches have been proposed to deliver active compounds
to the target sites [194,208]. In this section, we focus on peptide-based targeting delivery.

In passive targeting, peptides can accumulate at tumor sites by intrinsic characteristics
of peptides such as size and charge and due to distinctive properties of the targeted sites
such as local vasculature and lymphatic drainage. At tumor sites, nearby vasculature is
generally leaky, and lymphatic drainage is impaired or absent [271]. Under such conditions,
the enhanced permeation and retention (EPR) effect allows preferential accumulation of
peptides within the tumor tissue. The concept of the EPR effect was first proposed in
1986 [272], and the EPR effect with a universal mechanism is a unique feature of solid
tumors [273–276]. In hypoxic conditions or inflammation, blood vessels become more
permeable. New blood vessels (neovascularization) in hypoxic tumors are generally leaky
as they have large openings (200–2000 nm) [277,278].

In contrast, receptor-mediated approaches are active targeting strategies [279–281].
The abundant expression of peptide-binding receptors in human tumors highlights their
potential as promising targets for selective anti-cancer drug delivery. Synthetic analog
peptides of natural ligands are of significant interest as receptor-targeting entities due to
their ability to exhibit high affinity, rapid internalization rates, and low immunogenicity.
Several target candidates for this group of peptides, such as integrin receptors, HER2, and
EGFR [280,281].

In addition, CPPs are also very efficient in delivering various molecules into cells [194].
Although the entry mechanism of CPPs into cells is still a matter of some debate, direct
translocation and/or endocytotic cellular entry are often described as the entry mechanism
of CPPs [282,283].

As described in the previous section, CPPs have significant potential to target delivery
vehicles, and currently, ~2000 CPPs have been identified based on the CPPsite 2.0 database.
An important challenge in cancer therapy involves the limitations of drug delivery to the
target lesions by barriers such as the tumor microenvironment or the BBB. CPPs opened a
new avenue to overcome such limitations.

4.4. Crossing the BBB with Peptides

The BBB is a unique microvasculature of the CNS, protecting the brain from harmful
agents in circulation [284] (Figure 3). Due to the tightest protection by the BBB, drug
delivery to the brain tumor is one of the big challenges of cancer therapies. Having tumor-
targeting or vascular-targeting abilities of peptides, potential drug delivery to brain cancer
(glioma and CNS lymphoma), and brain-metastasized cancer have been tested.

Drug delivery beyond the BBB is mediated by paracellular diffusion and transcellular
route [285]. Paracellular diffusion is largely eliminated by tight junctions (TJs) and disrup-
tion of the BBB or temporal regulation of the BBB is necessary, as discussed below. The
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transcellular route uses the movement of molecules through the cells, passing through
apical and basolateral membranes [286].
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Figure 3. Routes of drug delivery crossing the BBB. (A) The BBB is formed by a tightly connected
EC layer covered by pericytes and astrocyte end foot. To deliver the drugs via paracellular routes,
junctions are disrupted by various methods described in Section 4.4.1. (B) While keeping the barrier
intact, drugs can be delivered by receptor-mediated transport by conjugating drugs with ligand-
mimicking peptides, as described in Section 4.4.2. (C) Drugs can be delivered by absorptive-mediated
transport. CPPs and BBB shuttles use this pathway as described in Section 4.4.3.

4.4.1. Paracellular Diffusion and the BBB Disruption

To facilitate drug delivery to the brain, BBB disruption (BBBD) has been tested since
the 1970s in animal models and clinical trials [218,287] (Figure 3A). Bradykinin is an
endogenous peptide that opens the BBB for small molecules, such as sodium fluorescein,
but not for bigger molecules, such as albumin [288]. Bradykinin and its analog RMP-7
selectively induce permeability in tumor vasculature in the brain, not in the normal brain, as
its B2 receptor is abundant in tumor vasculature [289,290]. RMP-7 (lobradimil and cereport)
(Alkermes, Dublin, Ireland) has been tested as a combination with carboplatin in clinical
trials [113–116]; however, it failed to show improvement of the efficacy of carboplatin in a
randomized controlled Phase II trial [115]. RMP-7 is not currently being investigated for
BBBD purposes [287].

Non-peptide molecules such as hypertonic mannitol [291–294], alkylglycerols [295],
regadenoson [296,297], and other device-based strategies such as cranial implantable ultra-
sound [298,299], hyperthermia [300,301], low-level laser treatment (LLLT) [302], magnetic
resonance-guided laser ablation (MRgLA) [303], MR-guided focused ultrasound (MRg-
FUS) [304,305] has been tested, but progress has not been satisfactory [287].

More recently, targeted approaches of reversible regulation of the barrier and more
selectively to the BBB have been taken. The BBB is characterized by a tightly packed
monolayer of non-fenestrated endothelial cells (ECs) connected by TJs, adherens junctions
(AJs), and gap junctions [284]. Brain ECs have a higher expression of TJ proteins com-
pared to arterial and venous ECs [306]. Especially, Claudin-5 has gained attention as a
gatekeeper of the BBB [307]. A peptidomimetic derived from Claudin-5 induces transient
BBB permeabilization and facilitates brain uptake of MRI contrast agents in mice [57].
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Cadherins are important adherens junction proteins. E-cadherin-derived peptides (e.g.,
HAV6) induce endothelial permeability and inhibit resealing of tight junctions [60]. These
E-cadherin-derived peptides facilitate drug delivery to the brain in animal models [58] and
inhibit the growth of medulloblastoma in mice [59]. But these peptides also open junctions
in intestinal epithelial cells in vitro [308].

4.4.2. Transcellular Route—Receptor-Mediated Transport (RMT)

The transcellular route of drug delivery is endocytosis-mediated transcytosis, which
is absorptive-mediated transport (AMT) and receptor-mediated transport (RMT) (Fig-
ure 3B,C). AMT mediates the uptake of cationic molecules at the luminal surface of EC
and the exocytosis of the molecules at the abluminal surface [309]. We will discuss this
below regarding CPP. RMT is mediated by the interaction of ligands to the receptors on
the luminal surface of the BBB, thereby, ligand-derived peptides have been extensively
developed [310]. For this purpose, the receptors need to be abundantly expressed at the
luminal surface of ECs, and selectively to the BBB [311–313]. Such receptors include the
low-density lipoprotein receptor (LDLRs) [314], transferrin receptor (TfR1) [315], insulin
receptor [316], and leptin receptor [317,318].

Among them, LDLR has been most studied for RMT [319,320]. LDLR plays an impor-
tant role in lipoprotein transport across the BBB for the delivery of essential lipids to the
brain [314]. Their natural protein ligands are apolipoproteins (Apo) A [321], ApoB [322],
and ApoE [323]. The peptides derived from ApoB and ApoE have been tested for drug
delivery across the BBB [61,322–325].

LDLR-related proteins (LRPs) mediate transcytosis of lactoferrin [326], melanotrans-
ferrin (p97) [64,327], receptor-associated protein (RAP) [328], tissue plasminogen activator
(tPA) [329], and β-amyloid precursor (APP) [330]. Aprotinin is known to interact with
LRPs [331] and 19 amino acid peptide Angiopep-2 (AngioChem Inc., Montreal, QC, Canada)
was designed from the LRP-binding domain of aprotinin [332,333]. Angiopep-2 was conju-
gated with FDA-approved chemotherapeutic agents, such as doxorubicin (ANG1007) [334],
etoposide (ANG1009) [334], paclitaxel (ANG1005) [335], and bioactive peptides [336]. Its
conjugate with paclitaxel (ANG1005 or GRN1005) [337] showed good tolerance in Phase
I clinical trials [118,119] and tested for the treatment with recurrent high-grade glioma in
combination with bevacizumab (NCT01480583). Dual-targeting of liposomes modified
with Angiopep-2 and tumor-targeting peptide derived from neuropilin (tLyP-1) showed
successful drug delivery of VEGF siRNA and docetaxel for glioma-bearing mice [338].

Other peptides binding to LDLRs are the ApoE-derived peptide K16ApoE [61],
AEP [62], RAP-derived peptide RAP12 [63], and melanotransferrin (MTf)-derived pep-
tide [64]. Screening of peptides using phage display has been applied to find the peptides
binding to receptors. Peptide-22 (VH434), found by phage display, interacts with LDLR
and facilitates drug delivery to the brain in animal models [49,65]. Other peptides found
by phage display for binding to LDLR or LRP1 are L57 [66], M1 [67], and LRPep2 [68].

Phage display has been widely used to define TfR-binding peptides. TfR-T12 and
T7 were identified by phage display [69] and tested for drug delivery to the brains of
rodents [339,340] and zebrafish [341]. The other peptides found in the phage display are
B6 [70], CRT peptide [71], and NanoLigand Carriers (NLC) [72]. TfRB1G3 was designed
from natural peptides called Cystine-dense peptides (CDPs), a mini-protein class with high
affinity and low immunogenicity [342].

Leptin receptor is highly expressed on the BBB [317,318]. In the same year, Leptin30
(aa 82–111 of human leptin P41159) [74] and peptide Lep70–89 (aa 91–110 of P41159) were
defined as a brain-targeting peptide from leptin. Lep70–89-modified liposomes exhibit
cellular uptake via macropinocytosis in mouse brain endothelial cells [343]. Leptin30
showed gene delivery to the brain in mice [73]. Another peptide, g21 (aa 33–53 of mouse
leptin P41160), also facilitates the delivery of nanoparticles modified with g21 to the brain
in rats [75].
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RGD peptide, the most widely studied adhesive peptide found as an integrin-binding
motif from extracellular matrix proteins [157], also provides targeted delivery to tumor
vasculature as the αvβ3 integrin is highly expressed in angiogenic endothelial cells in
tumors [344–347]. Cyclic RGD (cRGD) or stapled RGD (sRGD) have been used to modify
micelles or liposomes and have shown accumulation in orthotopic glioma in mice [348,349].
Liposomes modified with cRGD could deliver anti-cancer drugs such as paclitaxel, ox-
aliplatin, and doxorubicin across the BBB, inhibited glioma growth, and improved the
survival of glioma-bearing mice [348–350]. Such tumor-targeting and brain-penetrating
property of RGD peptide has been tested as imaging agents in clinical trials [351]. 18F
Fluciclatide (AH111585) (GE Healthcare, Chicago, IL, USA) was tested for PET imag-
ing following i.v. injection to detect solid tumors, including high-grade glioma, in the
Phase II trial (NCT00565721). 18F-RGD-K5 (Siemens Molecular Imaging Inc., Knoxville,
TN, USA) is also an RGD-based radiotracer for PET imaging. Biodistribution and safety
of i.v.-injected 18F-RGD-K5 was tested in monkeys and humans in Early Phase I study
(NCT00743353) [120]. Other RGD-based radiotracers tested in Early Phase I for PET/CT
imaging are 68Ga-BNOTA-PRGD2 (NCT01806675), 18F-FPPRGD2 (NCT01806675), and
68Ga-RM26-RGD (NCT05549024).

For therapeutic purposes, DNX-2401 (Delta-24-RGD, tasadenoturev) (DNAtrix, Inc.,
Houston, TX, USA) has been tested for glioma patients in clinical trials. DNX-2401 is a
tumor-selective, replication-competent oncolytic adenovirus. A Phase I, dose-escalation,
biologic-end-point clinical trial was conducted by intratumoral injection (NCT00805376) [127].
In another Phase I trial (NCT01582516), DNX-2401 was administered by convection-
enhanced delivery (CED), which is a local drug delivery to bypass the BBB. Successful tumor
targeting and safety in the brain were confirmed [125]. In the Phase I trial (NCT03178032),
infusion of DNX-2401 through a catheter placed in the cerebellar peduncle followed by
radiotherapy showed promising reduction/stabilization of tumor size of pediatric patients
with diffuse intrinsic pontine glioma (DIPG) [128]. DNX-2401 was further tested in the
Phase I trial by intra-arterial infusion (NCT 03896568) [129], and the Phase I/II study as
a combination of intratumoral delivery of DNX-2401 followed by i.v. anti-PD-1 antibody
pembrolizumab in recurrent glioblastoma (NCT02798406) [126]. Although RGD potentially
crosses the BBB, the BBB penetration is not the focus of these studies.

VEGFR2 and Neuropilin-1 (NRP1) are important co-receptors for VEGF to mediate
angiogenesis. A peptide screened for binding to the VEGF receptors, A7R [77] interacts with
NRP1 but not with NRP2 or VEGFR2 [352,353]. Glycosylated A7R derivative is stable in
serum, able to cross the BBB to deliver paclitaxel to glioma in mice, and improves survival
of glioma-bearing mice [76].

Interleukin (IL)-13 receptor (IL-13R) α2 is highly expressed in glioma, thus is consid-
ered as a target for drug delivery. A peptide derived from IL-13 (IL-13p) is used to modify
docetaxel-loaded nanoparticles and showed suppression of the growth of s.c. glioma in
mice [78]. Phage display found another peptide, Pep-1, which binds to IL-13Rα2 [79].
Following i.v. injection, Pep-1 homes to both s.c. and orthotopic GBM xenografts in
mice [79] and facilitates delivery of chemotherapy agent, cilengitide (CGL) loaded in Pep-1
conjugated liposome, to suppress the growth of s.c. glioma [80].

A peptide G7 was derived from opioid peptide MMP-2200 [81,82]. G7-modified
nanoparticles (NPs) cross the BBB by several endocytotic vesicles and macropinocytotic
processes [81].

Neurotropic viruses, snake neurotoxins, and bee venoms have received attention
as they interfere with brain cells. Rabies virus glycoprotein (RVG) interacts with nico-
tinic acetylcholine receptor (nAChR) on neuronal cells to enable viral entry into neuronal
cells [354]. 29 mer RVG-derived peptide [355] was conjugated with 9R to enable siRNA
binding (RVG-9R), which enabled the delivery of siRNA to the brain [83]. An independently
identified 43 mer RVG-derived peptide (RDP) [84] and 39 mer RDP [85] also successfully
delivered the fused protein to the brain in mice. KC2S is a synthetic peptide derived
from snake neurotoxins that bind to nAChRs [86]. Paclitaxel-encapsulated KC2S-micelles
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afforded robust inhibition of intracranial glioblastoma in mice [86]. CDX is derived from
snake neurotoxin candoxin, which also binds to nAChR [87]. CDX-micelle could deliver
paclitaxel and improve the survival of glioblastoma-bearing mice [87]. To improve the
stability, replacing with D amino acid (resulting in DCDX) could deliver doxorubicin for
glioblastoma-bearing mice [88]. Apamin is a peptide found in bee venom, crossing the
BBB [356,357], and MiniAp-4 is a shorter peptide derived from apamin [89].

Several peptide shuttles have been found through in vivo phage display biopanning
without aiming for a particular receptor. The most prominent example is that of TGN [90].
This sequence is actively transported across brain endothelial cells, and its brain selectivity
suggests that the mechanism is receptor mediated. The brain delivery capacity of this
shuttle is supported by enhanced therapeutic effects in glioblastoma and Alzheimer’s
mouse models [358,359].

4.4.3. Transcellular Route—Absorptive-Mediated Transport (AMT) and
Brain-Penetrant Peptides

The mechanisms of drug delivery to the brain using cell-permeable peptides (CPPs)
are not fully understood. It is believed that cationic CPPs bind to the luminal surface
of the EC membrane and are endocytosed via AMT and exocytosed at the abluminal
surface [309] (Figure 3C). Some CPPs have the ability to penetrate the BBB and are used for
drug delivery [360,361].

TAT can deliver the biologically active fusion protein to all tissues in mice, including
the brain, beyond the BBB [362,363]. After that, more selective CPPs were found and tested
for drug delivery.

Penetratin is a 16 aa CPP, derived from the Drosophila Antennapedia homeodo-
main [45,46]. Doxorubicin conjugated with penetratin [91] or encapsulating receptor-
targeted liposomes modified with transferrin and penetratin [361] cross the BBB after i.v.
injection in rodents.

Transportan is a CPP derived from galanin, a natural peptide distributed throughout
the nervous system [47]. M13 is a derivative of transportan, showing the delivery of
M13-conjugated cisplatin into the brain in GBM-bearing mice [48].

Protegrins are small peptides with antimicrobial activity found in porcine leuko-
cytes [364]. SynB1 and SynB3 are peptides derived from Progrin-1 (PG1) and can deliver
conjugated doxorubicin to the brain via absorptive-mediated transport [365,366].

Glutathione crosses the BBB via carrier-mediated transport [367]. Glutathione PEGy-
lated (GSH-PEG) liposomes (G-Technology) [368,369]and glutathione-coated nanoparti-
cles [370] have been used for drug delivery across the BBB. 2B3-101 (2-BBB, Leiden, Nether-
lands) is a glutathione PEGylated liposomal methylprednisolone, an anti-inflammation
drug, showing efficacy in reducing the severity of encephalomyelitis in mice [130]. 2B3-101
is further tested in an Open-label, Phase I/IIa, dose-escalating study in patients with solid
tumors, brain metastases, or recurrent malignant glioma (NCT01386580).

A peptide CAQK, found by in vivo phage display screening in mice with acute brain in-
jury, interacts with chondroitin sulfate proteoglycans, upregulated in the injured brain [92].
CAQK-coated nanoparticle successfully delivered siRNA to the injured site in the brain
after i.v. injection [92]. Peptides interacting with lipids on the membrane can also mediate
drug delivery to the brain. Gangliosides are glycosphingolipids, abundant in neuronal
cells. G23 peptide, found by phage display targeting gangliosides [93,94], could promote
the transport of nanoparticles across the BBB, and provide a targeting effect [371].

A peptide named PepH3, derived from Dengue virus type 2 capsid protein (DEN2C),
crosses the BBB by receptor-independent AMT [95]. Other peptides promising for drug de-
livery across the BBB are N-methyl phenylalanine-rich peptide [96], phenyl proline tetrapep-
tide [97], non-canonical anionic peptide NegPep [98], Porphyrin [99], and a neurofilament-
derived peptide NFL-TBS.40–63 [100,101].

Finally, bypassing the BBB by intratumoral injection, implantation of drug-releasing
polymers, convection-enhanced drug delivery [372], and intranasal delivery [222,373]. Low-
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molecular-weight protamine (LMWP) is a cell-penetrating peptide used as a conjugate
with nanoparticles to facilitate drug delivery to the brain via intranasal administration in
rats [102].

5. Future Perspectives

In this review, we described peptide-based approaches for cancer treatment. Many of
these peptides were identified from natural sources such as proteins from bacteria, plants,
or animals/humans since nature generates functional materials in living systems in the
form of proteins and peptides. Although they are quite useful, artificial intelligence (AI) and
machine learning-based strategies without human bias have the potential to revolutionize
and accelerate the discovery and design of peptide-based drugs. In recent years, AI and
deep machine learning-based strategies have shown immense potential in the medical field
(e.g., drug discovery) [374,375]. These models have the capability to generate data that
extends beyond what we have in the training samples, enabling an effective and fast tool
for exploring the extensive search space of high-dimensional data, such as peptide/protein
sequences. Although we are currently in the process of enhancing our understanding
of utilizing AI safely and its widespread adoption in clinical settings currently remains
limited, a new generation of peptide-based agents may soon be among the most important
elements in clinical management as the utilization of AI is rapidly developing and appeared
to help to minimize human errors.

6. Conclusions

In this review, we reviewed original research articles, recent review articles, and
information from ClinicalTrial.gov to summarize the uses of peptide-based agents as
anti-cancer therapeutics, drug delivery as peptide-drug conjugates or modifying lipo-
somes/nanoparticles, and diagnostics imaging. New strategies to develop and design
peptides are still being tested in preclinical models for future development of peptide-based
diagnostics or therapies for cancer patients [7,9,194,376,377].
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