Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (363)

Search Parameters:
Keywords = peak flood discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13519 KB  
Article
Development and Application of a Distributed Hydrological Model Ensemble (DHM-FEWS) for Flash Flood Early Warning
by Xiao Liu, Kaihua Cao, Ronghua Liu, Yanhong Dou, Min Xie, Delong Li, Hongqing Xu and Yunrui Zhang
Water 2026, 18(2), 237; https://doi.org/10.3390/w18020237 - 16 Jan 2026
Viewed by 163
Abstract
Mountain floods, one of the most common and destructive natural disasters worldwide, pose significant challenges to disaster prevention due to their sudden onset, high destructive power, and severe localized impacts. This study proposes an innovative flash flood early warning system based on a [...] Read more.
Mountain floods, one of the most common and destructive natural disasters worldwide, pose significant challenges to disaster prevention due to their sudden onset, high destructive power, and severe localized impacts. This study proposes an innovative flash flood early warning system based on a distributed hydrological model ensemble. The main objective is to improve the prediction and early warning accuracy of flash flood disasters by integrating multi-source data and regional modeling. The system simulates flood flow and risk levels under different rainfall scenarios to provide timely warnings in mountainous areas. A case study of a heavy rainfall event in Ma Jia Natural Village, Jiangxi Province was used to validate the system’s performance. Through regionalized parameter calibration within the ensemble, the system achieved Nash–Sutcliffe Efficiency (NSE) values exceeding 0.88, while the simulated peak discharges deviated from observed values by only 1.5%, 9.5%, and 4.8% under 3 h, 6 h, and 24 h rainfall scenarios, respectively, demonstrating the improved quantitative accuracy of flood prediction enabled by the ensemble-based framework. The system showed high consistency with observed data, accurately predicting flood responses at 3, 6, and 24 h time scales and providing reliable risk warnings. This approach not only enhances warning accuracy across multiple temporal scales but also supports risk-level early warnings at both river-section and village scales, offering significant practical value for the prevention of mountainous flood disasters. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 6492 KB  
Article
Data-Driven Downstream Discharge Forecasting for Flood Disaster Mitigation in a Small Mountainous Basin of Southwest China
by Leilei Guo, Haidong Li, Rongwen Yao, Qiang Li, Yangshuang Wang, Renjuan Wei and Xianchun Ma
Water 2026, 18(2), 204; https://doi.org/10.3390/w18020204 - 13 Jan 2026
Viewed by 174
Abstract
Accurate short-lead river discharge forecasting is critical for effective flood risk mitigation in small mountainous basins, where rapid hydrological responses pose significant challenges. In this study, we focus on the Fuhu Stream in Emeishan City, China, and utilize high-resolution 5-min time series of [...] Read more.
Accurate short-lead river discharge forecasting is critical for effective flood risk mitigation in small mountainous basins, where rapid hydrological responses pose significant challenges. In this study, we focus on the Fuhu Stream in Emeishan City, China, and utilize high-resolution 5-min time series of upstream precipitation, stage, and discharge to predict downstream flow. We benchmark three data-driven models—SARIMAX, XGBoost, and LSTM—using a dataset spanning from 7 June 2024 to 25 October 2024. The data were split chronologically, with observations from October 2024 reserved exclusively for testing to ensure rigorous out-of-sample evaluation. Lagged correlation analysis was employed to estimate travel times from upstream to the basin outlet and to inform the selection of time-lagged input features for model training. Results during the test period demonstrate that the LSTM model significantly outperformed both XGBoost and SARIMAX across all regression metrics: it achieved the highest coefficient of determination (R2 = 0.994) and the lowest prediction errors (RMSE = 0.016, MAE = 0.011). XGBoost exhibited moderate performance, while SARIMAX showed a tendency toward mean reversion and failed to capture low-flow variability. Accuracy evaluation reveals that LSTM accurately reproduced both baseflow conditions and multiple flood peaks, whereas XGBoost and SARIMAX failed. These results highlight the advantage of sequence-learning architectures in modeling nonlinear hydrological propagation and memory effects in short-term discharge dynamics. Feature importance analysis indicates that the LSTM model was highly effective for real-time forecasting and that the WSQ/LY sites served as critical monitoring nodes for achieving reliable predictions. This research contributes to the operationalization of early warning systems and provides support for decision-making regarding downstream flood disaster prevention. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

20 pages, 2535 KB  
Article
Physical and Numerical Analysis of Outflow Discharge from Type-A Piano Key Weirs Under Steady and Unsteady Flow Conditions
by Mohamad Mirzad and Salah Kouchakzadeh
Water 2026, 18(2), 173; https://doi.org/10.3390/w18020173 - 8 Jan 2026
Viewed by 247
Abstract
The accurate estimation of outflow discharge from Piano Key Weirs (PKWs) under unsteady flow conditions is critical for effective flood management and the safety of dams. While extensive research exists on PKWs under steady flow, their hydraulic behavior during unsteady flow remains poorly [...] Read more.
The accurate estimation of outflow discharge from Piano Key Weirs (PKWs) under unsteady flow conditions is critical for effective flood management and the safety of dams. While extensive research exists on PKWs under steady flow, their hydraulic behavior during unsteady flow remains poorly understood. This study addresses this gap by investigating a Type-A PKW using combined physical and numerical modeling. A total of eight steady-flow and fifty-three unsteady-flow experiments were conducted. The steady flow experiments covered a range of Q = 5.13–40.76 L/s (H = 1.29–10.45 cm), while the unsteady experiments employed hydrographs with peak discharges up to ~68 L/s. Outflow was estimated via the Modified Puls method (hydrological routing) and a validated 3D numerical model (hydraulic routing). The results revealed significant discrepancies between steady and unsteady stage-discharge relationships, with a mean relative error of up to 41.37% and instantaneous errors exceeding 150% during the rising limbs of hydrographs with high rates of change in discharge, associated with intensified unsteady flow effects. A validated looped stage-discharge curve was observed under unsteady conditions, showing lower discharge on the rising limb for the same head. The Modified Puls method exhibited high accuracy, with relative errors below 5% when compared to hydraulic routing results. Additionally, three comparative indices were proposed and used to evaluate the performance of outflow estimation methods. The findings underscore the importance of incorporating unsteady flow conditions in the design and analysis of PKWs, particularly in the context of climate change and increasing flood uncertainties. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 6277 KB  
Article
Enhancing Hydrological Model Calibration for Flood Prediction in Dam-Regulated Basins with Satellite-Derived Reservoir Dynamics
by Chaoqun Li, Huan Wu, Lorenzo Alfieri, Yiwen Mei, Nergui Nanding, Zhijun Huang, Ying Hu and Lei Qu
Remote Sens. 2026, 18(2), 193; https://doi.org/10.3390/rs18020193 - 6 Jan 2026
Viewed by 295
Abstract
The construction and operation of reservoirs have made hydrological processes complex, posing challenges to flood modeling. While many hydrological models have incorporated reservoir operation schemes to improve discharge estimation, the influence of reservoir representation on model calibration has not been sufficiently evaluated—an issue [...] Read more.
The construction and operation of reservoirs have made hydrological processes complex, posing challenges to flood modeling. While many hydrological models have incorporated reservoir operation schemes to improve discharge estimation, the influence of reservoir representation on model calibration has not been sufficiently evaluated—an issue that fundamentally affects the spatial reliability of distributed modeling. Additionally, the limited availability of reservoir regulation data impedes dam-inclusive flood simulation. To overcome these limitations, this study proposes a synergistic modeling framework for data-scarce dammed basins. It integrates a satellite-based reservoir operation scheme into a distributed hydrological model and incorporates reservoir processes into the model calibration procedure. The framework was tested using the coupled version of the DRIVE flood model (DRIVE-Dam) in the Nandu River Basin, southern China. Two calibration configurations, with and without dam operation (CWD vs. CWOD), were compared. Results show that reservoir dynamics were effectively reconstructed by combining satellite altimetry with FABDEM topography, successfully supporting the development of the reservoir scheme. Multi-site comparisons indicate that, while CWD slightly improved streamflow estimation (NSE and KGE > 0.75, similar to CWOD) on the calibrated outlet gauge, it enhanced basin-internal process representation, as evidenced by the superior peak discharge and flood event capture with reduced bias, boosting flood detection probability from 0.54 to 0.60 and reducing false alarms from 0.28 to 0.15. The improvements stem from refined parameterization enabled by a physically complete model structure. In contrast, CWOD leads to subdued flood impulses and prolonged recession due to spurious parameters that distort baseflow and runoff response. The proposed methodology provides a practical reference for flood forecasting in dam-regulated basins, demonstrating that reservoir representation enhances model parameterization and underscoring the strong potential of satellite observations for hydrological modeling in data-limited regions. Full article
Show Figures

Figure 1

24 pages, 2113 KB  
Article
Half a Century of Civil Engineering in the Bahlui River Hydrographic System: The Unexpected Journey from Gray Structures to Hybrid Resilience
by Nicolae Marcoie, Șerban Chihaia, András-István Barta, Daniel Toma, Valentin Boboc, Mihai Gabriel Balan, Cătălin Dumitrel Balan and Mircea-Teodor Nechita
Hydrology 2026, 13(1), 15; https://doi.org/10.3390/hydrology13010015 - 29 Dec 2025
Viewed by 384
Abstract
Water reservoirs are critical components of hydrological systems that mitigate floods and droughts, but their long-term performance under climate change and variable socioeconomic conditions remain insufficiently documented. This study examines the Bahlui River basin (northeastern Romania), where 17 reservoirs constructed mainly between the [...] Read more.
Water reservoirs are critical components of hydrological systems that mitigate floods and droughts, but their long-term performance under climate change and variable socioeconomic conditions remain insufficiently documented. This study examines the Bahlui River basin (northeastern Romania), where 17 reservoirs constructed mainly between the 1960s and 1980s have been operational for more than five decades. Using the most recent technical reservoir reports, land-use evolution, and present operational functions, the contribution of man-made reservoirs to flood attenuation and drought buffering over time was appraised. Flood mitigation is the most consistent and reliable function, with peak-flow reductions commonly exceeding 60–90% of design discharges at the basin scale. Engineered drought mitigation functions (irrigation and industrial water supply) have decreased significantly as a result of socioeconomic changes started in 1989. However, the gradual expansion of green infrastructure, such as wetlands and riparian vegetation, has improved passive water retention and low-flow buffering capacity. These unanticipated developments have resulted in variable levels of hybrid hydrological resilience. The findings show that, while artificial reservoirs have strong flood-control capacity over long periods of time, their contribution to drought mitigation is increasingly dependent on the integration of ecological components, emphasizing the importance of green-gray interactions in long-term reservoir management. Full article
Show Figures

Figure 1

23 pages, 9084 KB  
Article
Quantifying Torrential Watershed Behavior over Time: A Synergistic Approach Using Classical and Modern Techniques
by Ana M. Petrović, Laure Guerit, Valentina Nikolova, Ivan Novković, Dobromir Filipov and Jiří Jakubínský
Earth 2026, 7(1), 1; https://doi.org/10.3390/earth7010001 - 19 Dec 2025
Viewed by 386
Abstract
This study investigates temporal and spatial variation in torrential flood hazards and sediment dynamics in two ungauged watersheds in southeastern Serbia from 1991 to 2023. By integrating classical hydrological models with modern geospatial and photogrammetric techniques, watershed responses to environmental and anthropogenic changes [...] Read more.
This study investigates temporal and spatial variation in torrential flood hazards and sediment dynamics in two ungauged watersheds in southeastern Serbia from 1991 to 2023. By integrating classical hydrological models with modern geospatial and photogrammetric techniques, watershed responses to environmental and anthropogenic changes are quantified. Torrential flood potential was estimated and peak discharges were calculated using both the rational and SCS-Unit hydrograph methods, while sediment transport was assessed through Gavrilović’s erosion potential model and a modified Poljakov model. A key innovation is the use of UAV-based and close-range photogrammetry for 3D grain-size analysis, marking the first such application in Serbia. The mean torrential flood potential decreased by 4.4% in the Petrova Watershed and 4.2% in the Rasnička Watershed. Specific peak discharges for a 100-year return period declined from 1.62 to 1.07 m3·s−1·km−2 in Petrova and from 1.60 to 1.34 m3·s−1·km−2 in Rasnička. Sediment transport during a 1% probability flood was reduced from 4.97 to 2.53 m3·s−1 in Petrova and from 13.87 to 9.48 m3·s−1 in Rasnička. Grain-size analyses revealed immobile coarse bedload in the Petrova and active sediment transport in the Rasnička River, where D50 and D90 decreased between 2023 and 2024. The findings highlight the effectiveness of a synergistic methodological approach for analyzing complex watershed processes in data-scarce regions. The study provides a replicable model for flood hazard assessment and erosion control planning in similar mountainous environments undergoing socio-environmental transitions. Full article
Show Figures

Figure 1

19 pages, 3649 KB  
Article
Economic Implications for Accommodate, Retreat, Protect and More in Case of Sea Level Rise for the Dutch Delta
by B. Kolen
Water 2025, 17(24), 3486; https://doi.org/10.3390/w17243486 - 9 Dec 2025
Viewed by 578
Abstract
Climate change is advancing, sea levels are rising, and peak river discharges are increasing. Accelerated sea level rise (SLR) may pose a significant threat to the long-term habitability of the Netherlands. In the short term, further reinforcement of flood defenses is required. However, [...] Read more.
Climate change is advancing, sea levels are rising, and peak river discharges are increasing. Accelerated sea level rise (SLR) may pose a significant threat to the long-term habitability of the Netherlands. In the short term, further reinforcement of flood defenses is required. However, the key long-term question is which adaptation strategy will most effectively manage flood risk in the Netherlands. As part of the SLR Knowledge Programme, research was conducted on various long-term strategies, focusing on the feasibility of three approaches: Protect, Advance, and Accommodate. The Protect and Advance strategies aim to reduce flood risk primarily through the prevention of flooding. The Accommodate strategy, particularly in its more extreme form, emphasizes Managed Retreat, following the precautionary principle, or seeks to mitigate flood consequences rather than invest in Prevention. This study examined the economic implications of two opposing cornerstone strategies, Protect and Managed Retreat, as well as hybrid strategies that integrate elements of both, across different sea level rise scenarios. Additionally, the study includes a forward-looking assessment of the potential impacts on the financial sector, with particular attention to catastrophe insurance and capital requirements aimed at mitigating default risk. The findings indicate that a Managed Retreat strategy represents a last-resort option and cannot be implemented effectively without concurrent protective measures. Furthermore, the annual flood risk is only marginally reduced under the Accommodate strategy, even when combined with protective interventions, while its associated costs significantly exceed those of the Protect strategy. A combined approach integrating protection with localized Accommodate measures that support multi-functional land use, such as nature-based solutions and water storage, appears to offer a more promising strategy, if these values cover the costs. The results can be used to evaluate the effectiveness of possible adaptation strategies to sea level rise. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

31 pages, 5102 KB  
Article
Integrating Deep Learning and Copula Models for Flood–Drought Compound Analysis in Iran
by Saeed Farzin, Mahdi Valikhan Anaraki, Mojtaba Kadkhodazadeh and Amirreza Morshed-Bozorgdel
Water 2025, 17(24), 3479; https://doi.org/10.3390/w17243479 - 8 Dec 2025
Viewed by 639
Abstract
This study aims to forecast the combined impacts of drought and flood in the future using an integrated framework. This framework integrates U-Net++, quantile mapping (QM), Copula models, and ISIMIP3b gridded large-scale discharge data (1985–2014, 2021–2050, and 2071–2100). Copula models analyze compound effects [...] Read more.
This study aims to forecast the combined impacts of drought and flood in the future using an integrated framework. This framework integrates U-Net++, quantile mapping (QM), Copula models, and ISIMIP3b gridded large-scale discharge data (1985–2014, 2021–2050, and 2071–2100). Copula models analyze compound effects in four dimensions to determine return periods for droughts and floods. The standalone U-Net++ and its integration with multiple linear regression, multiple nonlinear regression, M5 model tree, multivariate adaptive regression splines, and QM downscaled ISIMIP3b model river flows. U-Net++QM outperformed other models, with a 58% lower RRMSE. Ensemble GCMs showed less uncertainty than other models in river flow downscaling. For the Ensemble model, the highest drought severity was −300, the maximum duration was 300 months, flood peak flow reached 12,000 m3/s, and intervals lasted up to 22 months. Moreover, the return periods of compound events for this model ranged from 50 to 3000 years. Future river flow projections, using the Ensemble model and emission scenarios (SSP126, SSP370, and SSP585), showed increased vulnerability in 2071 and 2025 versus the observed period. Introducing an integrated framework serves as a management tool for addressing extreme combined phenomena under climate change. Full article
Show Figures

Figure 1

16 pages, 2381 KB  
Article
Effects of Forest Thinning on Water Yield and Runoff Components in Headwater Catchments of Japanese Cypress Plantation
by Ibtisam Mohd Ghaus, Nobuaki Tanaka, Takanori Sato, Moein Farahnak, Yuya Otani, Anand Nainar, Mie Gomyo and Koichiro Kuraji
Water 2025, 17(24), 3461; https://doi.org/10.3390/w17243461 - 5 Dec 2025
Viewed by 640
Abstract
Forests play a key role in sustaining global water cycles by regulating precipitation partitioning, which in turn influences both water yield and ecosystem stability. Thinning is a silvicultural tool used to improve forest plantation productivity, but it is increasingly recognized as a means [...] Read more.
Forests play a key role in sustaining global water cycles by regulating precipitation partitioning, which in turn influences both water yield and ecosystem stability. Thinning is a silvicultural tool used to improve forest plantation productivity, but it is increasingly recognized as a means for water resource management. This study investigated hydrological changes following 40% thinning of tree density with contour-aligned log placement in paired headwater catchments of a Japanese cypress forest. Annual runoff in the treated catchment was 108.7 mm above the pre-thinning baseline in the thinning year (2020), followed by smaller increases of 99.7 mm, 43.7 mm, and 0.4 mm in 2021 to 2023, after which annual yields effectively returned to pre-thinning levels. Despite these temporary increases, peak discharge and storm quickflow metrics remained within the pre-thinning range. Flow duration curve analysis revealed a sustained enhancement of low-flow discharge and baseflow throughout the post-thinning period, indicating improved low-flow resilience without increased stormflow risk. These findings demonstrate that moderate thinning combined with contour felled logs can enhance water availability in plantation forests while maintaining flood protection. They also highlight the need for long-term, multi-site studies to test the persistence and generality of these low-flow benefits under varying forest and climate conditions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

24 pages, 8694 KB  
Article
Research on Stage-Divided Flood-Limited Water Level Under Pre-Release Rules During Flood Season
by Hui Yu, Xinggen Liu, Changyan Li, Yongwen Wang and Qiang Hu
Water 2025, 17(23), 3348; https://doi.org/10.3390/w17233348 - 22 Nov 2025
Viewed by 642
Abstract
Flood Limited Water Level (FLWL) serves as the core control parameter for the synergistic optimization of flood control operation and beneficial water utilization efficiency in reservoirs during the flood season. Addressing the critical issue of insufficient adaptability in static control schemes, this study [...] Read more.
Flood Limited Water Level (FLWL) serves as the core control parameter for the synergistic optimization of flood control operation and beneficial water utilization efficiency in reservoirs during the flood season. Addressing the critical issue of insufficient adaptability in static control schemes, this study innovatively proposes a staged dynamic FLWL regulation model based on pre-release rules. This methodology combines hydrometeorological division theory with frequent flood control mechanisms and establishes a dual-threshold control equation with safe pre-release discharge (qpre) and effective pre-release duration (tpre) as sensitive factors. The dynamic FLWL scheme is designed to ensure that no additional risk is imposed on the reservoir and its upstream/downstream regions, and it incorporates a set of hierarchical rules for the strategic pre-release and standard safety modes. Taking the Wuxikou Reservoir in Jiangxi Province as a case study, the safe pre-release discharge value under regular flood conditions and the effective pre-release duration are determined. Additionally, a dynamic FLWL control model is developed according to the reservoir’s characteristics. The verification results demonstrate the significant benefits of the dynamic FLWL model in reducing peak water levels and shortening flood duration. Compared with the original operation plan, the proposed model effectively lowers the maximum water level of the reservoir by 10% and simultaneously shortens the duration of high water levels by nearly 24 h. The research results provide a reference for the efficient utilization of water resources in reservoir basins in monsoon humid areas. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

22 pages, 7917 KB  
Article
Sustainable Usage of Natural Resources of Upper Odra River Valley Within the Range of Influence of the Racibórz Dolny Dry Polder Compared to 1997, 2010, and 2024 Pluvial Floods
by Andrzej Gałaś, Grzegorz Wierzbicki, Slávka Gałaś, Marta Utratna-Żukowska and Julián Kondela
Sustainability 2025, 17(22), 10168; https://doi.org/10.3390/su172210168 - 13 Nov 2025
Viewed by 964
Abstract
Floods, especially in urbanised areas, incur enormous economic and social losses. The structural flood management is often limited by urbanization and environmental issues. Following the catastrophic flood events of 1997 and 2010, a relatively large dry polder was constructed in Racibórz Dolny, Poland, [...] Read more.
Floods, especially in urbanised areas, incur enormous economic and social losses. The structural flood management is often limited by urbanization and environmental issues. Following the catastrophic flood events of 1997 and 2010, a relatively large dry polder was constructed in Racibórz Dolny, Poland, with the highest flood retention capacity in Central Europe. During the 2024 flood in Czechia and Poland, the polder was filled to 80%, which significantly reduced the floodwave crest on the Odra River (by 1.65 m), halved the peak discharge, and delayed the floodwave passage by two days according to hydrological calculations. The operation of the polder enables multifunctional use of the river valley—ranging from agriculture and mineral extraction to environmental protection—without the need for permanent water impoundment. Aggregate extraction carried out within the basin contributed to shaping the reservoir, reducing the demand for transport and construction materials, while the overburden was reused for engineering and reclamation purposes. Mining activities between 2007 and 2023 increased the retention capacity of the polder by 13%, providing an example of rational environmental resource management combined with effective flood protection. The findings demonstrate that integrating retention functions with mineral resource management represents an efficient and sustainable approach to mitigating flood impacts in large European river valleys. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

29 pages, 5303 KB  
Article
Deep Reinforcement Learning for Optimized Reservoir Operation and Flood Risk Mitigation
by Fred Sseguya and Kyung Soo Jun
Water 2025, 17(22), 3226; https://doi.org/10.3390/w17223226 - 11 Nov 2025
Viewed by 1417
Abstract
Effective reservoir operation demands a careful balance between flood risk mitigation, water supply reliability, and operational stability, particularly under evolving hydrological conditions. This study applies deep reinforcement learning (DRL) models—Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and Deep Deterministic Policy Gradient (DDPG)—to optimize [...] Read more.
Effective reservoir operation demands a careful balance between flood risk mitigation, water supply reliability, and operational stability, particularly under evolving hydrological conditions. This study applies deep reinforcement learning (DRL) models—Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and Deep Deterministic Policy Gradient (DDPG)—to optimize reservoir operations at the Soyang River Dam, South Korea, using 30 years of daily hydrometeorological data (1993–2022). The DRL framework integrates observed and remotely sensed variables such as precipitation, temperature, and soil moisture to guide adaptive storage decisions. Discharge is computed via mass balance, preserving inflow while optimizing system responses. Performance is evaluated using cumulative reward, action stability, and counts of total capacity and flood control violations. PPO achieved the highest cumulative reward and the most stable actions but incurred six flood control violations; DQN recorded one flood control violation, reflecting larger buffers and strong flood control compliance; DDPG provided smooth, intermediate responses with one violation. No model exceeded the total storage capacity. Analyses show a consistent pattern: retain on the rise, moderate the crest, and release on the recession to keep Flood Risk (FR) < 0. During high-inflow days, DRL optimization outperformed observed operation by increasing storage buffers and typically reducing peak discharge, thereby mitigating flood risk. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

16 pages, 1699 KB  
Technical Note
Synthetic Hydrograph Estimation for Ungauged Basins: Exploring the Role of Statistical Distributions
by Dan Ianculescu and Cristian Gabriel Anghel
Stats 2025, 8(4), 100; https://doi.org/10.3390/stats8040100 - 17 Oct 2025
Viewed by 1280
Abstract
The use of probability distribution functions in deriving synthetic hydrographs has become a robust method for modeling the response of watersheds to precipitation events. This approach leverages statistical distributions to capture the temporal structure of runoff processes, providing a flexible framework for estimating [...] Read more.
The use of probability distribution functions in deriving synthetic hydrographs has become a robust method for modeling the response of watersheds to precipitation events. This approach leverages statistical distributions to capture the temporal structure of runoff processes, providing a flexible framework for estimating peak discharge, time to peak, and hydrograph shape. The present study explores the application of various probability distributions in constructing synthetic hydrographs. The research evaluates parameter estimation techniques, analyzing their influence on hydrograph accuracy. The results highlight the strengths and limitations of each distribution in capturing key hydrological characteristics, offering insights into the suitability of certain probability distribution functions under varying watershed conditions. The study concludes that the approach based on the Cadariu rational function enhances the adaptability and precision of synthetic hydrograph models, thereby supporting flood forecasting and watershed management. Full article
(This article belongs to the Special Issue Robust Statistics in Action II)
Show Figures

Figure 1

20 pages, 3032 KB  
Article
A Bivariate Return Period Copula Application of Flood Peaks and Volumes for Climate Adaptation in Semi-Arid Regions
by T. M. C. Studart, J. D. Pontes Filho, G. R. Gomez, M. M. Portela and F. A. Sousa Filho
Water 2025, 17(20), 2963; https://doi.org/10.3390/w17202963 - 15 Oct 2025
Viewed by 593
Abstract
In semi-arid regions, flood events are often characterized by rapid runoff and high hydrological variability, posing significant challenges for infrastructure safety and flood risk assessment. Traditional flood frequency analysis methods, typically based on univariate models using annual flood peak, may fail to capture [...] Read more.
In semi-arid regions, flood events are often characterized by rapid runoff and high hydrological variability, posing significant challenges for infrastructure safety and flood risk assessment. Traditional flood frequency analysis methods, typically based on univariate models using annual flood peak, may fail to capture the full complexity of such events. This study investigates the limitations of the univariate approach through the analysis of the 2004 flood event in the Jaguaribe River basin (Brazil), which caused the Castanhão Reservoir to receive a discharge of more than 5 hm3 and fill from 4.5% to over 70% of its capacity in just 55 days. Although the peak discharge in 2004 was not an exceptional record, the combination of high flood volume and short duration revealed a much rarer event than suggested by peak flow alone. To improve compound flood risk assessment, a bivariate frequency analysis based on copula functions was applied to jointly model flood peak and average flood intensity. The latter is a variable newly proposed in this study to better capture the short-duration but high-volume flood until peak that can strongly influence dam safety. Specifically, for the 2004 event, the univariate return period of flood peak was only 35 years, whereas the joint return period incorporating both peak flow and average flood intensity reached 995 years—underscoring a potential underestimation of flood hazard when relying solely on peak flow metrics. Our bivariate return periods and the average flood intensity metric provide actionable information for climate adaptation, supporting adaptive rule curves and risk screening during initial impoundment and high-inflow events in semi-arid reservoirs. Collectively, the proposed methodology offers a more robust framework for assessing extreme floods in intermittent river systems and offers practical insights for dam safety planning in climatically variable regions such as the Brazilian Semi-Arid. Full article
(This article belongs to the Special Issue Extreme Hydrological Events Under Climate Change)
Show Figures

Figure 1

16 pages, 4181 KB  
Article
Optimizing Pier Arrangement for Flood Hazard Mitigation: A Comparative Mobile-Bed and Fixed-Bed Experimental Study
by Minxia Hao, Guodong Li and Xinyu Sheng
Water 2025, 17(20), 2951; https://doi.org/10.3390/w17202951 - 14 Oct 2025
Cited by 1 | Viewed by 511
Abstract
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and [...] Read more.
River bridge engineering alters the hydraulic characteristics of rivers, impacting fluvial morphological stability. To investigate issues concerning flood conveyance capacity within the river reach hosting a new bridge and the safe operation of existing bridges, comparative physical model tests employing both mobile-bed and fixed-bed configurations were conducted. A 1:60 scale model was used to test flood peak discharges corresponding to 30-year and 100-year return periods and investigate pier spacings of 30 m and 40 m. These tests evaluated the relative advantages and limitations of each model type in simulating flow patterns, sediment transport, and riverbed evolution. Specifically, mobile-bed models more effectively capture the interaction between water flow and sediment dynamics, while fixed-bed experiments enable more precise measurement of hydraulic parameters. Pier spacing is recognized as one of the most critical factors influencing river flow regimes. Larger pier spacing (40 m) was found to reduce upstream backwater and local scour depth compared to smaller spacing (30 m), particularly under the 30-year flood scenario. Consequently, this study investigated the effects of pier spacing on flow patterns, obtained flood conveyance characteristics under various flood frequencies, and analyzed the underlying mechanisms governing flow fields, velocity variations, and local scour around piers. The research outcomes not only elucidate multiscale coupling mechanisms between water flow and sediment but also quantify the relationship between the extent of pier-induced flow disturbance and subsequent channel morphological adjustments. This quantification provides a dynamic criterion for risk mitigation of river-crossing structures and establishes a hydrodynamic foundation for studying flood hazards in complex river reaches. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop