Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction
Abstract
1. Introduction
2. Methodology
2.1. Material
2.2. Laboratory Experiments
2.3. Data Split
2.4. Multiple Linear Regression (MLR)
2.5. Multiple Nonlinear Regression (MNLR)
2.6. Random Forest Model
2.7. ANN
2.8. Gradient Boosting Regression
2.9. KNN
2.10. SVM
3. Results and Discussion
3.1. Experimental Results
3.2. Multi-Linear Regression Model
3.3. Multi-Nonlinear Regression Model
3.4. Random Forest Model
3.5. ANN Model
3.6. Gradient Boosting Regression
3.7. KNN
3.8. SVM
3.9. Model Accuracy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabab’ah, S.R.; Sharo, A.A.; Alqudah, M.M.; Ashteyat, A.M.; Saleh, H.O. Effect of using Oil Shale Ash on geotechnical properties of cement-stabilized expansive soil for pavement applications. Case Stud. Constr. Mater. 2023, 19, e02508. [Google Scholar] [CrossRef]
- Vásquez, V.; Luis, R.; Francisco, J.; García, O. An overview of asphalt pavement design for streets and roads. Rev. Fac. Ing. Univ. Antioquia 2021, 10–26. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kim, W.S. Estimation of Subgrade Resilient Modulus Using the Unconfined Compression Test (No. FHWA/VCTIR 15-R12). Virginia Center for Transportation Innovation and Research. 2014. Available online: https://scholar.google.com/scholar?q=3.+Hossain,+M.S.+Estimation+of+Subgrade+Resilient+Modulus+Using+the+Unconfined+Compression+Test&hl=en&as_sdt=0&as_vis=1&oi=scholart (accessed on 19 April 2025).
- Yang, G.; Mahboub, K.C.; Renfro, R.L.; Graves, C.; Wang, K.C.P. A Machine Learning Tool for Pavement Design and Analysis. KSCE J. Civ. Eng. 2023, 27, 207–217. [Google Scholar] [CrossRef]
- Zeiada, W.; Dabous, S.A.; Hamad, K.; Al-Ruzouq, R.; Khalil, M.A. Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arab. J. Sci. Eng. 2020, 45, 4091–4109. [Google Scholar] [CrossRef]
- Cano-Ortiz, S.; Pascual-Muñoz, P.; Castro-Fresno, D. Machine learning algorithms for monitoring pavement performance. Autom. Constr. 2022, 139, 104309. [Google Scholar] [CrossRef]
- Jiang, Q.; Cao, M.; Wang, Y.; Wang, J.; He, Z. Estimation of Soil Shear Strength Indicators Using Soil Physical Properties of Paddy Soils in the Plastic State. Appl. Sci. 2021, 11, 5609. [Google Scholar] [CrossRef]
- Gowadi, A.; Elkatatny, S.; Gamal, H. Unconfined Compressive Strength (UCS) Prediction in Real-Time While Drilling Using Artificial Intelligence Tools|Neural Computing and Applications. Available online: https://link.springer.com/article/10.1007/s00521-020-05546-7 (accessed on 6 February 2025).
- Natekin, A.; Knoll, A. Frontiers|Gradient Boosting Machines, a Tutorial. Available online: https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2013.00021/full (accessed on 6 February 2025).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2022, 2, 18–22. [Google Scholar]
- Gambill, D.R.; Wall, W.A.; Fulton, A.J.; Howard, H.R. Predicting USCS soil classification from soil property variables using Random Forest. J. Terramechanics 2016, 65, 85–92. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, Y.S.; Eom, I.K.; Lee, K.Y. Economic load dispatch for piecewise quadratic cost function using Hopfield neural network. IEEE Trans. Power Syst. 1993, 8, 1030–1038. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ma, G.; Chao, Z.; Zhang, Y.; Zhu, Y.; Hu, H. The application of support vector machine in geotechnical engineering. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 022055. [Google Scholar] [CrossRef]
- Samui, P.; Jagan, J.; Hariharan, R. An Alternative Method for Determination of Liquefaction Susceptibility of Soil. Geotech. Geol. Eng. 2016, 34, 735–738. [Google Scholar] [CrossRef]
- Song, Y.; Liang, J.; Lu, J.; Zhao, X. An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 2017, 251, 26–34. [Google Scholar] [CrossRef]
- Khasawneh, M.; Al-Akhrass, H.; Rabab’ah, S.; Al-sugaier, A. Prediction of California Bearing Ratio Using Soil Index Properties by Regression and Machine-Learning Techniques. Int. J. Pavement Res. Technol. 2022, 1–19. [Google Scholar] [CrossRef]
- ASTM D698-12; D18 Committee Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International: West Conshohocken, PA, USA, 2009. [CrossRef]
- ASTM D2166; Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- ASTM D4318 D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/d4318-17e01.html (accessed on 6 February 2025).
- ASTM D422-63; Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007. [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B Stat. Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Widodo, S.; Ibrahim, A.; Hong, S. Analysis of Different Equations of Undrained Shear Strength Estimations Using Atterberg Limits on Pontianak Soft Clay. Available online: https://www.researchgate.net/publication/262025745_Analysis_of_different_equations_of_undrained_shear_strength_estimations_using_Atterberg_Limits_on_Pontianak_Soft_Clay (accessed on 19 April 2025).
- Lourakis, M.I.A. A Brief Description of the Levenberg-Marquardt Algorithm Implemened by Levmar. 2005. Available online: https://www.researchgate.net/publication/239328019_A_Brief_Description_of_the_Levenberg-Marquardt_Algorithm_Implemened_by_levmar (accessed on 19 April 2025).
- Najjar, Y.M.; Ali, H.E.; Basheer, I.A. On the use of neuronets for simulating the stress-strain behavior of soils. In Numerical Models in Geomechanics. Proceedings of the 7th International Symposium, Graz, September 1999; CRC PRESS: Boca Raton, FL, USA, 1999; pp. 657–662. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning (Adaptive Computation and Machine Learning Series): Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron: 9780262035613. Available online: https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618 (accessed on 6 February 2025).
- Najjar, Y.M.; Huang, C. Simulating the stress–strain behavior of Georgia kaolin via recurrent neuronet approach. Comput. Geotech. 2007, 34, 346–361. [Google Scholar] [CrossRef]
- Nasiboglu, R.; Nasibov, E. WABL method as a universal defuzzifier in the fuzzy gradient boosting regression model. Expert Syst. Appl. 2023, 212, 118771. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ding, X.; Liu, J.; Yang, F.; Cao, J. Random radial basis function kernel-based support vector machine. J. Frankl. Inst. 2021, 358, 10121–10140. [Google Scholar] [CrossRef]
- Hastuty, I.P. Comparison of the Use of Cement, Gypsum, and Limestone on the Improvement of Clay through Unconfined Compression Test. J. Civ. Eng. Forum 2019, 5, 131. [Google Scholar] [CrossRef]
- Lindeburg, K. Silty Mantles and Fragipans in Pennsylvania Soils. 2011. Available online: https://www.researchgate.net/publication/263350712_Silty_Mantles_and_Fragipans_in_Pennsylvania_Soils (accessed on 19 April 2025).
- Gour, S.S.; Muthekar, D.V.V.; Saner, A.B. A Comparative Study of ANN Models developed for predicting Soil Compaction Parameters using MS Excel and MATLAB. GIS Sci. J. 2022, 9, 1975. [Google Scholar]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Mozumder, R.A.; Laskar, A.I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network. Comput. Geotech. 2015, 69, 291–300. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C. Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innov. Infrastruct. Solut. 2021, 6, 199. [Google Scholar] [CrossRef]
- Akshaya, R.; Premalatha, K. Prediction of Soil Compression Index using SVM and kNN. IOP Conf. Ser. Earth Environ. Sci. 2024, 1326, 012121. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Jahed Armaghani, D.; Momeni, E.; Alavi Nezhad Khalil Abad, S.V. Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bull. Eng. Geol. Environ. 2015, 74, 745–757. [Google Scholar] [CrossRef]
# | Coarse Content | Fine Content | Density (Kip/ft3) | WC (%) | LL (%) | PL (%) | UCS (Ksf) |
---|---|---|---|---|---|---|---|
1 | 0.95 | 0.05 | 0.1223 | 10 | 29.25 | 23.8 | 6.65 |
2 | 0.95 | 0.05 | 0.1351 | 15 | 29.25 | 23.8 | 6.9 |
3 | 0.9 | 0.1 | 0.1222 | 10 | 27.75 | 24.14 | 7.6 |
4 | 0.9 | 0.1 | 0.1344 | 15 | 27.75 | 24.14 | 4.3 |
5 | 0.1 | 0.9 | 0.1242 | 10 | 71.55 | 37.56 | 4.88 |
6 | 0.1 | 0.9 | 0.1386 | 15 | 71.55 | 37.56 | 2.48 |
7 | 0.05 | 0.95 | 0.1261 | 10 | 73.00 | 38.00 | 2.86 |
8 | 0.05 | 0.95 | 0.1355 | 15 | 73.00 | 38.00 | 2.39 |
Independent Variables | Pearson Correlation |
---|---|
Plastic limit | −0.312 |
Liquid limit | −0.447 |
Water content | −0.248 |
Bulk density | −0.391 |
Retained sieve #200 | −0.056 |
Passed sieve #200 | 0.056 |
Parameter | Range | Mean | ST. DV | CV% |
---|---|---|---|---|
UCS (ksf) | 1036–18.37 | 5.014 | 2.7725 | 55.30 |
PL (%) | 18.01–38 | 25.550 | 5.3594 | 20.98 |
LL (%) | 27–73 | 40.362 | 14.900 | 36.92 |
WC (%) | 10–15 | 12.5 | 2.5083 | 20.07 |
Density (kip/ft3) | 0.1173–0.1398 | 0.129 | 0.0060 | 4.65 |
Retained sieve #200 (%) | 95–5 | 50 | 0.2748 | 0.55 |
Model | R2 (%) | RMSE | MARE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Testing | Validation | All | Training | Testing | Validation | All | Training | Testing | Validation | All | |
ANN | 76 | 75 | 76 | 80 | 1.32 | 1.60 | 1.33 | 1.25 | 0.65 | 0.25 | 0.14 | 0.33 |
GB | 87 | 70 | 71 | 77 | 0.96 | 1.73 | 1.61 | 1.36 | 0.56 | 0.24 | 0.75 | 0.53 |
RF | 87 | 67 | 74 | 77 | 1.10 | 1.83 | 1.19 | 1.34 | 0.43 | 0.23 | 0.52 | 0.41 |
SV | 61 | 50 | 59 | 56 | 1.84 | 2.39 | 1.45 | 1.91 | 0.77 | 0.31 | 0.82 | 0.67 |
KNN | 55 | 59 | 44 | 53 | 2.19 | 2.01 | 1.99 | 1.93 | 1.24 | 0.33 | 0.90 | 0.71 |
MNLR | 48 | 44 | 50 | 47 | 1.96 | 2.36 | 1.67 | 2.00 | 0.87 | 0.33 | 0.98 | 0.76 |
MLR | 36 | 31 | 27 | 37 | 1.24 | 2.76 | 3.08 | 2.25 | 0.76 | 0.86 | 0.29 | 0.67 |
Model | R2 | RMSE | MARE | Total Ranking | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | Testing | Validation | All | Training | Testing | Validation | All | Training | Testing | Validation | All | Rank | |
ANN | 5 | 7 | 7 | 7 | 5 | 7 | 6 | 7 | 5 | 5 | 7 | 7 | 75 |
GB | 7 | 6 | 5 | 6 | 7 | 6 | 4 | 5 | 6 | 6 | 4 | 5 | 61 |
RF | 6 | 5 | 6 | 6 | 6 | 5 | 7 | 6 | 7 | 7 | 5 | 6 | 72 |
SV | 4 | 4 | 4 | 4 | 3 | 3 | 5 | 4 | 3 | 4 | 3 | 4 | 41 |
KNN | 3 | 3 | 3 | 3 | 1 | 4 | 2 | 3 | 1 | 3 | 2 | 2 | 30 |
MNLR | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | 1 | 1 | 24 |
MLR | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 4 | 1 | 6 | 3 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqudah, M.; Saleh, H.; Yasarer, H.; Al-Ostaz, A.; Najjar, Y. Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction. Infrastructures 2025, 10, 153. https://doi.org/10.3390/infrastructures10070153
Alqudah M, Saleh H, Yasarer H, Al-Ostaz A, Najjar Y. Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction. Infrastructures. 2025; 10(7):153. https://doi.org/10.3390/infrastructures10070153
Chicago/Turabian StyleAlqudah, Mudhaffer, Haitham Saleh, Hakan Yasarer, Ahmed Al-Ostaz, and Yacoub Najjar. 2025. "Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction" Infrastructures 10, no. 7: 153. https://doi.org/10.3390/infrastructures10070153
APA StyleAlqudah, M., Saleh, H., Yasarer, H., Al-Ostaz, A., & Najjar, Y. (2025). Comparative Study of Machine Learning Techniques for Predicting UCS Values Using Basic Soil Index Parameters in Pavement Construction. Infrastructures, 10(7), 153. https://doi.org/10.3390/infrastructures10070153