Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (612)

Search Parameters:
Keywords = peak-cut

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3120 KB  
Article
Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy
by Fahad M. Alqahtani, Mustafa Saleh, Abdelaty E. Abdelgawad, Ibrahim A. Almuhaidib and Faisal Alessa
Machines 2025, 13(11), 1051; https://doi.org/10.3390/machines13111051 - 13 Nov 2025
Abstract
Electron beam melting (EBM) is an additive manufacturing method that enables the manufacturing of metallic parts. EBM-printed parts require post-processing to meet the surface quality and dimensional accuracy requirements. Machining is one approach that is beneficial for achieving these requirements. However, during machining, [...] Read more.
Electron beam melting (EBM) is an additive manufacturing method that enables the manufacturing of metallic parts. EBM-printed parts require post-processing to meet the surface quality and dimensional accuracy requirements. Machining is one approach that is beneficial for achieving these requirements. However, during machining, particles are emitted and can affect the environment and the operator’s health. This study aims to investigate the concentration of particles emitted during the milling of 3D-printed Ti6Al4V alloy produced by EBM. First, the influence of machining speed and cutting fluids, namely flood and minimum quantity lubricant (MQL), on particle emissions was statistically investigated. Then, the standby time required for the operator to safely open the machine door and interact with the machine within the machining area was studied. In this regard, two scenarios were proposed. In the first scenario, the machine door is open immediately after machining, and the operator waits until the particle concentration is acceptable. In the second, the machine door will be opened only when the particle concentration is acceptable. Statistical findings revealed that cutting fluids have a significant impact on particle emissions, exhibiting distinct patterns for both fine and coarse particles. Irrespective of the scenario, MQL results in higher particle concentration peaks and larger particle sizes, and the operator needs a longer standby time before interacting with the machine. For instance, the standby time in MQL is 328% more than that of the flood system. This study provides insight into sustainable manufacturing by taking into account social factors such as worker health and safety. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

24 pages, 3398 KB  
Article
Curvature-Adoptive CNC Machining of Freeform Optics via Dynamic Tangential Toolpath Optimization
by Ravi Pratap Singh and Yaolong Chen
Materials 2025, 18(22), 5153; https://doi.org/10.3390/ma18225153 - 13 Nov 2025
Abstract
The manufacturing of freeform optical lenses, essential for advanced applications such as Earth observation and laser fusion, demands exceptional surface accuracy and lightweight designs. However, their complex, non-symmetrical geometries present significant manufacturing challenges. Conventional CNC machining strategies, which rely on fixed Cartesian step [...] Read more.
The manufacturing of freeform optical lenses, essential for advanced applications such as Earth observation and laser fusion, demands exceptional surface accuracy and lightweight designs. However, their complex, non-symmetrical geometries present significant manufacturing challenges. Conventional CNC machining strategies, which rely on fixed Cartesian step sizes, are inherently inefficient for surfaces with rapidly varying curvature. This inadequacy results in non-uniform material removal, prolonged machining times, and substandard surface quality. This study presents a novel curvature-adaptive machining strategy based on dynamic tangential toolpath optimization. The method continuously aligns the toolpath with the local surface geometry to maintain uniform cutting conditions. A dedicated computer-aided manufacturing (CAM) software environment was developed to generate the optimized toolpaths and corresponding G-code. Experimental validation on representative freeform optics demonstrated a substantial improvement in precision: a single error-compensation iteration achieved a reduction in peak-to-valley form error of up to 48.4%. The results confirm that the proposed strategy significantly outperforms conventional fixed-step methods, delivering superior surface finish, reduced machining time, and enhanced process flexibility without requiring specialized hardware. This work establishes a practical and high-precision advancement for the manufacture of high-performance freeform optical systems. Full article
(This article belongs to the Special Issue Recent Advances in Precision Manufacturing Technology)
Show Figures

Graphical abstract

21 pages, 13092 KB  
Article
Study on the Influence of the Mechanical Characteristics of the Cutting-Type Anti-Climbing Energy Absorber on the Collision Behavior of the GFRP Head Cover for Subways
by Xuan Liu, Ping Xu, Yifan Hu, Ying Gao and Dongtao Wang
Machines 2025, 13(11), 1043; https://doi.org/10.3390/machines13111043 - 12 Nov 2025
Viewed by 61
Abstract
Anti-climbing energy absorbers (AEAs) are often installed at the ends of subway vehicles to prevent climbing in the event of a head-on collision or rear-end collision, thereby improving safety performance. To reduce the air resistance of the vehicle during operation, the AEA is [...] Read more.
Anti-climbing energy absorbers (AEAs) are often installed at the ends of subway vehicles to prevent climbing in the event of a head-on collision or rear-end collision, thereby improving safety performance. To reduce the air resistance of the vehicle during operation, the AEA is usually wrapped with the GFRP head cover. However, the collision behavior of the head cover during a collision requires further research. The effects of mechanical properties of cutting anti-climbing energy absorbers (CAEAs) on the collision behavior of glass fiber reinforced polymer (GFRP) head covers for subway vehicles are investigated in this study. Firstly, the force–displacement curve of the CAEA was obtained through a dynamic impact test, and the finite element (FE) model of the CAEA with a GFRP head cover was constructed and verified. Subsequently, the effects of the four mechanical characteristics of the CAEA (i.e., initial peak crushing force (IPCF), platform force, compaction force, and eccentric height difference) on the collision behavior of the GFRP head cover were systematically analyzed. The results show that the increase in IPCF improves the energy absorption of CAEA, but that damage and stress concentration of the head cover at the moving end also occur. The increase in platform force induced the premature fracture of the GFRP head cover. The collision behavior of the head cover reaches a critical value when the compaction force is between 2500 and 3000 kN. Increasing the eccentric height difference between the anti-climbing teeth weakens the cutting energy absorption efficiency of CAEA and changes its deformation mode. This study can provide important insights into the design and optimization of anti-climbing energy absorbers for subway vehicles, and has important engineering value for improving the durability of the head cover and the collision safety of the vehicle. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

18 pages, 1938 KB  
Review
Bibliometric Analysis of Global Research on Sugarcane Production and Its Effects on Biodiversity: Trends, Critical Points, and Knowledge Gaps
by Eduardo Rodrigues dos Santos, William Douglas Carvalho and Karen Mustin
Conservation 2025, 5(4), 67; https://doi.org/10.3390/conservation5040067 - 11 Nov 2025
Viewed by 169
Abstract
The rising global demand for renewable energy and the urgency of mitigating climate change have positioned biofuels, particularly sugarcane ethanol, at the forefront of sustainability and conservation debates. Although promoted as a renewable alternative, sugarcane cultivation can cause habitat loss, biodiversity decline, soil [...] Read more.
The rising global demand for renewable energy and the urgency of mitigating climate change have positioned biofuels, particularly sugarcane ethanol, at the forefront of sustainability and conservation debates. Although promoted as a renewable alternative, sugarcane cultivation can cause habitat loss, biodiversity decline, soil degradation, and water contamination. This study presents a bibliometric assessment of 217 publications addressing the biodiversity impacts of sugarcane production, based on searches in the Web of Science Core Collection for papers published between 1998 and 2023. Using the bibliometrix package in R, we identified key publication trends, collaboration networks, and thematic structures. Between 1998 and 2006, no studies were returned by our searches, after which research activity increased substantially, peaking in 2021. Brazil, the world’s largest sugarcane producer, was the most frequent contributor to scientific output, while other major sugarcane producers, such as Thailand and India, showed limited engagement. Thematic mapping of the studies returned by our searches revealed three clusters: (1) cross-cutting themes linking sugarcane, biodiversity, and sustainability; (2) niche themes on pest and soil dynamics; and (3) emerging themes on the ecological role of bats in sugarcane landscapes. Overall, the findings highlight the growing academic engagement in reconciling bioenergy development with biodiversity conservation. Full article
Show Figures

Figure 1

29 pages, 5132 KB  
Article
Mechanism of a Composite Energy Field for Inhibiting Damage in High-Silicon Aluminum Alloy During Micro-Turning
by Jiaxin Zhao, Yan Gu, Yamei Liu, Lingling Han, Bin Fu, Xiaoming Zhang, Shuai Li, Jinlong Chen and Hongxin Guo
Micromachines 2025, 16(11), 1263; https://doi.org/10.3390/mi16111263 - 7 Nov 2025
Viewed by 212
Abstract
Composite materials are widely utilized for their excellent properties; however, the mismatch in phase response during processing often induces surface and subsurface damage. While reducing the cutting depth is a common strategy to improve quality, it shifts the material removal mechanism from shear [...] Read more.
Composite materials are widely utilized for their excellent properties; however, the mismatch in phase response during processing often induces surface and subsurface damage. While reducing the cutting depth is a common strategy to improve quality, it shifts the material removal mechanism from shear to ploughing–extrusion, which can, in fact, degrade the final surface integrity. Energy field assistance is a promising approach to suppress this issue, yet its underlying mechanism remains insufficiently understood. This study investigates high-silicon aluminum alloy by combining turning experiments with molecular dynamics simulations to elucidate the origin and evolution of damage under different energy fields, establishing a correlation between microscopic processes and observable defects. In conventional turning, damage propagation is driven by particle accumulation and dislocation interlocking. Ultrasonic vibration softens the material and confines plastic deformation to the near-surface region, although excessively high transient peaks can lead to process instability. Laser remelting turning disperses stress within the remelted layer, significantly inhibiting defect expansion, but its effectiveness is highly sensitive to variations in cutting depth. The hybrid approach, laser remelting ultrasonic vibration turning, leverages the dispersion buffering effect of the remelted layer and the localized plastic deformation from ultrasonication to reduce peak loads, control deformation depth, and suppress defects, while simultaneously mitigating the depth sensitivity of damage and maintaining removal efficiency. This work clarifies the mechanism by which a composite energy field controls damage in the micro-cutting of high-silicon aluminum alloy, providing practical guidance for the high-quality machining of composite materials. Full article
Show Figures

Graphical abstract

18 pages, 1934 KB  
Article
Testing ACL-Reconstructed Football Players on the Field: An Algorithm to Assess Cutting Biomechanics Injury Risk Through Wearable Sensors
by Stefano Di Paolo, Marianna Viotto, Margherita Mendicino, Chiara Valastro, Alberto Grassi and Stefano Zaffagnini
Sports 2025, 13(11), 391; https://doi.org/10.3390/sports13110391 - 5 Nov 2025
Viewed by 482
Abstract
Anterior cruciate ligament (ACL) injuries in football mostly occur during defensive (pressing) cut maneuvers. Football-specific cutting movements are key to identifying dangerous biomechanics but hard to evaluate clinically. This study aimed to develop a practical field-based tool—Anterior Cruciate Ligament Injury Risk Profile Detection [...] Read more.
Anterior cruciate ligament (ACL) injuries in football mostly occur during defensive (pressing) cut maneuvers. Football-specific cutting movements are key to identifying dangerous biomechanics but hard to evaluate clinically. This study aimed to develop a practical field-based tool—Anterior Cruciate Ligament Injury Risk Profile Detection (ACL-IRD)—to assess ACL injury risk during return to sport (RTS). It was hypothesized that the ACL-IRD could detect ACL injury risk profiles after ACLR players had RTS clearance. Sixty-one footballers (21 ACLR, 40 healthy; 16.2 ± 2.2 years old, >14 months post-surgery) were tested on a regular football pitch. Players performed pre-planned (AGTT) and unplanned football-specific cut maneuvers simulating defensive pressing (FS deceiving action). Kinematic data were collected via eight wearable inertial sensors (MTw Awinda, Movella) on trunk and lower limbs. The ACL-IRD analyzed biomechanics in three risk categories, knee valgus collapse, sagittal knee loading, and trunk–pelvis imbalance, using thresholds from healthy players. A clinician-friendly, automatic report was generated. At-risk biomechanics were identified in 36–37/104 AGTT trials and 25–41/97 FS deceiving actions (at initial contact and peak knee flexion). Over 60% of risky trials involved the ACLR limb. Major risk factors were altered knee/hip flexion ratio, knee valgus, and hip abduction. The ACL-IRD is a novel, clinical-friendly tool designed to identify potential ACL injury risk profiles and is intended to support safer RTS decisions. Full article
Show Figures

Figure 1

20 pages, 3065 KB  
Article
Investigating the Impact of E-Mobility on Distribution Grids in Rural Communities: A Case Study
by Marcus Brennenstuhl, Pawan Kumar Elangovan, Dirk Pietruschka and Robert Otto
Energies 2025, 18(21), 5819; https://doi.org/10.3390/en18215819 - 4 Nov 2025
Viewed by 212
Abstract
Germany’s energy transition to a higher share of renewable energy sources (RESs) is characterized by decentralization, with citizens, cooperatives, SMEs, and municipalities playing a central role. As of early 2025, private individuals own a significant share of renewable energy installations, particularly PV panels, [...] Read more.
Germany’s energy transition to a higher share of renewable energy sources (RESs) is characterized by decentralization, with citizens, cooperatives, SMEs, and municipalities playing a central role. As of early 2025, private individuals own a significant share of renewable energy installations, particularly PV panels, which corresponds to approximately half of the total installed PV power. This trend is driven by physical, technological, and societal factors. Technological advances in battery storage and sector coupling are expected to further decentralize the energy system. Thereby, the electrification of mobility, particularly through electric vehicles (EVs), offers significant storage potential and grid-balancing capabilities via bidirectional charging, although it also introduces challenges, especially for distribution grids during peak loads. Within this work we present a detailed digital twin of the entire distribution grid of the rural German municipality of Wüstenrot. Using grid operator data and transformer measurements, we evaluate strategic expansion scenarios for electromobility, PV and heat pumps based on existing infrastructure and predicted growth in both public and private sectors. A core focus is the intelligent integration of EV charging infrastructure to avoid local overloads and to optimise grid utilisation. Thereby municipally planned and privately driven expansion scenarios are compared, and grid bottlenecks are identified, proposing solutions through charge load management and targeted infrastructure upgrades. This study of Wüstenrot’s low-voltage grid reveals substantial capacity reserves for future integration of heat pumps, electric vehicles (EVs), and photovoltaic systems, supporting the shift to a sustainable energy system. While full-scale expansion would require significant infrastructure investment, mainly due to widespread EV adoption, simple measures like temporary charge load reduction could cut grid stress by up to 51%. Additionally, it is shown that bidirectional charging offers further relief and potential income for EV owners. Full article
Show Figures

Figure 1

38 pages, 3896 KB  
Article
Addressing Spatiotemporal Mismatch via Hourly Pipeline Scheduling: Regional Hydrogen Energy Supply Optimization
by Lei Yu, Xinhao Lin, Yinliang Liu, Shuyin Duan, Lvzerui Yuan, Yiyong Lei, Xueyan Wu and Qingwei Li
Energies 2025, 18(21), 5790; https://doi.org/10.3390/en18215790 - 3 Nov 2025
Viewed by 216
Abstract
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and [...] Read more.
The rapid adoption of hydrogen fuel cell vehicles (HFCVs) in the Beijing–Tianjin–Hebei (BTH) hub accentuates the mismatch between renewable-based hydrogen supply in Hebei and concentrated demand in Beijing and Tianjin. We develop a mixed-integer linear model that co-configures a hydrogen pipeline network and optimizes hourly flow schedules to minimize annualized cost and CO2 emissions simultaneously. For 15,000 HFCVs expected in 2025 (137 t d−1 demand), the Pareto-optimal design consists of 13 production plants, 43 pipelines and 38 refueling stations, delivering 50 767 t yr−1 at 68% pipeline utilization. Hebei provides 88% of the hydrogen, 70% of which is consumed in the two megacities. Hourly profiles reveal that 65% of electrolytic output coincides with local wind–solar peaks, whereas refueling surges arise during morning and evening rush hours; the proposed schedule offsets the 4–6 h mismatch without additional storage. Transport distances are 40% < 50 km, 35% 50–200 km, and 25% > 200 km. Raising the green hydrogen share from 10% to 70% increases total system cost from USD 1.56 bn to USD 2.73 bn but cuts annual CO2 emissions from 142 kt to 51 kt, demonstrating the trade-off between cost and decarbonization. The model quantifies the value of sub-day pipeline scheduling in resolving spatial–temporal imbalances for large-scale low-carbon hydrogen supply. Full article
Show Figures

Figure 1

23 pages, 23857 KB  
Article
Differential Changes in Water and Sediment Transport Under the Influence of Large-Scale Reservoirs Connected End to End in the Upper Yangtze River
by Suiji Wang
Hydrology 2025, 12(11), 292; https://doi.org/10.3390/hydrology12110292 - 3 Nov 2025
Viewed by 353
Abstract
The analysis of changing trends of river runoff and sediment discharge and the exploration of their causes are of great significance for formulating sustainable development measures for river basin systems. Based on methods such as trend test, mutation detection, and regression analysis, this [...] Read more.
The analysis of changing trends of river runoff and sediment discharge and the exploration of their causes are of great significance for formulating sustainable development measures for river basin systems. Based on methods such as trend test, mutation detection, and regression analysis, this study conducts a systematic comparative research on the water–sediment processes in the river reach where large-scale cascaded reservoirs connected end to end are located in the upper Yangtze River, and obtains the following key research progress: For the study reach (between Sanduizi and Xiangjiaba Stations), during the period of 1966–2023, the change rates of annual incoming and outgoing runoff were 2.88 × 108 m3·yr−1 and −0.186 × 108 m3·yr−1, respectively, accounting for 0.017% and 0.013% of the annual average runoff. The changing trends were not significant. During the same period, the change rates of Suspended Sediment Load (SSL) at the inlet and outlet of this river reach were −8.0 × 105 t·yr−1 and −46 × 105 t·yr−1, respectively, accounting for 1.25% and 2.45% of their respective annual average sediment discharge. The SSL showed a significant decreasing trend, which was particularly characterized by a sharp reduction at the outlet. The massive sediment retention and multi-mode operation of cascaded reservoirs are the fundamental reasons for the variation in the water–sediment relationship and the sharp decrease in annual SSL in this reach, and they also lead to an obvious adjustment of water and sediment in the river basin that “cuts peaks and fills valleys” within a year. Climate change and other human activities have reduced the sediment input in the study reach. Looking forward to the next few decades, climate factors will remain the dominant factor affecting the inter-annual variation in runoff in the study area. In contrast, human activities such as reservoir operation will continue to fully control the sediment output of the river reach and also restrict the annual distribution of water and sediment. The results of this study can provide a reference for predicting the changing trends of water and sediment in similar river reaches with cascaded reservoir groups and formulating effective river management measures. Full article
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Flame-Retardant Properties of a Styrene-Vinyl Tetrazole Copolymer Additive in an LDPE/EVA Blend
by Karla Fabiola Rodríguez Ramírez, Jesús Francisco Lara Sánchez, Orlando Castro Reyna, Pedro Espinoza Martínez, Jesús Alejandro Espinosa Muñoz, José David Zuluaga Parra, Rachel Faverzani Magnago, Saul Sanchez Valdés and Luciano da Silva
Polymers 2025, 17(21), 2933; https://doi.org/10.3390/polym17212933 - 31 Oct 2025
Viewed by 558
Abstract
In this work, we report the effect of combining styrene-vinyl tetrazole copolymer (StVTz) and ammonium polyphosphate (APP) on the thermal degradation, mechanical properties, flame retardancy, and char formation of low-density polyethylene with ethyl vinyl acetate (LDPE/EVA) composites. The tetrazole heterocycle exhibits high thermal [...] Read more.
In this work, we report the effect of combining styrene-vinyl tetrazole copolymer (StVTz) and ammonium polyphosphate (APP) on the thermal degradation, mechanical properties, flame retardancy, and char formation of low-density polyethylene with ethyl vinyl acetate (LDPE/EVA) composites. The tetrazole heterocycle exhibits high thermal stability (>200 °C), and during its thermal decomposition, it releases non-toxic nitrogen gas. Its degradation generates reactive species capable of cross-linking the polymer chains, thereby promoting the formation of a protective char layer. To evaluate the influence of composition on the intumescent flame-retardant (IFR) properties of LDPE/EVA blends, different concentrations of APP and StVTz additives were incorporated. The composites were prepared in an internal mixer (Brabender Intelli-Torque Plasti-Corder). Test specimens were obtained by compression molding and subsequently cut into appropriate shapes for each analysis. Thermal stability was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Mechanical properties were evaluated by tensile testing. Morphology of cone calorimetry (CC) residues was examined using SEM. Flammability properties, studied using CC, revealed a 70% reduction in the peak heat release rate (pHRR) and a 48% reduction in the total heat release (THR) compared to the neat LDPE/EVA blend. These results indicate that StVTz and APP act synergistically to improve the flame-retardant properties of LDPE/EVA. Full article
(This article belongs to the Special Issue Advances in Flame-Retardant and Heat-Resistant Polymeric Materials)
Show Figures

Figure 1

19 pages, 3502 KB  
Article
An All-Solid-State PFN Generator Based on SPT and Fast Recovery Diode
by Longyu Zhuang, Jie Zhuang and Junfeng Rao
Electronics 2025, 14(21), 4274; https://doi.org/10.3390/electronics14214274 - 31 Oct 2025
Viewed by 229
Abstract
This study presents a pulse generator employing a saturable pulse transformer (SPT) in conjunction with a fast recovery diode, integrated within an all-solid-state pulse-forming network (PFN). The saturation inductance of the SPT serves as a component of the initial LC section of the [...] Read more.
This study presents a pulse generator employing a saturable pulse transformer (SPT) in conjunction with a fast recovery diode, integrated within an all-solid-state pulse-forming network (PFN). The saturation inductance of the SPT serves as a component of the initial LC section of the PFN, thereby contributing to the preservation of output waveform integrity. The secondary energy storage capacitor is charged through the primary circuit and the SPT, subsequently discharging into the load under the regulation of the SPT. An increase in the SPT’s transformation ratio corresponds to a rise in its saturated inductance, which in turn prolongs the pulse rise time. To mitigate this effect, a fast recovery diode is incorporated to sharpen the pulse front. Specifically, upon saturation of the SPT, current reverses through the fast recovery diode, effectively short-circuiting the load. When the inductor current attains a predetermined threshold, the diode reverts to reverse cut-off and rapidly switches off, enabling the PFN to discharge swiftly into the load and generate a high-voltage pulse characterized by a rapid rising edge. Furthermore, augmenting the number of secondary windings on the SPT—each connected to a PFN module—and arranging multiple PFNs in series facilitates an increase in output voltage. Experimental evaluations demonstrated that a three-stage PFN pulse generator attained a peak voltage of −16.9 kV on an 80 Ω matched load, with pulse currents exceeding 200 A while maintaining a 19 ns front edge. These results indicate that the proposed approach is effective for producing high-voltage, narrow pulses with rapid rise times. Additionally, the pulse power generator is capable of delivering repetitive pulses of −16.9 kV at a frequency of 20 kHz in burst mode. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

28 pages, 16710 KB  
Article
Optimization of Vane Number for Coal Loading in Shearer Drums (1400 mm and 2240 mm) via Discrete Element Modeling
by Weipeng Xu, Qiulai Huang, Wenhe Zhang, Shengru Zhang, Ziyao Ma, Kuidong Gao and Ning Jiang
Appl. Sci. 2025, 15(21), 11522; https://doi.org/10.3390/app152111522 - 28 Oct 2025
Viewed by 247
Abstract
The loading rate of coal is significantly influenced by the number of vanes on shearer drums. However, in actual production, 1400 mm diameter drums feature two-vane and three-vane designs, while 2240 mm diameter ones have three-vane and four-vane designs, with the vane number [...] Read more.
The loading rate of coal is significantly influenced by the number of vanes on shearer drums. However, in actual production, 1400 mm diameter drums feature two-vane and three-vane designs, while 2240 mm diameter ones have three-vane and four-vane designs, with the vane number corresponding to the optimal coal-loading rate remaining unclear. To reveal the correlation between vane number and coal-loading rate for such drums, parameters were calibrated through multiple physical tests in this study. Supported by field data, simulation analyses were conducted via the discrete element method to investigate the effect of the vane number on the drum coal-loading rate under different moisture contents and traction speeds. The results indicated that particle adhesion initially increases and then decreases with the moisture content, with the peak characteristics influenced by the particle size. Particle movement during drum coal mining is jointly governed by multiple factors. For 1400 mm drums, two or three vanes should be selected depending on moisture fluctuations and coal transportation requirements, whereas for 2240 mm drums, three or four vanes are recommended based on the balance between coal-cutting volume, conveying capacity, and traction speed. Full article
Show Figures

Figure 1

17 pages, 3897 KB  
Article
Physical–Mechanical and Corrosion Resistance Characterization of a Water-Based Epoxy Primer Applied to Galvanized Steel
by Rosalia Galiotto, Solidea Zanetti, Rocco Traini and Luca Pezzato
Metals 2025, 15(11), 1196; https://doi.org/10.3390/met15111196 - 27 Oct 2025
Viewed by 272
Abstract
This study presents a comprehensive characterization of a commercial water-based epoxy primer applied to galvanized steel sheets, which are commonly used in building and construction applications. The investigation focused on evaluating the primer’s adhesion, mechanical strength, chemical resistance, and corrosion protection under various [...] Read more.
This study presents a comprehensive characterization of a commercial water-based epoxy primer applied to galvanized steel sheets, which are commonly used in building and construction applications. The investigation focused on evaluating the primer’s adhesion, mechanical strength, chemical resistance, and corrosion protection under various environmental and thermal conditions. Particular attention was given to the effect of substrate sanding prior to application, which was found to influence the coating thickness and surface adaptation. The results demonstrated that the primer provides effective barrier properties and good adhesion to the metal surface, with average pull-off strengths remaining consistent across aged and unaged samples. Electrochemical impedance spectroscopy (EIS) confirmed high polarization resistance values, indicating strong corrosion protection, while SEM-EDS analysis revealed the presence of zinc phosphate and titanium dioxide fillers contributing to both passive and active inhibition mechanisms. However, the primer exhibited sensitivity to ultraviolet (UV) radiation, as evidenced by FT-IR spectra showing increased absorbance in the hydroxyl and carbonyl regions after prolonged exposure. A preliminary estimation of the photodegradation rate, based on FT-IR data at the carbonyl peak (1739 cm−1), yielded a value of approximately 2 × 10−6 absorbance units per hour between 3000 h and 5000 h of UV exposure. This value suggests a gradual degradation process, although further quantitative validation is required. Additional limitations were observed, including variability in coating thickness due to manual application and localized blistering at cut edges under salt spray conditions. These findings contribute to a deeper understanding of the primer’s behavior and suggest improvements for its practical use, such as the application of a protective topcoat and optimization of the coating process. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials)
Show Figures

Figure 1

21 pages, 1703 KB  
Article
Beyond Biomarkers: Blending Copeptin and Clinical Cues to Distinguish Central Diabetes Insipidus from Primary Polydipsia in Children
by Diana-Andreea Ciortea, Carmen Loredana Petrea (Cliveți), Gabriela Isabela Verga (Răuță), Sorin Ion Berbece, Gabriela Gurău, Silvia Fotea and Mădălina Nicoleta Matei
Biomedicines 2025, 13(10), 2573; https://doi.org/10.3390/biomedicines13102573 - 21 Oct 2025
Viewed by 523
Abstract
Background: Polyuria–polydipsia syndrome (PPS) in children poses a major diagnostic challenge, as central diabetes insipidus (CDI) and primary polydipsia (PP) require distinct treatments. Although copeptin is a robust diagnostic biomarker, using only fixed thresholds may not adequately support decision making in borderline [...] Read more.
Background: Polyuria–polydipsia syndrome (PPS) in children poses a major diagnostic challenge, as central diabetes insipidus (CDI) and primary polydipsia (PP) require distinct treatments. Although copeptin is a robust diagnostic biomarker, using only fixed thresholds may not adequately support decision making in borderline cases. To address this gap, we evaluated a multimodal diagnostic approach that integrates copeptin dynamics with clinical profiling. Methods: In a prospective diagnostic study (2019–2025), 24 children with PPS (CDI = 11, PP = 13) underwent hypertonic saline testing with serial sodium, osmolality, and copeptin sampling. Predictors included stimulated copeptin, peak sodium, peak osmolality, test duration, and tolerability. A Ridge regression model was applied and internally validated with stratified cross-validation. Results: Stimulated copeptin was the strongest discriminator, while sodium/osmolality dynamics and tolerability provided complementary value. The multimodal model achieved cross-validated AUC of 0.937 with 83.3% accuracy, and the procedure was safe and feasible in children. These findings support moving beyond biomarker cut-offs toward integrative diagnostic approaches that better reflect real-world clinical practice. Conclusions: Combining copeptin with clinical profiling in a penalized regression framework yields a robust and interpretable tool for distinguishing CDI from PP. More broadly, such integrative models may enhance diagnostic precision in rare pediatric disorders and provide a foundation for future multicenter validation and clinical decision-support applications. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 7305 KB  
Article
Integration of Physiological and Transcriptomic Analyses Provides Insights into the Regulatory Mechanisms of Adventitious Root Formation in Phoebe bournei Cuttings
by Yuhua Li, Haining Xu, Yongjie Zheng, Chenglin Luo, Yueting Zhang, Xinliang Liu and Yanfang Wu
Horticulturae 2025, 11(10), 1238; https://doi.org/10.3390/horticulturae11101238 - 13 Oct 2025
Viewed by 626
Abstract
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in [...] Read more.
Phoebe bournei is an important economic tree species in China, its large-scale propagation is limited by the difficulty of adventitious root (AR) formation in cuttings. In this study, morphological, physiological, and transcriptomic analyses were conducted to investigate the process of AR formation in P. bournei. The results showed that ARs mainly originated from callus tissue. During AR formation, soluble sugar and soluble protein contents changed significantly. Malondialdehyde (MDA) and oxygen free radicals (OFRs) peaked at first sampling stage (PB0), while the activities of polyphenol oxidase (PPO) and indoleacetic acid oxidase (IAAO) exhibited similar patterns. Lignin content increased during callus induction stage, whereas phenolic content continuously declined throughout rooting. Endogenous hormone levels also changed markedly, and Orthogonal partial least squares discriminant analysis (OPLS-DA) analysis indicated that indole-3-acetic acid (IAA) and abscisic acid (ABA) played dominant roles in this process. KEGG enrichment analysis revealed significant enrichment of the phenylpropanoid biosynthesis pathway in all three comparison groups. A total of 48 differentially expressed genes (DEGs) were enriched in plant hormone signal transduction pathways, with 22 and 14 genes associated with IAA and ABA signaling, respectively. Weighted gene co-expression network analysis (WGCNA) further identified two hub modules related to IAA and ABA contents, including eight hub genes such as D6PKL1 and ISTL1. Correlation analysis revealed that the hub genes D6PKL1 and HSP were significantly positively correlated with IAA4 in the IAA signaling pathway. Overall, this study provides new insights into the mechanisms underlying AR formation in P. bournei cuttings and offers a theoretical basis for optimizing its clonal propagation system. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

Back to TopTop