Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = peptide/protein subunit vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

41 pages, 7499 KiB  
Article
Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches
by Japigorn Puagsopa, Panuwid Jumpalee, Sittichoke Dechanun, Sukanya Choengchalad, Pana Lohasupthawee, Thanawat Sutjaritvorakul and Bunyarit Meksiriporn
Int. J. Mol. Sci. 2025, 26(15), 7210; https://doi.org/10.3390/ijms26157210 - 25 Jul 2025
Viewed by 890
Abstract
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time [...] Read more.
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time consuming, and susceptible to reversion to virulence. Alternatively, a reverse vaccinology approach offers a rapid, efficient, and safer alternative for MPXV vaccine design. Here, MPXV proteins associated with viral infection were analyzed for immunogenic epitopes to design multi-epitope vaccines based on B-cell, CD4+, and CD8+ epitopes. Epitopes were selected based on allergenicity, antigenicity, and toxicity parameters. The prioritized epitopes were then combined via peptide linkers and N-terminally fused to various protein adjuvants, including PADRE, beta-defensin 3, 50S ribosomal protein L7/12, RS-09, and the cholera toxin B subunit (CTB). All vaccine constructs were computationally validated for physicochemical properties, antigenicity, allergenicity, safety, solubility, and structural stability. The three-dimensional structure of the selected construct was also predicted. Moreover, molecular docking and molecular dynamics (MD) simulations between the vaccine and the TLR-4 immune receptor demonstrated a strong and stable interaction. The vaccine construct was codon-optimized for high expression in the E. coli and was finally cloned in silico into the pET21a (+) vector. Collectively, these results could represent innovative tools for vaccine formulation against MPXV and be transformative for other infectious diseases. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

13 pages, 2352 KiB  
Article
EBV gL-gH344-Ferritin Nanoparticle Vaccine Elicits Robust Immune Responses in Mice
by Chenyu Li, Yuxi Cao, Qi Ma, Jing Yang, Xiaoguang Zhang, Hongxia Li, Ke Xu, Tao Jiang, Shuying Li, Yanzhe Hao and Xia Feng
Viruses 2025, 17(6), 754; https://doi.org/10.3390/v17060754 - 26 May 2025
Viewed by 652
Abstract
Considering the absence of a widely utilized EBV vaccine, we have developed an EBV gL-gH344-Ferritin nanoparticle vaccine utilizing ferritin as a carrier. The gL-gH344-Ferritin fusion gene was synthesized and inserted into the pET30a plasmid. The expression of the fusion protein in the recombinant [...] Read more.
Considering the absence of a widely utilized EBV vaccine, we have developed an EBV gL-gH344-Ferritin nanoparticle vaccine utilizing ferritin as a carrier. The gL-gH344-Ferritin fusion gene was synthesized and inserted into the pET30a plasmid. The expression of the fusion protein in the recombinant plasmid was verified by Western blot. Then, the gL-gH344-Ferritin subunit nanoparticle vaccine was obtained by purification of the fusion protein. BALB/c mice were immunized using a two-dose protocol. The titers of EBV specific antibodies were determined using enzyme-linked immunosorbent assay at 4, 8, and 12 weeks after the initial immunization. Moreover, the levels of EBV gL-gH344 specific splenocytes secreting interferon (IFN)-γ and interleukin (IL)-6 were determined using an enzyme-linked immunospot assay. The pET30a-gL-gH344-Ferritin prokaryotic expression plasmid was successfully constructed. gL-gH344-Ferritin was efficiently expressed in E. coli. Following immunization with gL-gH344-Ferritin, the mice sera demonstrated elevated titers of EBV specific immunoglobulin G. Moreover, after stimulating with EBV gL-gH344 specific peptides, the splenocytes of the immunized mice showed a marked tendency to secrete large amounts of IFN-γ and IL-6. The gL-gH344-Ferritin nanoparticle vaccine carrying the EBV gL-gH344 fusion protein induced robust and sustained specific humoral and cellular immune responses in mice. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

19 pages, 6920 KiB  
Article
Covalent Functionalization of Layered Double Hydroxides to Generate Peptide-Based SARS-CoV-2 Nanovaccine
by Alejandra E. Liñán-González, Sayma A. Rodríguez-Montelongo, Mariano J. García-Soto, Daniela Gómez-Zarandona, Susan Farfán-Castro, Gabriela Palestino, Raúl Ocampo-Pérez, Erika Padilla-Ortega, Omar González-Ortega and Sergio Rosales-Mendoza
Materials 2025, 18(11), 2449; https://doi.org/10.3390/ma18112449 - 23 May 2025
Viewed by 511
Abstract
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind [...] Read more.
Nanoclays have gained attention in biological applications due to their biocompatibility, low toxicity, and cost-effectiveness. Layered double hydroxides (LDHs) are synthetic nanoclays that have been used as adjuvants and antigen carriers in nanovaccines developed through passive bioconjugation. However, performing active bioconjugation to bind antigens covalently and generate subunit nanovaccines remains unexplored. In this study, we investigated the synthesis, functionalization, and active conjugation of LDH nanoparticles to produce subunit nanovaccines with peptides from SARS-CoV-2. The synthesis of Mg-Al LDHs via a coprecipitation and hydrothermal treatment rendered monodisperse particles averaging 100 nm. Their functionalization with (3-aminopropyl)triethoxysilane was better than it was with other organosilanes. Glutaraldehyde was used as a linker to bind lysine as a model biomolecule to establish the best conditions for reductive amination. Finally, two peptides, P2 and P5 (epitopes of the SARS-CoV-2 spike protein), were bound on the surface of the LDH to produce two subunit vaccine candidates, reaching peptide concentrations of 125 and 270 µg/mL, respectively. The particles were characterized using DLS, TEM, XRD, TGA, DSC, and FTIR. The cytotoxicity studies revealed that the conjugate with P2 was non-toxic up to 250 µg/mL, while the immunogenicity studies showed that this conjugate induced similar IgG titers to those reached when aluminum hydroxide was used as an adjuvant. Full article
Show Figures

Figure 1

27 pages, 4069 KiB  
Article
The Long-Term Immunity of a Microneedle Array Patch of a SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice
by Eun Kim, Muhammad S. Khan, Juyeop Shin, Shaohua Huang, Alessandro Ferrari, Donghoon Han, Eunjin An, Thomas W. Kenniston, Irene Cassaniti, Fausto Baldanti, Dohyeon Jeong and Andrea Gambotto
Vaccines 2025, 13(1), 86; https://doi.org/10.3390/vaccines13010086 - 18 Jan 2025
Viewed by 1495
Abstract
Background/Objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, [...] Read more.
Background/Objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide. Methods: The rS1RS09 vaccine was administered via MAP or intramuscular injection in murine models. The immune responses of the MAP with and without gamma irradiation as terminal sterilization were assessed at doses of 5, 15, and 45 µg, alongside neutralizing antibody responses to Wuhan, Delta, and Omicron variants. The long-term storage stability was also evaluated through protein degradation analyses at varying temperatures. Results: The rS1RS09 vaccine elicited stronger immune responses and ACE2-binding inhibition than S1 monomer alone or trimer. The MAP delivery induced sgnificantly higher and longer-lasting S1-specific IgG responses for up to 70 weeks compared to intramuscular injections. Robust Th2-prevalent immune responses were generated in all the groups vaccinated via the MAP and significant neutralizing antibodies were elicited at 15 and 45 µg, showing dose-sparing potential. The rS1RS09 in MAP has remained stable with minimal protein degradation for 19 months at room temperature or under refrigeration, regardless of gamma-irradiation. After an additional month of storage at 42 °C, cit showed less than 3% degradation, ompared to over 23% in liquid vaccines Conclusions: Gamma-irradiated MAP-rS1RS09 is a promising platform for stable, scalable vaccine production and distribution, eliminating cold chain logistics. These findings support its potential for mass vaccination efforts, particularly in resource-limited settings. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

12 pages, 2281 KiB  
Article
CD40 Ligand Potentiates Immunogenecity of Mycoplasma pneumoniae Subunit Vaccine Candidate in a Murine Model
by Jinqi Shu, Gaojian Li, Jianhong Shu, Huapeng Feng and Yulong He
Curr. Issues Mol. Biol. 2025, 47(1), 37; https://doi.org/10.3390/cimb47010037 - 9 Jan 2025
Viewed by 1081
Abstract
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the [...] Read more.
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the cellular and humoral immune responses to vaccines. In this study, the CD40L peptide was fused to the C-terminus of the chimeric P97R1P46P42 protein by genetic engineering using the pFastBac Dual vector. The recombinant chimeric protein P97R1P46P42 and its fusion P97R1P46P42-CD40L were expressed in Sf9 cells and purified. Mice were immunized with P97R1P46P42 or its fusion protein. Seppic ISA 201 emulsified protein, conventional Mhp vaccine and PBS control groups were included. Immunogenecity was assessed by specific IgG antibody response, splenic lymphocyte proliferation, and cytokine IL-4 and IFN-γ levels. We found that CD40L fusion significantly enhanced specific antibody response, lymphocyte proliferation and IL-4 level in the immunized mouse sera as compared to the P97R1P46P42 or conventional vaccine group. This study provides clear evidence that CD40L potentiates the humoral and cellular immune responses to the Mhp chimeric protein P97R1P46P42 in the mouse model. This CD40L-fused chimeric protein could be a MPS subunit vaccine candidate to be tested for its efficacy in pigs in response to challenges with pathogenic Mycoplasma hyopneumoniae strain(s). Full article
Show Figures

Figure 1

15 pages, 2037 KiB  
Article
A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches
by Xinnuo Lei, Zhi Wu, Qi Feng, Wenfeng Jia, Jun Xie, Qingkang Zhou, Jinzhao Ban and Shanyuan Zhu
Vet. Sci. 2024, 11(12), 659; https://doi.org/10.3390/vetsci11120659 - 16 Dec 2024
Viewed by 2287
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks. In this study, we designed a universal multi-epitope peptide vaccine against PRRSV using bioinformatics and immunoinformatics approaches to address these limitations. By selecting sequences from seven representative PRRSV strains, we predicted highly conserved and immunogenic T cell (Th and CTL) epitopes across all encoded proteins. These were rationally concatenated with reported B cell neutralizing epitopes into a multi-epitope vaccine construct. We performed comprehensive assessments of the construct’s physicochemical and biochemical properties, along with predictions and refinements of its secondary and tertiary structures. Molecular docking simulations with TLR2 and TLR4 revealed strong potential binding interactions. Immune simulations indicated that the multi-epitope vaccine could induce robust humoral and cellular immune responses. This study provides a scientific foundation for the development of safe and effective PRRSV subunit vaccines and offers new perspectives for designing vaccines against other viral diseases. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

22 pages, 3581 KiB  
Article
Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules
by Carmen Celis-Giraldo, Carlos F. Suárez, William Agudelo, Nieves Ibarrola, Rosa Degano, Jaime Díaz, Raúl Manzano-Román and Manuel A. Patarroyo
Biology 2024, 13(10), 832; https://doi.org/10.3390/biology13100832 - 16 Oct 2024
Cited by 1 | Viewed by 2160
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics [...] Read more.
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Graphical abstract

19 pages, 2968 KiB  
Review
Self-Assembling Peptides for Vaccine Adjuvant Discovery
by Jingyi Fan, Istvan Toth and Rachel J. Stephenson
Immuno 2024, 4(4), 325-343; https://doi.org/10.3390/immuno4040021 - 1 Oct 2024
Cited by 1 | Viewed by 2228
Abstract
Vaccination is credited as a significant medical achievement contributing to the decline in morbidity and mortality of infectious diseases. Traditional vaccines composed of inactivated and live-attenuated whole pathogens confer the induction of potent and long-term immune responses; however, traditional vaccines pose a high [...] Read more.
Vaccination is credited as a significant medical achievement contributing to the decline in morbidity and mortality of infectious diseases. Traditional vaccines composed of inactivated and live-attenuated whole pathogens confer the induction of potent and long-term immune responses; however, traditional vaccines pose a high risk of eliciting autoimmune and allergic responses as well as inflammations. New modern vaccines, such as subunit vaccines, employ minimum pathogenic components (such as carbohydrates, proteins, or peptides), overcome the drawbacks of traditional vaccines and stimulate effective immunity against infections. However, the low immunogenicity of subunit vaccines requires effective immune stimulants (adjuvants), which are an indispensable factor in vaccine development. Although there are several approved adjuvants in human vaccines, the challenges of matching and designing appropriate adjuvants for specific vaccines, along with managing the side effects and toxicity of existing adjuvants in humans, are driving the development of new adjuvants. Self-assembling peptides are a promising biomaterial rapidly emerging in the fields of biomedicine, vaccination and material science. Here, peptides self-assemble into ordered supramolecular structures, forming different building blocks in nanoparticle size, including fibrils, tapes, nanotubes, micelles, hydrogels or nanocages, with great biostability, biocompatibility, low toxicity and effectiveness at controlled release. Self-assembling peptides are effective immunostimulatory agents used in vaccine development to enhance and prolong immune responses. This review describes the predominant structures of self-assembling peptides and summarises their recent applications as vaccine adjuvants. Challenges and future perspectives on self-assembled peptides as vaccine adjuvants are also highlighted. Full article
Show Figures

Figure 1

25 pages, 4657 KiB  
Article
AutoEpiCollect, a Novel Machine Learning-Based GUI Software for Vaccine Design: Application to Pan-Cancer Vaccine Design Targeting PIK3CA Neoantigens
by Madhav Samudrala, Sindhusri Dhaveji, Kush Savsani and Sivanesan Dakshanamurthy
Bioengineering 2024, 11(4), 322; https://doi.org/10.3390/bioengineering11040322 - 27 Mar 2024
Viewed by 2533
Abstract
Previous epitope-based cancer vaccines have focused on analyzing a limited number of mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts are required to diversify the [...] Read more.
Previous epitope-based cancer vaccines have focused on analyzing a limited number of mutated epitopes and clinical variables preliminarily to experimental trials. As a result, relatively few positive clinical outcomes have been observed in epitope-based cancer vaccines. Further efforts are required to diversify the selection of mutated epitopes tailored to cancers with different genetic signatures. To address this, we developed the first version of AutoEpiCollect, a user-friendly GUI software, capable of generating safe and immunogenic epitopes from missense mutations in any oncogene of interest. This software incorporates a novel, machine learning-driven epitope ranking method, leveraging a probabilistic logistic regression model that is trained on experimental T-cell assay data. Users can freely download AutoEpiCollectGUI with its user guide for installing and running the software on GitHub. We used AutoEpiCollect to design a pan-cancer vaccine targeting missense mutations found in the proto-oncogene PIK3CA, which encodes the p110ɑ catalytic subunit of the PI3K kinase protein. We selected PIK3CA as our gene target due to its widespread prevalence as an oncokinase across various cancer types and its lack of presence as a gene target in clinical trials. After entering 49 distinct point mutations into AutoEpiCollect, we acquired 361 MHC Class I epitope/HLA pairs and 219 MHC Class II epitope/HLA pairs. From the 49 input point mutations, we identified MHC Class I epitopes targeting 34 of these mutations and MHC Class II epitopes targeting 11 mutations. Furthermore, to assess the potential impact of our pan-cancer vaccine, we employed PCOptim and PCOptim-CD to streamline our epitope list and attain optimized vaccine population coverage. We achieved a world population coverage of 98.09% for MHC Class I data and 81.81% for MHC Class II data. We used three of our predicted immunogenic epitopes to further construct 3D models of peptide-HLA and peptide-HLA-TCR complexes to analyze the epitope binding potential and TCR interactions. Future studies could aim to validate AutoEpiCollect’s vaccine design in murine models affected by PIK3CA-mutated or other mutated tumor cells located in various tissue types. AutoEpiCollect streamlines the preclinical vaccine development process, saving time for thorough testing of vaccinations in experimental trials. Full article
(This article belongs to the Special Issue Machine Learning Technology in Biomedical Engineering—2nd Edition)
Show Figures

Graphical abstract

16 pages, 5701 KiB  
Article
Production of Promising Heat-Labile Enterotoxin (LT) B Subunit-Based Self-Assembled Bioconjugate Nanovaccines against Infectious Diseases
by Caixia Li, Juntao Li, Peng Sun, Ting Li, Xue Yan, Jingqin Ye, Jun Wu, Li Zhu, Hengliang Wang and Chao Pan
Vaccines 2024, 12(4), 347; https://doi.org/10.3390/vaccines12040347 - 23 Mar 2024
Cited by 4 | Viewed by 1977
Abstract
Nanoparticles (NPs) have been widely utilized in vaccine design. Although numerous NPs have been explored, NPs with adjuvant effects on their own have rarely been reported. We produce a promising self-assembled NP by integrating the pentameric Escherichia coli heat-labile enterotoxin B subunit (LTB) [...] Read more.
Nanoparticles (NPs) have been widely utilized in vaccine design. Although numerous NPs have been explored, NPs with adjuvant effects on their own have rarely been reported. We produce a promising self-assembled NP by integrating the pentameric Escherichia coli heat-labile enterotoxin B subunit (LTB) (studied as a vaccine adjuvant) with a trimer-forming peptide. This fusion protein can self-assemble into the NP during expression, and polysaccharide antigens (OPS) are then loaded in vivo using glycosylation. We initially produced two Salmonella paratyphi A conjugate nanovaccines using two LTB subfamilies (LTIB and LTIIbB). After confirming their biosafety in mice, the data showed that both nanovaccines (NP(LTIB)-OPSSPA and NP(LTIIbB)-OPSSPA) elicited strong polysaccharide-specific antibody responses, and NP(LTIB)-OPS resulted in better protection. Furthermore, polysaccharides derived from Shigella or Klebsiella pneumoniae were loaded onto NP(LTIB) and NP(LTIIbB). The animal experimental results indicated that LTIB, as a pentamer module, exhibited excellent protection against lethal infections. This effect was also consistent with that of the reported cholera toxin B subunit (CTB) modular NP in all three models. For the first time, we prepared a novel promising self-assembled NP based on LTIB. In summary, these results indicated that the LTB-based nanocarriers have the potential for broad applications, further expanding the library of self-assembled nanocarriers. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

26 pages, 3573 KiB  
Article
Gemcitabine Modulates HLA-I Regulation to Improve Tumor Antigen Presentation by Pancreatic Cancer Cells
by Alaina C. Larson, Shelby M. Knoche, Gabrielle L. Brumfield, Kenadie R. Doty, Benjamin D. Gephart, Promise R. Moore-Saufley and Joyce C. Solheim
Int. J. Mol. Sci. 2024, 25(6), 3211; https://doi.org/10.3390/ijms25063211 - 11 Mar 2024
Cited by 4 | Viewed by 3162
Abstract
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity [...] Read more.
Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells’ HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer. Full article
(This article belongs to the Special Issue Therapeutic Targets in Pancreatic Cancer)
Show Figures

Figure 1

15 pages, 13495 KiB  
Article
High-Level Secretory Production of Recombinant E2-Spy Antigen Protein via Combined Strategy in Pichia pastoris
by Bingkun Li, Yiheng Zheng, Shida Zhao, Yaohan Zhang and Ding Li
Fermentation 2024, 10(2), 99; https://doi.org/10.3390/fermentation10020099 - 8 Feb 2024
Cited by 2 | Viewed by 2445
Abstract
E2-Spy (abbreviated as ES) plays a vital role as a component in the Bacterial-Like Particles (BLPs) vaccine against classical swine fever virus (CSFV). This vaccine demonstrates remarkable immunoprotection, highlighting the importance of augmenting ES production in the development of CSFV subunit vaccines. In [...] Read more.
E2-Spy (abbreviated as ES) plays a vital role as a component in the Bacterial-Like Particles (BLPs) vaccine against classical swine fever virus (CSFV). This vaccine demonstrates remarkable immunoprotection, highlighting the importance of augmenting ES production in the development of CSFV subunit vaccines. In this study, a Pichia pastoris strain capable of high-yield secretory production of ES was developed through signal peptide engineering, gene dosage optimization and co-expression of molecular chaperones. Initially, a hybrid signal peptide cSP3 was engineered, leading to a 3.38-fold increase in ES production when compared to the control strain 1-α-ES. Subsequently, cSP3 was evaluated for its expression efficiency alongside different commonly used signal peptides under multicopy conditions. SDS-PAGE analysis revealed that 2-αd14-ES exhibited the highest ES production, displaying a 4.38-fold increase in comparison to 1-α-ES. Afterwards, SSA1, YDJ1, BIP, LHS1, and their combinations were integrated into 2-αd14-ES, resulting in a 1.92-fold rise in ES production compared to 2-αd14-ES (equivalent to a 6.18-fold increase compared to 1-α-ES). The final yield of ES was evaluated as 168.3 mg/L through comparison with serially diluted BSA protein bands. Full article
(This article belongs to the Special Issue Research on Microbial Protein Synthesis)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
COVID-19 Vaccines: Where Did We Stand at the End of 2023?
by Kenneth Lundstrom
Viruses 2024, 16(2), 203; https://doi.org/10.3390/v16020203 - 29 Jan 2024
Cited by 12 | Viewed by 4208
Abstract
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of [...] Read more.
Vaccine development against SARS-CoV-2 has been highly successful in slowing down the COVID-19 pandemic. A wide spectrum of approaches including vaccines based on whole viruses, protein subunits and peptides, viral vectors, and nucleic acids has been developed in parallel. For all types of COVID-19 vaccines, good safety and efficacy have been obtained in both preclinical animal studies and in clinical trials in humans. Moreover, emergency use authorization has been granted for the major types of COVID-19 vaccines. Although high safety has been demonstrated, rare cases of severe adverse events have been detected after global mass vaccinations. Emerging SARS-CoV-2 variants possessing enhanced infectivity have affected vaccine protection efficacy requiring re-design and re-engineering of novel COVID-19 vaccine candidates. Furthermore, insight is given into preparedness against emerging SARS-CoV-2 variants. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
13 pages, 1455 KiB  
Article
RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques
by Shixia Wang, Farshad Guirakhoo, Sivakumar Periasamy, Valorie Ryan, Jonathan Wiggins, Chandru Subramani, Brett Thibodeaux, Jaya Sahni, Michael Hellerstein, Natalia A. Kuzmina, Alexander Bukreyev, Jean-Cosme Dodart and Alexander Rumyantsev
Vaccines 2024, 12(1), 40; https://doi.org/10.3390/vaccines12010040 - 29 Dec 2023
Viewed by 2907
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein–peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate [...] Read more.
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein–peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy. Full article
(This article belongs to the Special Issue COVID Vaccines: Design, Development, and Immune Response Studies)
Show Figures

Figure 1

Back to TopTop