Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = pavement subgrade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 875 KiB  
Review
Sustainable Utilisation of Mining Waste in Road Construction: A Review
by Nuha S. Mashaan, Sammy Kibutu, Chathurika Dassanayake and Ali Ghodrati
J. Exp. Theor. Anal. 2025, 3(3), 19; https://doi.org/10.3390/jeta3030019 - 15 Jul 2025
Viewed by 303
Abstract
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the [...] Read more.
Mining by-products present both an environmental challenge and a resource opportunity. This review investigates their potential application in road pavement construction, focusing on materials such as fly ash, slag, sulphur, red mud, tailings, and silica fume. Drawing from laboratory and field studies, the review examines their roles across pavement layers—subgrade, base, subbase, asphalt mixtures, and rigid pavements—emphasising mechanical properties, durability, moisture resistance, and ageing performance. When properly processed or stabilised, many of these wastes meet or exceed conventional performance standards, contributing to reduced use of virgin materials and greenhouse gas emissions. However, issues such as variability in composition, leaching risks, and a lack of standardised design protocols remain barriers to adoption. This review aims to consolidate current research, evaluate practical feasibility, and identify directions for future studies that would enable the responsible and effective reuse of mining waste in transportation infrastructure. Full article
Show Figures

Figure 1

18 pages, 1961 KiB  
Article
Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction
by Mudhaffer Alqudah, Haitham Saleh, Hakan Yasarer, Ahmed Al-Ostaz and Yacoub Najjar
Infrastructures 2025, 10(7), 153; https://doi.org/10.3390/infrastructures10070153 - 24 Jun 2025
Viewed by 597
Abstract
This study investigated the prediction of unconfined compressive strength (UCS), a common measure of soil’s undrained shear strength, using fundamental soil characteristics. While traditional pavement subgrade design often relies on parameters like the resilient modulus and California bearing ratio (CBR), researchers are exploring [...] Read more.
This study investigated the prediction of unconfined compressive strength (UCS), a common measure of soil’s undrained shear strength, using fundamental soil characteristics. While traditional pavement subgrade design often relies on parameters like the resilient modulus and California bearing ratio (CBR), researchers are exploring the potential of incorporating more easily obtainable strength indicators, such as UCS. To evaluate the potential effectiveness of UCS for pavement engineering applications, a dataset of 152 laboratory-tested soil samples was compiled to develop predictive models. For each sample, geotechnical properties including the Atterberg limits, liquid limit (LL), plastic limit (PL), water content (WC), and bulk density (determined using the Harvard miniature compaction apparatus), alongside the UCS, were measured. This dataset served to train various models to estimate the UCS from basic soil parameters. The methods employed included multi-linear regression (MLR), multi-nonlinear regression (MNLR), and several machine learning techniques: backpropagation artificial neural networks (ANNs), gradient boosting (GB), random forest (RF), support vector machine (SVM), and K-nearest neighbor (KNN). The aim was to establish a relationship between the dependent variable (UCS) and the independent basic geotechnical properties and to test the effectiveness of each ML algorithm in predicting UCS. The results indicate that the ANN-based model provided the most accurate predictions for UCS, achieving an R2 of 0.83, a root-mean-squared error (RMSE) of 1.11, and a mean absolute relative error (MARE) of 0.42. The performance ranking of the other models, from best to worst, was RF, GB, SV, KNN, MLR, and MNLR. Full article
Show Figures

Figure 1

25 pages, 3407 KiB  
Review
Reconstruction of Old Pavements Based on Resonant Rubblization Technology: A Review of Technological Progress, Engineering Applications, and Intelligent Development
by Sibo Ding, Dehuan Sun, Yongtao Hu, Shuang Lu, Zedong Qiu, Shuo Zhang, Lei Wang, Shaowei Jiang, Tao Han and Yingli Gao
Buildings 2025, 15(13), 2165; https://doi.org/10.3390/buildings15132165 - 21 Jun 2025
Viewed by 346
Abstract
With the continuous expansion of highway networks and rapid advancements in the transportation industry, the need for highway maintenance and reconstruction has become increasingly urgent. Resonant rubblization technology generates an interlocking structure within the pavement layer by producing diagonal cracks at angles of [...] Read more.
With the continuous expansion of highway networks and rapid advancements in the transportation industry, the need for highway maintenance and reconstruction has become increasingly urgent. Resonant rubblization technology generates an interlocking structure within the pavement layer by producing diagonal cracks at angles of 35–40°, thereby significantly enhancing load-bearing capacity and structural stability. As a result, this technique offers substantial benefits, including a marked reduction in reflective cracking, efficient reuse of existing concrete slabs (with a utilization rate exceeding 85%), reduced construction costs (by 15–30% compared to conventional methods), and faster construction speeds—up to 7000 square yards per day. Consequently, resonant rubblization has emerged as a key method for rehabilitating aging cement concrete pavements. Building on this foundation, this paper reviews the fundamental principles of resonant rubblization technology by synthesizing global research findings and engineering case studies. It provides a comprehensive analysis of the historical development, equipment design, construction principles, and practical application outcomes of resonant rubblization, with particular attention to its effects on pavement structure, load-bearing capacity, and long-term stability. Future research should focus on developing more realistic subgrade models, improving evaluation methods for post-rubblization pavement performance, and advancing the intelligentization of resonant equipment. The ultimate goal is to enhance the quality of road maintenance and repair, ensure road safety, and promote the development of long-life, sustainable road infrastructure through the continued advancement and application of resonant rubblization technology. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 222 KiB  
Review
Mining Waste Materials in Road Construction
by Nuha Mashaan and Bina Yogi
Encyclopedia 2025, 5(2), 83; https://doi.org/10.3390/encyclopedia5020083 - 16 Jun 2025
Viewed by 665
Abstract
Resource depletion and environmental degradation have resulted from the substantial increase in the use of natural aggregates and construction materials brought on by the growing demand for infrastructure development. Road building using mining waste has become a viable substitute that reduces the buildup [...] Read more.
Resource depletion and environmental degradation have resulted from the substantial increase in the use of natural aggregates and construction materials brought on by the growing demand for infrastructure development. Road building using mining waste has become a viable substitute that reduces the buildup of industrial waste while providing ecological and economic advantages. In order to assess the appropriateness of several mining waste materials for use in road building, this study investigates their engineering characteristics. These materials include slag, fly ash, tailings, waste rock, and overburden. To ensure long-term performance in pavement applications, this study evaluates their tensile and compressive strength, resistance to abrasion, durability under freeze–thaw cycles, and chemical stability. This review highlights the potential of mining waste materials as sustainable alternatives in road construction. Waste rock and slag exhibit excellent mechanical strength and durability, making them suitable for high-traffic pavements. Although fly ash and tailings require stabilization, their pozzolanic properties enhance subgrade reinforcement and soil stabilization. Properly processed overburden materials are viable for subbase and embankment applications. By promoting the reuse of mining waste, this study supports landfill reduction, carbon emission mitigation, and circular economy principles. Overall, mining byproducts present a cost-effective and environmentally responsible alternative to conventional construction materials. To support broader implementation, further efforts are needed to improve stabilization techniques, monitor long-term field performance, and establish effective policy frameworks. Full article
(This article belongs to the Section Engineering)
23 pages, 6103 KiB  
Article
A Simple Model to Estimate the Increase in Pavement Life Due to the Traffic Wander for Application in Connected and Autonomous Vehicles
by Beata Gajewska, Marcin Gajewski, Jorge Pais and Liseane Thives
Materials 2025, 18(11), 2609; https://doi.org/10.3390/ma18112609 - 3 Jun 2025
Viewed by 393
Abstract
The primary purpose of this paper is to investigate the impact of traffic wander on road pavement life for application in connected and autonomous vehicles. Research shows that in autonomous vehicles, drivers often follow the same path, leading to significant pavement damage on [...] Read more.
The primary purpose of this paper is to investigate the impact of traffic wander on road pavement life for application in connected and autonomous vehicles. Research shows that in autonomous vehicles, drivers often follow the same path, leading to significant pavement damage on specific, well-defined paths. The paper examined the impact of traffic wander on pavement life by analysing two different wander distributions: normal and uniform. Based on the estimated pavement life for various pavement structures, a model that predicts the increase in pavement life due to traffic wander was developed for cracking and rutting prediction. The result of the research is the determination of relative pavement life influence functions, in which the variables are the traffic wander, asphalt layer thickness and subgrade stiffness. The obtained equations can be easily implemented for pavement service life extension evaluation. The model was also used to estimate the asphalt layer thickness as a function of the traffic expressed in terms of Equivalent Single Axle Load (ESALs). An analysis of the implications of the lateral distribution of traffic on the pavement thickness was presented. Significant reductions in the asphalt layer thickness of the pavement are achieved when wander is considered. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

34 pages, 7092 KiB  
Article
Research on the Influence of Engineered Cementitious Composite’s Water–Cement Ratio and Fiber Content on the Mechanical Performance of Foam Lightweight Soil
by Qingguo Yang, Yu Zhou, Ya Li, Kelin Chen, Wujing Yin and Yunhao Li
Buildings 2025, 15(9), 1479; https://doi.org/10.3390/buildings15091479 - 27 Apr 2025
Viewed by 407
Abstract
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS [...] Read more.
This study explores the influence of the water–cement ratio and fiber content in engineered cementitious composite (ECC) on the mechanical characteristics of foamed lightweight soil (FLS) through experimental analysis. Two types of cementitious materials—ECC and ordinary Portland cement (OPC)—were utilized to create FLS specimens under identical parameters to examine their mechanical performance. Results indicate that ECC-FLS exhibits superior toughness, plasticity, and ductility compared to OPC-FLS, validating the potential of ECC as a high-performance material for FLS. To assess the influence of the ECC water–cement ratio, specimens were constructed with varying ratios at 0.2, 0.25, and 0.3, while maintaining other parameters as constant. The experimental results indicate that as the water–cement ratio of ECC increases, the flexural strength, compressive strength, flexural toughness, and compressive elastic modulus of the lightweight ECC-FLS gradually increase, exhibiting a better mechanical performance. Moreover, this study investigates the effect of basalt fiber content in ECC on the mechanical properties of FLS. While keeping other parameters constant, the volume content of basalt fibers varied at 0.1%, 0.3%, and 0.5%, respectively. The experimental results demonstrate that within the range of 0 to 0.5%, the mechanical properties of FLS improved with increasing fiber content. The fibers in ECC effectively enhanced the strength of FLS. In conclusion, the adoption of ECC and appropriate fiber content can significantly optimize the mechanical performance of FLS, endowing it with broader application prospects in engineering practices. ECC-FLS, characterized by excellent ductility and crack resistance, demonstrates versatile engineering applications. It is particularly suitable for soft soil foundations or regions prone to frequent geological activities, where it enhances the seismic resilience of subgrade structures. This material also serves as an ideal construction solution for underground utility tunnels, as well as for the repair and reconstruction of pavement and bridge decks. Notably, ECC-FLS enables the resource utilization of industrial solid wastes such as fly ash and slag, thereby contributing to carbon emission reduction and the realization of a circular economy. These attributes collectively position HDFLS as a sustainable and high-performance construction material with significant potential for promoting environmentally friendly infrastructure development. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5614 KiB  
Article
Experimental Investigation into Permeable Asphalt Pavement Based on Small-Scale Accelerated Testing
by Bing Yang, Hui Li, Yingtao Li, Murong Cheng, Yang Sun and Yuzhao Han
Appl. Sci. 2025, 15(8), 4359; https://doi.org/10.3390/app15084359 - 15 Apr 2025
Viewed by 460
Abstract
The durability of permeable pavement needs to be further studied by accelerated pavement testing (APT). Full-scale APT facilities are commonly associated with a very high initial investment and operational costs. A piece of small-scale accelerated testing equipment, the model mobile load simulator (MMLS), [...] Read more.
The durability of permeable pavement needs to be further studied by accelerated pavement testing (APT). Full-scale APT facilities are commonly associated with a very high initial investment and operational costs. A piece of small-scale accelerated testing equipment, the model mobile load simulator (MMLS), was used to investigate and evaluate the mechanical properties of three types of permeable asphalt pavements, including a 4 cm porous asphalt layer with cement-treated permeable base (4PA-CTPB), 7 cm porous asphalt layer with cement-treated permeable base (7PA-CTPB), and 7 cm porous asphalt layer with cement-treated base (7PA-CTB). Under different conditions of subgrade soil, transverse and longitudinal strains at the bottom of the porous asphalt layer and average rut depth and temperature data were collected. The results indicated that 4PA-CTPB produced the maximum average rut depth but minimum resilient tensile strain. The transverse resilient tensile strain of 7PA-CTPB was significantly higher than the other two structures under both wet and dry conditions. The transverse resilient tensile strain significantly increased with increasing loading cycles with a decreasing rate, which could be affected by both load and temperature. MMLS could be used to explore and evaluate the mechanical properties of permeable asphalt pavement. From the data under dry and wet conditions, it may be better to increase the strength of the subgrade, where a suitable hydraulic conductivity coefficient should be considered. Full article
(This article belongs to the Special Issue Sustainable Asphalt Pavement Technologies)
Show Figures

Figure 1

14 pages, 3106 KiB  
Article
Thermal and Flood Resiliency Evaluation of Rigid Pavement Using Various Pavement Characteristics
by Emad Alshammari, Mang Tia, Othman Alanquri, Abdullah Albogami, Ahmed Alsabbagh and Raid S. Alrashidi
CivilEng 2025, 6(2), 22; https://doi.org/10.3390/civileng6020022 - 13 Apr 2025
Viewed by 927
Abstract
Temperature variations have a significant impact on the performance and durability of rigid (concrete) pavement. As concrete is subjected to daily and seasonal temperature changes, it experiences thermal expansion and contraction. These movements, if not properly managed, can lead to cracking, joint deterioration, [...] Read more.
Temperature variations have a significant impact on the performance and durability of rigid (concrete) pavement. As concrete is subjected to daily and seasonal temperature changes, it experiences thermal expansion and contraction. These movements, if not properly managed, can lead to cracking, joint deterioration, and loss of structural integrity. The pavement system is adversely affected by intense heat and significant flooding. This study aims to analyze the impact of several parameters on the performance of rigid pavement under typical, thermal, and flooding situations. This study investigates the properties of concrete and the dimensional design of rigid pavement with FEACONS IV software to assess their impact on the performance of concrete pavement during thermal and flooding conditions. The main conclusions of this study derived from the FEACONS IV analysis are as follows. Rigid pavement can enhance load-carrying capacity due to a lower elastic modulus, adequate flexural strength, and aggregates with a lower coefficient of thermal expansion. Increased thickness of concrete slabs and shorter slab lengths assist in minimizing load- and temperature-induced stresses. The increase in the subgrade modulus reaction value during flooding conditions improves pavement strength. However, in higher thermal conditions, a higher subgrade reaction modulus can increase the stress induced by temperature and load. Rigid pavement using porous limestone aggregate exhibits a reduced elastic modulus and coefficient of thermal expansion, suggesting higher resilience compared to rigid pavement composed of river gravel or granite. The findings suggest that higher thermal conditions will cause pavement damage. Agencies need to account for higher temperatures while designing and maintaining pavement. Flooding saturates the concrete pavement and subgrade layer, adversely affecting its performance over time. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

16 pages, 7938 KiB  
Article
Study on the Road Performance of Terminal Carboxylated Nitrile Rubber-Modified Epoxy Asphalt Permeable Concrete
by Wei Shan and Shenru Zhang
Materials 2025, 18(8), 1691; https://doi.org/10.3390/ma18081691 - 8 Apr 2025
Cited by 2 | Viewed by 333
Abstract
In cold regions, the overlay effect often leads to pavement and subgrade distresses, severely compromising the functionality of roads and infrastructure. To address this issue, this study proposes a solution involving permeable pavements and roadbed structures. However, the application of permeable pavement materials [...] Read more.
In cold regions, the overlay effect often leads to pavement and subgrade distresses, severely compromising the functionality of roads and infrastructure. To address this issue, this study proposes a solution involving permeable pavements and roadbed structures. However, the application of permeable pavement materials in cold regions remains a significant challenge. Building on previous research, this paper introduces a novel pavement material with exceptional mechanical and temperature performance: terminal carboxylated nitrile rubber-modified epoxy asphalt. Specifically, the mechanical properties, viscosity, high-temperature rutting resistance, low-temperature cracking resistance, and modification mechanisms of five terminal carboxylated nitrile rubber-modified epoxy asphalt mixtures with varying terminal carboxylated nitrile rubber contents were investigated. Additionally, the high-temperature, low-temperature, and water stability properties of three types of porous asphalt concrete were compared. The results demonstrate that the incorporation of terminal carboxylated nitrile rubber significantly enhances the mechanical properties and low-temperature cracking resistance of the asphalt without altering the curing time. Although the high-temperature rutting resistance of the asphalt itself decreases, the high-temperature, low-temperature, and water stability properties of the porous asphalt concrete are improved. This improvement is attributed to the chemical reaction between terminal carboxylated nitrile rubber and epoxy resin, which generates a prepolymer containing new substances and forms a stable sea–island structure. This structure promotes a more homogeneous distribution of the asphalt matrix, thereby increasing the cohesive strength and toughness of the asphalt. Full article
Show Figures

Figure 1

34 pages, 17246 KiB  
Article
Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management
by Laura Moretti, Luigi Altobelli, Giuseppe Cantisani and Giulia Del Serrone
Water 2025, 17(6), 829; https://doi.org/10.3390/w17060829 - 13 Mar 2025
Cited by 2 | Viewed by 1394
Abstract
Anthropization has significantly altered the natural water cycle by increasing impermeable surfaces, reducing evapotranspiration, and limiting groundwater recharge. Permeable Interlocking Concrete Pavements (PICPs) have emerged as a permeable pavement, effectively reducing runoff and improving water quality. This study investigates the base depth for [...] Read more.
Anthropization has significantly altered the natural water cycle by increasing impermeable surfaces, reducing evapotranspiration, and limiting groundwater recharge. Permeable Interlocking Concrete Pavements (PICPs) have emerged as a permeable pavement, effectively reducing runoff and improving water quality. This study investigates the base depth for PICPs regarding the strength and permeability. This study examines the hydraulic and structural performance of Permeable Interlocking Concrete Pavements (PICPs) for urban and industrial applications by evaluating the effects of subgrade conditions, traffic loads, and material properties. Using DesignPave and PermPave software, the optimal base layer thickness is determined to prevent rutting while ensuring effective stormwater infiltration beneath 110 mm-thick concrete pavers placed on a 30 mm-thick bedding course. The required base thickness for urban pavements ranges from 100 mm to 395 mm, whereas for industrial pavements, it varies between 580 mm and 1760 mm, depending on subgrade permeability, traffic volume, and loading conditions. The findings demonstrate that PICPs serve as a viable and environmentally sustainable alternative to conventional impermeable pavements, offering significant hydrological and ecological benefits. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

18 pages, 4733 KiB  
Article
A Neural Network-Based Structural Parameter Assessment Method for Prefabricated Concrete Pavement
by Yongsheng Tang, Yunzhen Lin and Tao Yu
Buildings 2025, 15(6), 843; https://doi.org/10.3390/buildings15060843 - 7 Mar 2025
Viewed by 544
Abstract
Due to their construction efficiency, prefabricated concrete pavements are becoming a good choice for airport construction or refreshing. However, as a new type of pavement structure, their structural analysis theory and actual structural performance have not been determined. Therefore, a new method based [...] Read more.
Due to their construction efficiency, prefabricated concrete pavements are becoming a good choice for airport construction or refreshing. However, as a new type of pavement structure, their structural analysis theory and actual structural performance have not been determined. Therefore, a new method based on a neural network is applied to implement a long-term structural assessment, with the input being monitored strain data; it is named the jellyfish search algorithm-optimized BP neural network (JS-BP) model. Considering the structural characteristics, three key parameters are selected as the key parameters to implement the assessment, namely, the bending and tensile modulus, reaction modulus at top of the subgrade, and seam equivalent modulus. To implement the method, the databases are established first with the simulation results from some finite element models of prefabricated concrete pavement. Then, the proposed JS-BP neural network model is trained and checked with the established database. The simulation results verify an excellent accuracy of the proposed method as the difference between the predicted value and the true value is smaller than 1%. Moreover, the aircraft loads show some influence on the prediction results, in which the prediction error is about 5% for most cases, while it is up to 15% for assessing the top surface reaction modulus of the subgrade. Compared with the proposed JS-BP model, the accuracy of the traditional BP model is not so high, as the largest error can be up to 25%. Lastly, the proposed method is verified with some experiments using laboratory models. From the test results it is indicated that the prediction accuracy of the proposed method for the three parameters is still good enough, as the prediction error is within 5%. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

34 pages, 3190 KiB  
Review
A Systematic Evaluation of the Empirical Relationships Between the Resilient Modulus and Permanent Deformation of Pavement Materials
by Zeping Yang, Junyu Sun, Yupeng Zhang, Jiarui Liu, Erwin Oh and Zhanguo Ma
Buildings 2025, 15(5), 663; https://doi.org/10.3390/buildings15050663 - 20 Feb 2025
Cited by 2 | Viewed by 1612
Abstract
The resilient modulus (Mr) and permanent deformation of subgrade soils are key indicators for assessing pavement performance under repeated traffic loads. Although numerous studies have confirmed their importance in pavement design and performance prediction, a systematic review of empirical relationships [...] Read more.
The resilient modulus (Mr) and permanent deformation of subgrade soils are key indicators for assessing pavement performance under repeated traffic loads. Although numerous studies have confirmed their importance in pavement design and performance prediction, a systematic review of empirical relationships and scientific knowledge is lacking, resulting in insufficient integration and application of current findings. To address these issues, this study systematically reviews laboratory and field-testing methods based on over 200 published papers, summarizes common empirical equations, and focuses on the feasibility and advantages of integrating AI to predict Mr. Meanwhile, by examining the main factors that influence Mr and permanent deformation, this study synthesizes and evaluates existing research to identify potential gaps. Findings indicate that laboratory and field tests effectively capture the mechanical behavior of pavement materials, and incorporating AI technology in modulus prediction enhances accuracy and efficiency while managing complex influencing factors. However, existing empirical equations have not been fully integrated with emerging technologies for validation and optimization, and some predictive models remain limited in terms of applicability and generalizability. This review highlights the need to refine empirical relationships for the resilient modulus using stochastic methods and AI techniques, thereby facilitating a more comprehensive integration of the latest testing technologies and computational tools. This research is of great significance for advancing sustainable pavement design, optimizing maintenance strategies, and guiding future research directions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 6714 KiB  
Article
Experimental Study on Trenchless Treatment Technology of Differential Settlement of In-Service Highway Subgrade in Deep Soft Soil Area
by Jianqiang Xu, Tiangong Zhang, Shasha Zhang, Mengjie Wang, Xiaohua Yang and Feng Xu
Buildings 2025, 15(4), 537; https://doi.org/10.3390/buildings15040537 - 10 Feb 2025
Viewed by 713
Abstract
The highway network is densely distributed in the southeast coast of China. Highway subgrades passing through soft soil areas often produce large settlements, resulting in pavement cracking, bridgehead jumping, and other diseases. In order to study the effect of three trenchless treatment technologies [...] Read more.
The highway network is densely distributed in the southeast coast of China. Highway subgrades passing through soft soil areas often produce large settlements, resulting in pavement cracking, bridgehead jumping, and other diseases. In order to study the effect of three trenchless treatment technologies of oblique jet grouting pile (JGP), lateral displacement limiting pile (LDLP), and load reducing pipe (LRP), centrifugal model tests were carried out under three treated conditions and without treatment. Based on the data of pore water pressure and settlement in the range of the half embankment model and outside the embankment, the settlement characteristics of highway soft soil foundation during the test simulation were studied, and the characteristics of different treatment methods were compared. The high level of pore water pressure corresponds to the rapid development of settlement. The average settlement during the existing operation period accounts for 96.7% of the total settlement of the simulation period, and the settlement does not converge. The methods can effectively inhibit the development of settlement, and each has its own characteristics: the LRP method does not involve foundation treatment, so its settlement characteristics are closest to that without treatment. The LDLP method can obviously limit the settlement within the embankment range and the pore water dissipation. The JGP method enhances the synergistic deformation ability of the embankment and significantly decreases the differential settlement. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

17 pages, 5429 KiB  
Article
Experimental Investigation and Analysis of the Influence of Depth and Moisture Content on the Relationship Between Subgrade California Bearing Ratio Tests and Cone Penetration Tests for Pavement Design
by Ricardo Moffat, Felipe Faundez and Felipe A. Villalobos
Buildings 2025, 15(3), 345; https://doi.org/10.3390/buildings15030345 - 23 Jan 2025
Viewed by 1245
Abstract
Evaluation of soil properties in highway design is an important but time-consuming task that does not always provide the necessary information to detect issues associated with changes in soil properties along the road project. California Bearing Ratio (CBR) tests are commonly used to [...] Read more.
Evaluation of soil properties in highway design is an important but time-consuming task that does not always provide the necessary information to detect issues associated with changes in soil properties along the road project. California Bearing Ratio (CBR) tests are commonly used to identify soil properties and as an input in pavement design; however, it could be considered a slow test and, therefore, not always performed to the extent that it may be desired on the field. A comparison between CPT and CBR is performed in this work to obtain a correlation between them to be used in design. The effects of moisture content are also investigated in CPT and CBR to determine which conditions should be tested to obtain representative or design conditions for the pavement. A good correlation is found between CPT tip resistance and in situ CBR. It is observed that CBR and cone tip resistance change significantly for moisture contents up to 30 to 40%. It was found that tip resistance should be evaluated at a depth of 20 cm inside the subgrade to estimate adequate CBR values. Full article
Show Figures

Figure 1

21 pages, 5852 KiB  
Article
Study on the Attribute Characteristics of Road Cracks Detected by Ground-Penetrating Radar
by Shili Guo, Mingyu Yu, Zhiwei Xu, Guanghua Yue, Wencai Cai and Pengfei Tian
Sensors 2025, 25(3), 595; https://doi.org/10.3390/s25030595 - 21 Jan 2025
Cited by 2 | Viewed by 1098
Abstract
Cracks are a common form of road distress that can significantly impact pavement integrity. Accurate detection of the attribute characteristics of cracks, including the type, location (top and bottom), width, and orientation, is crucial for effective repair and treatment. This study combines numerical [...] Read more.
Cracks are a common form of road distress that can significantly impact pavement integrity. Accurate detection of the attribute characteristics of cracks, including the type, location (top and bottom), width, and orientation, is crucial for effective repair and treatment. This study combines numerical simulations with filed data to investigate how the amplitudes of ground-penetrating radar (GPR) early-time signals (ETSs) vary with changes in the crack top and width, as well as how variations in the crack bottom impact radar reflected wave amplitude. The results show that when GPR ETSs are mixed with diffracted waves from the crack top, the amplitude change percentage of the ETS at the crack top exhibits a pronounced ‘∨’-shaped dip, which provides a clearer indication of the crack top. Furthermore, a positive correlation exists between crack width and the amplitude change percentage, offering a theoretical basis for quantitatively estimating crack width. On the reflected wave originating from the interface between the semi-rigid base and the subgrade, a pronounced ‘∧’-shaped dip is observed in the trough amplitude change percentage of the reflected wave at the crack bottom. For cracks of the same width, the amplitude of the ‘∧’ vertex from reflective cracks is approximately three times greater than that from fatigue cracks. This discrepancy helps identify the crack bottom and quantitatively diagnose their types. The line connecting the vertices of the ‘∨’ and ‘∧’ shapes indicate the crack’s orientation. Accurate diagnosis of crack properties can guide precise, minimally invasive treatment methods, effectively repairing road cracks and extending the road’s service life. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Graphical abstract

Back to TopTop