Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = pepper seed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6726 KiB  
Article
Genome-Wide Identification and Analysis of the AHL Gene Family in Pepper (Capsicum annuum L.)
by Xiao-Yan Sui, Yan-Long Li, Xi Wang, Yi Zhong, Qing-Zhi Cui, Yin Luo, Bing-Qian Tang, Feng Liu and Xue-Xiao Zou
Int. J. Mol. Sci. 2025, 26(13), 6527; https://doi.org/10.3390/ijms26136527 - 7 Jul 2025
Viewed by 448
Abstract
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum [...] Read more.
AT-hook motif nuclear-localized (AHL) genes play critical roles in chromatin remodeling and gene transcription regulation, profoundly influencing plant growth, development, and stress responses. While AHL genes have been extensively characterized in multiple plant species, their biological functions in pepper (Capsicum annuum L.) remain largely uncharacterized. In this study, we identified 45 CaAHL genes in the pepper genome through bioinformatics approaches. Comprehensive analyses were conducted to examine their chromosomal distribution, phylogenetic relationships, and the structural and functional features of their encoded proteins. Phylogenetic clustering classified the CaAHL proteins into six distinct subgroups. Transcriptome profiling revealed widespread expression of CaAHL genes across diverse tissues—including roots, stems, leaves, flowers, seeds, pericarp, placenta, and fruits—at various developmental stages. Quantitative real-time PCR further demonstrated that CaAHL1, CaAHL33, and CaAHL23 exhibited consistently high expression throughout flower bud development, whereas CaAHL36 showed preferential upregulation at early bud development stages. Expression profiling under hormone treatments and abiotic stresses indicated that CaAHL36 and CaAHL23 are auxin-inducible but are repressed by ABA, cold, heat, salt, and drought stress. Subcellular localization assays in Nicotiana benthamiana leaf epidermal cells showed that both CaAHL36 and CaAHL23 were predominantly localized in the nucleus, with faint expression also detected in the cytoplasm. Collectively, this study provides foundational insights into the CaAHL gene family, laying the groundwork for future functional investigations of these genes in pepper. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

17 pages, 3826 KiB  
Article
Influence of Seed Coat Integrity on the Response of Pepper Seeds to Dielectric Barrier Discharge Plasma Treatment
by Chanyanuch Sriruksa, Choncharoen Sawangrat, Sakon Sansongsiri, Dheerawan Boonyawan and Sa-nguansak Thanapornpoonpong
Plants 2025, 14(13), 1938; https://doi.org/10.3390/plants14131938 - 24 Jun 2025
Viewed by 577
Abstract
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at [...] Read more.
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at the hilum part [NHP], and removed seed coat [RSC]), while the subplot factor was the plasma exposure time (0.4–2.0 s/cm), including a control, to determine the effects on seed viability, germination, and vigor. The results indicate that NMS seeds exhibit the highest performance in terms of seed viability. The NMS and NHP had statistically significantly higher seed germination, electrical conductivity, radical emergence, and germination index at 14 days after sowing, and the shoot length measured longer than RSC. Plasma exposure at 1.2 s/cm improved germination and vigor, whereas 2.0 s/cm exposure significantly decreased seed viability and increased the number of abnormal seedlings. The interaction between SC and PT significantly affected seedling abnormalities, with RSC seeds being more vulnerable to damage under prolonged exposure. These findings highlight the crucial role of seed coat integrity in maintaining seed quality and suggest that carefully controlled PT can be a promising and sustainable method to enhance pepper seed performance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 3416 KiB  
Article
Genome-Wide Identification of the DOG1 Gene Family in Pepper (Capsicum annuum) and Its Expression Profiles During Seed Germination
by Zhichao Zhao, Jingbo Sun, Feng Zhang and Chunjuan Dong
Plants 2025, 14(13), 1913; https://doi.org/10.3390/plants14131913 - 22 Jun 2025
Viewed by 436
Abstract
The DOG1 (Delay of Germination1) family plays key regulatory roles in seed dormancy and germination. However, a genome-wide analysis of DOG1 genes has not been performed for pepper (Capsicum annuum), one of the agriculturally important species, and no studies [...] Read more.
The DOG1 (Delay of Germination1) family plays key regulatory roles in seed dormancy and germination. However, a genome-wide analysis of DOG1 genes has not been performed for pepper (Capsicum annuum), one of the agriculturally important species, and no studies have been conducted to characterize their expression profiles. Based on C. annuum genome information, the identification and expression analysis of CaDOG1 gene family members through bioinformatics approaches can provide a theoretical foundation for subsequent studies on the biological functions of CaDOG1s and the improvement of seed traits in C. annuum breeding. In this study, a total of 13 CaDOG1 genes were identified in the C. annuum genome. Phylogenetic analysis showed that these CaDOG1s, along with DOG1s from thale cress (Arabidopsis thaliana), rice (Oryza sativa), and maize (Zea mays), were classified into four subgroups. All CaDOG1 genes were unevenly distributed on six C. annuum chromosomes, and they had relatively conserved exon–intron patterns, most with zero to one intron. According to the chromosomal distribution patterns and synteny analysis of the CaDOG1 genes, the CaDOG1 family expanded mainly through replication, which occurred predominantly after the divergence of dicotyledons and monocotyledons. Conserved motif analysis indicated that all encoded proteins contained Motif 2 and Motif 6, except for CaDOG1-3. Expression profile analysis using transcriptome data revealed that CaDOG1 genes were differentially expressed across various tissues and developmental stages, with notable involvement in flowers and seeds. Quantitative real-time PCR also revealed that all CaDOG1 genes were downregulated during seed germination, indicating that CaDOG1s may play negative roles in seed germination. Moreover, upon abscisic acid treatment, six CaDOG1 genes exhibited upregulation, while in response to ethylene, four CaDOG1 genes exhibited downregulation. Taken together, these findings provide an extensive description of the C. annuum DOG1 gene family and might facilitate further studies for elucidating their functions in seed germination. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

24 pages, 13679 KiB  
Article
Seed Nanopriming with ZnO and SiO2 Enhances Germination, Seedling Vigor, and Antioxidant Defense Under Drought Stress
by Erick H. Ochoa-Chaparro, Juan J. Patiño-Cruz, Julio C. Anchondo-Páez, Sandra Pérez-Álvarez, Celia Chávez-Mendoza, Luis U. Castruita-Esparza, Ezequiel Muñoz Márquez and Esteban Sánchez
Plants 2025, 14(11), 1726; https://doi.org/10.3390/plants14111726 - 5 Jun 2025
Viewed by 697
Abstract
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use [...] Read more.
Drought stress is one of the main factors limiting seed germination and seedling establishment in field crops such as jalapeño peppers (Capsicum annuum L.). Nanopriming, a seed improvement technique using nanoparticle suspensions, has emerged as a sustainable approach to improving water use efficiency during the early stages of development. This study evaluated the effects of zinc oxide (ZnO, 100 mg·L−1), silicon dioxide (SiO2, 10 mg·L−1), and their combination (ZnO + SiO2), stabilized with chitosan, on the germination yield and drought tolerance of jalapeño seeds under mannitol-induced water stress (0%, 15%, and 30%). Compared to the hydroprimed control (T1), nanoparticle treatments consistently improved seed yield. Priming with ZnO (T2) increased the germination percentage by up to 25%, priming with SiO2 (T3) improved the germination rate by 34%, and the combined treatment (T4: ZnO + SiO2) improved the fresh weight of the seedlings by 40%. Proline accumulation increased 7.5 times, antioxidant capacity (DPPH) increased 6.5 times, and total phenol content increased 4.8 times in the combined treatment. Flavonoid levels also showed notable increases, suggesting enhanced antioxidant defense. These results clearly demonstrate the superior efficacy of nanoparticle pretreatment compared to conventional hydraulic pretreatment, especially under drought conditions. Multivariate analysis further highlighted the synergistic role of ZnO and SiO2 in improving osmolite accumulation, antioxidant activity, and water use efficiency. Nanopriming with ZnO and SiO2 offers a promising, economical, and scalable strategy to improve germination, early growth, and drought resistance in jalapeño pepper cultivation under semi-arid conditions. Full article
Show Figures

Figure 1

30 pages, 1714 KiB  
Review
A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications
by Alicia Dobón-Suárez, Pedro Javier Zapata and María Emma García-Pastor
Foods 2025, 14(11), 1969; https://doi.org/10.3390/foods14111969 - 1 Jun 2025
Cited by 1 | Viewed by 1055
Abstract
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting [...] Read more.
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting their significant nutritional value and diverse bioactive constituents. The substantial oil content, characterized by a high proportion of unsaturated fatty acids, such as linoleic and oleic acids, positions pepper seeds as a valuable source for edible oil and potential biofuel production. In addition, the presence of significant amounts of proteins, carbohydrates, dietary fibre and essential amino acids underlines their potential for the development of functional foods and dietary supplements. The current review also summarizes the findings on the phenolic profile and antioxidant activities of pepper seeds, indicating their relevance for nutraceutical and cosmetic applications. Finally, the potential utilization of pepper seeds in various agri-food industrial applications, such as food condiments, biostimulants, and biomass for energy, is discussed, promoting sustainability and a circular bioeconomy approach to valorise this underutilized resource. This systematic review summarizes current knowledge, identifies knowledge gaps, and highlights the potential of pepper seeds as a sustainable and economically viable alternative in multiple sectors. Full article
Show Figures

Graphical abstract

26 pages, 2959 KiB  
Review
Intelligent Recognition and Automated Production of Chili Peppers: A Review Addressing Varietal Diversity and Technological Requirements
by Sheng Tai, Zhong Tang, Bin Li, Shiguo Wang and Xiaohu Guo
Agriculture 2025, 15(11), 1200; https://doi.org/10.3390/agriculture15111200 - 31 May 2025
Cited by 2 | Viewed by 863
Abstract
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences [...] Read more.
Chili pepper (Capsicum annuum L.), a globally important economic crop, faces production challenges characterized by high labor intensity, cost, and inefficiency. Intelligent technologies offer key opportunities for sector transformation. This review begins by outlining the diversity of major chili pepper cultivars, differences in key quality indicators, and the resulting specific harvesting needs. It then reviews recent progress in intelligent perception, recognition, and automation within the chili pepper industry. For perception and recognition, the review covers the evolution from traditional image processing to deep learning-based methods (e.g., YOLO and Mask R-CNN achieving a mAP > 90% in specific studies) for pepper detection, segmentation, and fine-grained cultivar identification, analyzing the performance and optimization in complex environments. In terms of automation, we systematically discuss the principles and feasibility of different mechanized harvesting machines, consider the potential of vision-based keypoint detection for the point localization of picking, and explore motion planning and control for harvesting robots (e.g., robotic systems incorporating diverse end-effectors like soft grippers or cutting mechanisms and motion planning algorithms such as RRT) as well as seed cleaning/separation techniques and simulations (e.g., CFD and DEM) for equipment optimization. The main current research challenges are listed including the environmental adaptability/robustness, efficiency/real-time performance, multi-cultivar adaptability/flexibility, system integration, and cost-effectiveness. Finally, future directions are given (e.g., multimodal sensor fusion, lightweight models, and edge computing applications) in the hope of guiding the intelligent growth of the chili pepper industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

10 pages, 205 KiB  
Article
The Effects of Potassium on Plant Nutrient Concentration, Plant Development, and Rhizoctonia Rot (Rhizoctonia solani) in Pepper
by Ümit Bayındır and Zeliha Küçükyumuk
Horticulturae 2025, 11(5), 516; https://doi.org/10.3390/horticulturae11050516 - 10 May 2025
Viewed by 623
Abstract
Potassium has been identified as a vital nutrient for plant growth and functions. Studies have demonstrated its capacity to mitigate the severity of diseases by accelerating seed maturation and promoting robust root system development. In this study, we aimed to determine how increasing [...] Read more.
Potassium has been identified as a vital nutrient for plant growth and functions. Studies have demonstrated its capacity to mitigate the severity of diseases by accelerating seed maturation and promoting robust root system development. In this study, we aimed to determine how increasing potassium doses affect the nutrient content, dry weight, root weight, and resistance to Rhizoctonia rot of the pepper plant. Pepper seedlings were used as plant material, and potassium sulfate was employed as the potassium fertilizer in this study. The experiment involved applying four different potassium doses (0, 50, 100, and 150 kg ha−1) to pepper seedlings, along with RS0 (control) and RS1 (diseased plant) in four replicates. At the end of the study, analyses of the plants’ nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and boron (B) content, dry weights, and root weights were performed, in addition to disease assessments. An increase in N, P, K, Fe, and B content was observed with applied potassium doses, while a decrease in Mg content was noted. No significant change was detected in Cu content in pepper leaves, and the change in Mn content was not found to be statistically significant. An increase in plant dry weights was determined based on the applied treatments. The results indicated that plants subjected to potassium exhibited resistance to disease, an increase in root weights, and overall better conditions compared to samples without potassium. The best results in the experiments were achieved with the application of 150 kg ha−1 K2SO4. It was observed that certain rates of potassium had positive effects on disease factors by suppressing Rhizoctonia rot and can be used for biological control. Full article
25 pages, 4959 KiB  
Article
Research on Performance Predictive Model and Parameter Optimization of Pneumatic Drum Seed Metering Device Based on Backpropagation Neural Network
by Yilong Pan, Yaxin Yu, Junwei Zhou, Wenbing Qin, Qiang Wang and Yinghao Wang
Appl. Sci. 2025, 15(7), 3682; https://doi.org/10.3390/app15073682 - 27 Mar 2025
Viewed by 313
Abstract
This innovative method improves the inefficient optimization of the parameters of a pneumatic drum seed metering device. The method applies a backpropagation neural network (BPNN) to establish a predictive model and multi-objective particle swarm optimization (MOPSO) to search for the optimal solution. Six [...] Read more.
This innovative method improves the inefficient optimization of the parameters of a pneumatic drum seed metering device. The method applies a backpropagation neural network (BPNN) to establish a predictive model and multi-objective particle swarm optimization (MOPSO) to search for the optimal solution. Six types of small vegetable seeds were selected to conduct orthogonal experiments of seeding performance. The results were used to build a dataset for building a BPNN predictive model according to the inputs of the physical properties of the seed (thousand-grain weight, kernel density, sphericity, and geometric mean diameter) and the parameters of the device (vacuum pressure, drum rotational speed, and suction hole diameter). From this, the model output the seeding performance indices (the missing and reseeding indexes). The MOPSO algorithm uses the BPNN predictive model as a fitness function to search for the optimal solution for three types of seeds, and the optimized results were verified through bench experiments. The results show that the predicted qualified indices for tomato, pepper, and bok choi seeds are 85.50%, 85.52%, and 84.87%, respectively. All the absolute errors between the predicted and experimental results are less than 3%, indicating that the results are reliable and meet the requirements for efficient parameter optimization of a seed metering device. Full article
Show Figures

Figure 1

19 pages, 4762 KiB  
Review
Historical, Technological, Biochemical, and Microbiological Aspects of Pastirma, an Ethnic Meat Product from Asia to Anatolia: A Narrative Literature Review
by Alper Güngören
Sustainability 2025, 17(7), 2801; https://doi.org/10.3390/su17072801 - 21 Mar 2025
Cited by 2 | Viewed by 1008
Abstract
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, [...] Read more.
Pastirma is an ethnic meat product derived from dry curing, drying, and pressing the whole muscles of cattle and buffalo and coating them with a special paste containing fenugreek seed flour, garlic, milled red capia pepper, and water. In this narrative literature review, the history of pastirma, its definition and classification, detailed production steps, composition and yield, chemical and microbiological properties, pastirma fraud, and customer concerns are mentioned. In this narrative review, relevant studies were identified by searching Scopus, Science Direct, Web of Science, Trdizin, and Google Scholar, including articles, online reports, books, and electronic books in English or Turkish. The keywords “pastirma, cemen, cemening, cemen paste, fenugreek” were used. The results of this review indicate that future studies on pastirma may focus on the related cultural aspects, the elimination of unpleasant odor from fenugreek, providing a detailed grading guide, the histological and chemical effects of pressing meat parts, the kinetics of drying, osmotic dehydration, and developing new starter combinations. Additionally, this is the first article to provide information on grading and food fraud in pastirma. Full article
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Influence of Fruit Ripeness on Physiological Seed Quality of Maax Pepper (Capsicum annuum L. var. glabriusculum)
by María Gabriela Dzib-Ek, Rubén Humberto Andueza-Noh, René Garruña, Manuel Jesús Zavala-León, Eduardo Villanueva-Couoh, Benigno Rivera-Hernández, Walther Jesús Torres-Cab, Carlos Juan Alvarado-López and Roberto Rafael Ruíz-Santiago
Agronomy 2025, 15(3), 747; https://doi.org/10.3390/agronomy15030747 - 20 Mar 2025
Viewed by 669
Abstract
Capsicum annuum L. var. glabriusculum is a semi-domesticated species of economic importance; however, its establishment in commercial plantations has been hampered by the low germination and emergence rates of its seeds. The aim of this study was to evaluate the effect of the [...] Read more.
Capsicum annuum L. var. glabriusculum is a semi-domesticated species of economic importance; however, its establishment in commercial plantations has been hampered by the low germination and emergence rates of its seeds. The aim of this study was to evaluate the effect of the fruit ripening stage on seed germination and seedling emergence in C. annuum var. glabriusculum. Seeds were extracted from fruits with six different ripening stages. The evaluated traits were the germination and emergence percentages, germination and emergence rates, and 17 physical traits of the seeds. According to the results, seeds extracted from red, orange, and pinto fruits presented better germination and seedling emergence percentages (85, 86, and 82% and 95, 93, and 94%, respectively). A principal component analysis showed that some differences in the physical traits of the seed were associated with the fruit ripening stages and seed development. A canonical discriminant analysis showed a high correlation between the fruit ripening stages and the physical and physiological characteristics of the seed, allowing the formation of four groups. The fruit ripening stages (pinto, orange, and red) influence the germination of the seeds and the emergence of the seedlings of C. annuum L. var. glabriusculum, so obtaining seeds from physiologically ripe fruits allows for obtaining seeds of better quality. Full article
(This article belongs to the Special Issue Seeds: Chips of Agriculture)
Show Figures

Figure 1

27 pages, 11163 KiB  
Article
Impact of Industrial Hemp (Cannabis sativa L.) Extracts on Seed Germination and Seedling Growth: Evaluating Allelopathic Activity Across Various Extraction Methods
by Mirjana Kojić, Nataša Samardžić, Milena Popov, Aleksandra Gavarić, Senka Vidović, Nemanja Teslić, Tijana Zeremski, Anamarija Koren and Bojan Konstantinović
Agronomy 2025, 15(3), 684; https://doi.org/10.3390/agronomy15030684 - 12 Mar 2025
Viewed by 1052
Abstract
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts [...] Read more.
The noticeable reduction in plant species abundance near industrial hemp (Cannabis sativa L.) highlights the need to investigate its potential allelopathic effects on selected cultivars’ seed germination and seedling growth. Industrial hemp of the “Helena” variety was used to obtain aqueous extracts by conventional (macerate, hydrolate, and post-distillation residue) and green methods (ultrasonic and microwave extracts) in order to treat thirteen most commonly cultivated plant species, including lettuce, kohlrabi, onion, tomato, carrot, pepper, savoy cabbage, rocket, alfalfa, white mustard, pea, sunflower, and parsley. This is the first time that the allelopathic effects of seven different hemp extracts were tested simultaneously on thirteen different species. The extracts were applied at 10, 25, 50, and 100% concentrations. The seed germination percentage and root/shoot length results for all tested plants, except peas, clearly demonstrated an inhibitory effect of higher concentrations of hemp extracts. This effect was observed regardless of variations in chemical composition (CBD, THC, and total polyphenols), suggesting that different extracts have varying impacts on different species. The weakest inhibitory effect on the germination and seedling length for the majority of the tested plant species was noted for PDR, while the strongest inhibitory effect in terms of seedling length was observed in the case of MAE700. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

22 pages, 4666 KiB  
Article
Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants
by Matías G. Ferreyra, María M. Caffaro, Brenda Santamaría, Carla Zilli, Alejandra Hernández, Brenda L. Fina, Ada S. Vélez, Karina B. Balestrasse and Leandro Prevosto
Plants 2025, 14(5), 722; https://doi.org/10.3390/plants14050722 - 27 Feb 2025
Cited by 1 | Viewed by 1080
Abstract
Plasma-activated water (PAW) is a sustainable and innovative alternative for agriculture, especially in controlled environments like greenhouses. Tomato and pepper are key horticultural crops worldwide, with a considerable part of their production in greenhouses. This study examined the effects of PAW irrigation on [...] Read more.
Plasma-activated water (PAW) is a sustainable and innovative alternative for agriculture, especially in controlled environments like greenhouses. Tomato and pepper are key horticultural crops worldwide, with a considerable part of their production in greenhouses. This study examined the effects of PAW irrigation on seed germination, plant growth, and oxidative stress in tomato and bell pepper plants. PAW was activated for up to 15 min using a 1 L capacity plasma reactor based on a glow-type discharge in air with water-cathode. The concentration of nitrogen compounds and the energy efficiency of synthesis obtained with the reactor were moderately high (5.4 mM and 60 nmol/J, respectively). The most notable effects of PAW were observed in bell pepper. The germination percentage in bell pepper increased by up to 26%, while no significant effects were found in tomato seeds. PAW irrigation significantly promoted plant growth, with dry weight increasing by up to 61% in bell pepper and 42% in tomato. Lipid peroxidation results showed no oxidative damage in either crop. The biochemical analysis of antioxidant enzymes (catalase, superoxide dismutase, and guaiacol peroxidase) confirmed that plant defense systems responded adequately to PAW irrigation. These results highlight PAW’s potential as an innovative and eco-friendly alternative in agriculture. Full article
Show Figures

Figure 1

17 pages, 1737 KiB  
Article
Characterization of New Flavored Oils Obtained Through the Co-Milling of Olives and Vegetable Food Products
by Celeste Lazzarini, Matilde Tura, Mara Mandrioli, Marco Setti, Noureddine Mokhtari, Abdelaziz Ait Elkassia, Sara Barbieri, Enrico Valli, Alessandra Bendini and Tullia Gallina Toschi
Foods 2025, 14(4), 687; https://doi.org/10.3390/foods14040687 - 17 Feb 2025
Cited by 1 | Viewed by 713
Abstract
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, [...] Read more.
Consumers are increasingly attracted to innovative, gourmand, and sustainable food products. This has led to a growing interest in flavored olive oils through co-milling processing. This study explores the production and characterization of flavored olive oils obtained by co-milling olives with orange pomace, black pepper, and hemp seeds, aiming to enhance their sensory and compositional properties while promoting sustainability through the valorization of agri-food by-products. The flavored olive oils and their control samples were analyzed for free acidity, tocopherols, phenolic compounds, volatiles, and sensory profiles. The flavored oils exhibited an acceptable hydrolytic state and peculiar sensory notes, depending on the ingredients used, as well as enhanced compositional qualities. This research highlights the potential of using oranges and hemp by-products in flavored oil production, offering an innovative approach to reducing food waste, with the possibility of future industrial applications. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

25 pages, 1669 KiB  
Article
Enhancing Commercial Gourmet Oil Quality: The Role of Dried Cayenne Pepper Red (Capsicum annuum L.) as a Natural Additive
by Zuzana Knazicka, Branislav Galik, Ivana Novotna, Julius Arvay, Katarina Fatrcova-Sramkova, Miroslava Kacaniova, Jiri Mlcek, Eva Kovacikova, Eva Mixtajova, Tunde Jurikova, Eva Ivanisova, Adriana Kolesarova and Hana Duranova
Molecules 2025, 30(4), 927; https://doi.org/10.3390/molecules30040927 - 17 Feb 2025
Viewed by 1286
Abstract
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the [...] Read more.
This study assessed the potential of dried Cayenne pepper (CP; Capsicum annuum L.) as a natural additive to rice bran oil (RBO), grape seed oil (GSO), and virgin olive oil (OO). Key analyses included peroxide and acid values, oxidative stability (Rancimat method), the composition of fatty acids (FAs) (GC-FID method), antioxidant activity (AA; DPPH method), and antimicrobial properties (disc diffusion method). Capsaicin and the dihydrocapsaicin contents in CP were quantified (HPLC-DAD method) as 1499.37 ± 3.64 and 1449.04 ± 5.14 mg/kg DW, respectively. Oleic acid (C18:1cis n9) dominated in OO (69.70%), OO-CP (69.73%), and RBO-CP (38.97%), while linoleic acid (C18:2cis n6) prevailed in RBO (41.34%), GSO (57.93%), and GSO-CP (58.03%). The addition of CP influenced the FA profile, particularly linoleic acid in OO and RBO, and all FAs in GSO. Peroxide and acid values increased significantly in RBO and GSO upon CP addition, but induction times remained unaffected. The strongest AA (77.00 ± 0.13%) was observed in OO-CP. Cayenne pepper significantly enhanced the antioxidant profiles of all oils compared to the counterparts. However, the antimicrobial activity was weak (≤5.0 mm inhibition zones) against tested microorganisms. These findings support CP as a functional additive for enhancing the nutritional and functional properties of gourmet oils, while highlighting the need for further optimization to improve stability and bioactivity. Full article
(This article belongs to the Special Issue New Insight into Edible Oil: From Food Chemistry to Health Benefits)
Show Figures

Figure 1

19 pages, 19857 KiB  
Article
A Plug Seedling Growth-Point Detection Method Based on Differential Evolution Extra-Green Algorithm
by Hongmei Xia, Shicheng Zhu, Teng Yang, Runxin Huang, Jianhua Ou, Lingjin Dong, Dewen Tao and Wenbin Zhen
Agronomy 2025, 15(2), 375; https://doi.org/10.3390/agronomy15020375 - 31 Jan 2025
Viewed by 689
Abstract
To produce plug seedlings with uniform growth and which are suitable for high-speed transplanting operations, it is essential to sow seeds precisely at the center of each plug-tray hole. For accurately determining the position of the seed covered by the substrate within individual [...] Read more.
To produce plug seedlings with uniform growth and which are suitable for high-speed transplanting operations, it is essential to sow seeds precisely at the center of each plug-tray hole. For accurately determining the position of the seed covered by the substrate within individual plug-tray holes, a novel method for detecting the growth points of plug seedlings has been proposed. It employs an adaptive grayscale processing algorithm based on the differential evolution extra-green algorithm to extract the contour features of seedlings during the early stages of cotyledon emergence. The pixel overlay curve peak points within the binary image of the plug-tray’s background are utilized to delineate the boundaries of the plug-tray holes. Each plug-tray hole containing a single seedling is identified by analyzing the area and perimeter of the seedling’s contour connectivity domains. The midpoint of the shortest line between these domains is designated as the growth point of the individual seedling. For laboratory-grown plug seedlings of tomato, pepper, and Chinese kale, the highest detection accuracy was achieved on the third-, fourth-, and second-days’ post-cotyledon emergence, respectively. The identification rate of missing seedlings and single seedlings exceeded 97.57% and 99.25%, respectively, with a growth-point detection error of less than 0.98 mm. For tomato and broccoli plug seedlings cultivated in a nursery greenhouse three days after cotyledon emergence, the detection accuracy for missing seedlings and single seedlings was greater than 95.78%, with a growth-point detection error of less than 2.06 mm. These results validated the high detection accuracy and broad applicability of the proposed method for various seedling types at the appropriate growth stages. Full article
Show Figures

Figure 1

Back to TopTop