Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = partial density of states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2529 KiB  
Article
Cloud Adoption in the Digital Era: An Interpretable Machine Learning Analysis of National Readiness and Structural Disparities Across the EU
by Cristiana Tudor, Margareta Florescu, Persefoni Polychronidou, Pavlos Stamatiou, Vasileios Vlachos and Konstadina Kasabali
Appl. Sci. 2025, 15(14), 8019; https://doi.org/10.3390/app15148019 - 18 Jul 2025
Viewed by 251
Abstract
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to [...] Read more.
As digital transformation accelerates across Europe, cloud computing plays an increasingly central role in modernizing public services and private enterprises. Yet adoption rates vary markedly among EU member states, reflecting deeper structural differences in digital capacity. This study employs explainable machine learning to uncover the drivers of national cloud adoption across 27 EU countries using harmonized panel datasets spanning 2014–2021 and 2014–2024. A methodological pipeline combining Random Forests (RF), XGBoost, Support Vector Machines (SVM), and Elastic Net regression is implemented, with model tuning conducted via nested cross-validation. Among individual models, Elastic Net and SVM delivered superior predictive performance, while a stacked ensemble achieved the best overall accuracy (MAE = 0.214, R2 = 0.948). The most interpretable model, a standardized RF with country fixed effects, attained MAE = 0.321, and R2 = 0.864, making it well-suited for policy analysis. Variable importance analysis reveals that the density of ICT specialists is the strongest predictor of adoption, followed by broadband access and higher education. Fixed-effect modeling confirms significant national heterogeneity, with countries like Finland and Luxembourg consistently leading adoption, while Bulgaria and Romania exhibit structural barriers. Partial dependence and SHAP analyses reveal nonlinear complementarities between digital skills and infrastructure. A hierarchical clustering of countries reveals three distinct digital maturity profiles, offering tailored policy pathways. These results directly support the EU Digital Decade’s strategic targets and provide actionable insights for advancing inclusive and resilient digital transformation across the Union. Full article
(This article belongs to the Special Issue Advanced Technologies Applied in Digital Media Era)
Show Figures

Figure 1

21 pages, 4492 KiB  
Article
IrO2-Decorated Titania Nanotubes as Oxygen Evolution Anodes
by Aikaterini Touni, Effrosyni Mitrousi, Patricia Carvalho, Maria Nikopoulou, Eleni Pavlidou, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Molecules 2025, 30(14), 2921; https://doi.org/10.3390/molecules30142921 - 10 Jul 2025
Viewed by 306
Abstract
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen [...] Read more.
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen evolution reaction (OER). Ir was subsequently been deposited on them by the galvanic replacement of electrodeposited Ni by Ir(IV) chloro-complexes; this was followed by Ir electrochemical anodization to IrO2. By carrying out the preparation of the TNTs in either two or one anodization steps, we were able to produce close-packed or open-structure nanotubes, respectively. In the former case, larger than 100 nm Ir aggregates were finally formed on the top face of the nanotubes (leading to partial or full surface coverage); in the latter case, Ir nanoparticles smaller than 100 nm were obtained, with some of them located inside the pores of the nanotubes, which retained a porous surface structure. The electrocatalytic activity of IrO2 supported on open-structure bTNTs towards OER is superior to that supported on close-packed bTNTs and TNTs, and its performance is comparable or better than that of similar electrodes reported in the literature (overpotential of η = 240 mV at 10 mA cm−2; current density of 70 mA cm−2 and mass specific current density of 258 mA mgIr−1 at η = 300 mV). Furthermore, these electrodes demonstrated good medium-term stability, maintaining stable performance for 72 h at 10 mA cm−2 in acid. Full article
(This article belongs to the Special Issue Advances in Water Electrolysis Technology)
Show Figures

Graphical abstract

11 pages, 3435 KiB  
Article
Influence of Cr- and Co-Doped CaO on Adsorption Properties: DFT Study
by Wei Shi, Renwei Li, Haifeng Yang, Dehao Kong and Qicheng Chen
Molecules 2025, 30(13), 2820; https://doi.org/10.3390/molecules30132820 - 30 Jun 2025
Viewed by 291
Abstract
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. [...] Read more.
Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. In this study, the enhancement mechanism of Co and Cr doping in terms of the adsorption properties of CaO was investigated by Density Functional Theory (DFT) calculations. The results indicate that Co and Cr doping shortens the bond length between metal and oxygen atoms, enhances covalent bonding interactions, and reduces the oxygen vacancy formation energy. Meanwhile, the O2− diffusion energy barrier decreased from 4.606 eV for CaO to 3.648 eV for Co-CaO and 2.854 eV for Cr-CaO, which promoted CO2 adsorption kinetics. The CO2 adsorption energy was significantly increased in terms of the absolute value, and a partial density of states (PDOS) analysis indicated that doping enhanced the C-O orbital hybridization strength. In addition, Ca4O4 cluster adsorption calculations indicated that the formation of stronger metal–oxygen bonds on the doped surface effectively inhibited particle migration and sintering. This work reveals the mechanisms of transition metal doping in optimizing the electronic structure of CaO and enhancing CO2 adsorption performance and sintering resistance, which provides a theoretical basis for the design of efficient calcium-based sorbents. Full article
Show Figures

Figure 1

15 pages, 2389 KiB  
Article
Tracking Photoinduced Charge Redistribution in a Cu(I) Diimine Donor–Bridge–Acceptor System with Time-Resolved Infrared Spectroscopy
by Sean A. Roget, Wade C. Henke, Maxwell Taub, Pyosang Kim, Jonathan T. Yarranton, Xiaosong Li, Karen L. Mulfort and Lin X. Chen
Photochem 2025, 5(2), 16; https://doi.org/10.3390/photochem5020016 - 19 Jun 2025
Viewed by 406
Abstract
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and [...] Read more.
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and anthraquinone, tethered to one of the phenanthroline ligands via a vibrationally active ethyne bridge, behaves as an electron acceptor. Visible transient absorption spectroscopy revealed the dynamic processes occurring in the excited state, including PET to the acceptor species. This was indicated by the spectral features of the anthraquinone radical anion that appeared on a timescale of 30 ps in polar solvents. Time-resolved infrared (TRIR) spectroscopy of the alkyne vibration (CC stretch) of the ethyne bridge provided insight into electronic structural changes in the metal-to-ligand charge transfer (MLCT) state and along the PET reaction coordinate. The observed spectral shift and enhanced transition dipole moment of the CC stretch demonstrated that there was already partial delocalization to the anthraquinone acceptor following MLCT excitation, verified by DFT calculations. An additional excited-state TRIR signal unrelated to the vibrational mode highlighted delocalization between the phenanthroline ligands in the MLCT state. This signal decayed and the CC stretch narrowed and shifted towards the ground-state frequency following PET, indicating a degree of localization onto the acceptor species. This study experimentally elucidates charge redistribution during PET in a Cu(I) diimine D-B-A system, yielding important information on the ligand design for optimizing PET reactions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 1637 KiB  
Article
Influence of Laminated Expanded Clay Proportion on Mortar Properties
by Vanessa Gentil de Oliveira Almeida, Karolaine Rodrigues Farias, Veluza Anchieta Souza, Fernanda Martins Cavalcante de Melo, Herbet Alves de Oliveira, Alexandre Santos Pimenta, Sabir Khan and Rafael Rodolfo de Melo
J. Compos. Sci. 2025, 9(6), 309; https://doi.org/10.3390/jcs9060309 - 18 Jun 2025
Viewed by 606
Abstract
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially [...] Read more.
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially replacing fine aggregate with proportions of expanded clay. Six mortar formulations were prepared with varying proportions of expanded clay. The constituent materials of the mixtures and the mortars were characterized according to regulatory prescriptions. The results indicated that the increase in the replacement of fine aggregate with expanded clay reduced the consistency and density of the mass in the fresh state. No significant differences were observed in water absorption by immersion among the mortars in the hardened state. Regarding mechanical tests, most mortars’ tensile strength in bending remained stable. On the other hand, compressive strength decreased. The tensile adhesion was also reduced with the incorporation of expanded clay. After exposure to sodium sulfate solution, all tensile strength results in bending improved. The coefficient of the constructive quality indicated that the ideal replacement formulation is 20% expanded clay. These mortars represent a viable technical alternative, complying with current standards and contributing more efficiently and sustainably to civil construction. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

20 pages, 5267 KiB  
Article
Effect of Hot Isostatic Pressure on the Microstructure Evolution of Ti-22Al-25Nb Alloy Formed by Selective Laser Melting
by Jingjun He, Haiou Yang, Linhao Huang, Jingyu Man, Yuhan Wu and Xin Lin
Materials 2025, 18(12), 2806; https://doi.org/10.3390/ma18122806 - 14 Jun 2025
Viewed by 410
Abstract
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 [...] Read more.
The density of SLMed (Selective Laser Melting) Ti-22Al-25Nb alloy was improved through hot isostatic pressing (HIP) treatment, and the influence of HIP and solution aging on the microstructure of Ti-22Al-25Nb alloy in the as-deposited state was examined. The results indicate that following (1100 °C + 300 MPa)/3 h-HIP, the specimen densities have risen to 99.71%, porosity has markedly decreased, and internal flaws have been eradicated. Microstructural analysis reveals a significant presence of GBα2 (GB, Grain Boundary) along grain boundaries, with GBLO + α2 (GBL, Grain Boundary Lath; O, Orthorhombic) laths extending parallel from the grain boundaries into the intragranular region. Additionally, a limited number of cross or snowflake O + α2 lath clusters and acicular O phases are precipitated within the B2 (B, Body-centered cubic) phase in the HIPed state, characterized by isotropic and linear grain boundaries. The GBLα2 and GBLO exhibit two growth modes: sympathetic nucleation and interfacially unstable nucleation. During the solid solution treatment following HIP, as the solid solution temperature rises, the acicular O phase, GBLO, lath O phase, lath α2, and GBα2 sequentially dissolve, increasing the volume fraction of the B2 phase. After HIP, the aging microstructure is primarily characterized by the proliferation of the acicular O phase precipitated from the B2 phase and retaining the lath O phase in a solid solution. The precipitation of GBLO in the original solid solution is suppressed, and the GBLα2 in the original solid solution partially decomposes into rimO, resulting in coarse grain size and significant internal decomposition of α2. Following solution treatment and aging at 920 °C, the proliferation of the acicular O phase enhances ductility, resulting in ideal overall characteristics with a yield strength (YS) of 760.81 MPa, ultimate tensile strength (UTS) of 869.32 MPa, and elongation (EL) of 2.683%. This study demonstrates that the HIP treatment and the modification of solution aging parameters can substantially increase the density and refine the microstructure of Ti-22Al-25Nb alloy, hence enhancing its mechanical properties. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

30 pages, 2290 KiB  
Article
Numerical Evidence for a Bipartite Pure State Entanglement Witness from Approximate Analytical Diagonalization
by Paul M. Alsing and Richard J. Birrittella
Foundations 2025, 5(2), 19; https://doi.org/10.3390/foundations5020019 - 4 Jun 2025
Viewed by 943
Abstract
We show numerical evidence for a bipartite d×d pure state entanglement witness that is readily calculated from the wavefunction coefficients directly, without the need for the numerical computation of eigenvalues. This is accomplished by using an approximate analytic diagonalization of the [...] Read more.
We show numerical evidence for a bipartite d×d pure state entanglement witness that is readily calculated from the wavefunction coefficients directly, without the need for the numerical computation of eigenvalues. This is accomplished by using an approximate analytic diagonalization of the bipartite state that captures dominant contributions to the negativity of the partially transposed state. We relate this entanglement witness to the Log Negativity, and show that it exactly agrees with it for the class of pure states whose quantum amplitudes form a positive Hermitian matrix. In this case, the Log Negativity is given by the negative logarithm of the purity of the amplitudes considered a density matrix. In other cases, the witness forms a lower bound to the exact, numerically computed Log Negativity. The formula for the approximate Log Negativity achieves equality with the exact Log Negativity for the case of an arbitrary pure state of two qubits, which we show analytically. We compare these results to a witness of entanglement given by the linear entropy. Finally, we explore an attempt to extend these pure state results to mixed states. We show that the Log Negativity for this approximate formula is exact for the class of pure state decompositions, for which the quantum amplitudes of each pure state form a positive Hermitian matrix. Full article
(This article belongs to the Section Mathematical Sciences)
Show Figures

Figure 1

11 pages, 1943 KiB  
Article
First-Principles Investigation of Structural, Electronic, and Magnetic Properties of BiFeO3 and Bi2Fe4O9 Nanostructures
by Ikbel Mallek-Zouari, Youness Kaddar, Wael Ben Taazayet, Omar Mounkachi, El-Kebir Hlil, Najeh Thabet Mliki and Amine El Moutaouakil
Int. J. Mol. Sci. 2025, 26(10), 4671; https://doi.org/10.3390/ijms26104671 - 14 May 2025
Cited by 1 | Viewed by 625
Abstract
The structural, electronic, and magnetic properties of bismuth ferrite (BiFeO3) and Bi2Fe4O9 nanostructures were investigated using Density Functional Theory (DFT) within the Generalized Gradient Approximation (PBE-GGA) plus U approach. The PBE-GGA + U calculations predict band [...] Read more.
The structural, electronic, and magnetic properties of bismuth ferrite (BiFeO3) and Bi2Fe4O9 nanostructures were investigated using Density Functional Theory (DFT) within the Generalized Gradient Approximation (PBE-GGA) plus U approach. The PBE-GGA + U calculations predict band gaps of 2.4 eV for BiFeO3 and 2.3 eV for Bi2Fe4O9, closely aligning with experimental data. The analysis of partial and total density of states reveals strong hybridization between iron 3d and oxygen 2p states, with a significant contribution from Fe 3d orbitals in both structures. Additionally, nanostructure and crystal symmetry are crucial in influencing the magnetic properties of BiFeO3 and Bi2Fe4O9. Our calculations indicate that the antiferromagnetic phase is energetically more favorable than the ferromagnetic phase in both materials. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

12 pages, 2166 KiB  
Article
119Sn Element-Specific Phonon Density of States of BaSnO3
by Alexey Rulev, Hongxin Wang, Selma Erat, Murat Aycibin, Daniel Rentsch, Vladimir Pomjakushin, Stephen P. Cramer, Qianli Chen, Nobumoto Nagasawa, Yoshitaka Yoda and Artur Braun
Crystals 2025, 15(5), 440; https://doi.org/10.3390/cryst15050440 - 5 May 2025
Viewed by 363
Abstract
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron [...] Read more.
Vibration spectroscopy is routinely used in analytical chemistry for molecular speciation. Less common is its use in studying the dynamics of reaction and transport processes. A shortcoming of vibration spectroscopies is that they are not inherently specific to chemical elements. Progress in synchrotron radiation-based X-ray technology has developed nuclear resonance vibration spectroscopy (NRVS), which can be used to produce element-specific vibration spectra and partial vibrational density of states (PVDOS), provided the material under investigation contains a Mössbauer-active element. While the method has been recently used successfully for protein spectroscopy, fewer studies have been conducted for condensed matter. We have employed NRVS on the BaSnO3 perovskite structure, which is a model compound for ceramic proton conductors in intermediate temperature fuel cells. Since we used 119Sn as a Mössbauer isotope, the derived experimental PVDOS is specific to the element Sn in BaSnO3. We show how this phonon DOS is used as an experimental anchor for the interpretation of the DFT-calculated PVDOS of BaSnO3. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 488 KiB  
Article
A Theoretical Study of the Ionization States and Electrical Conductivity of Tantalum Plasma
by Shi Chen, Qishuo Zhang, Qianyi Feng, Ziyue Yu, Jingyi Mai, Hongping Zhang, Lili Huang, Chengjin Huang and Mu Li
Plasma 2025, 8(2), 16; https://doi.org/10.3390/plasma8020016 - 28 Apr 2025
Viewed by 810
Abstract
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization [...] Read more.
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization composition and electrical conductivity of tantalum plasma across a wide range of densities and temperatures is essential. In this study, we calculate the densities of ionization species and the electrical conductivity of partially ionized, nonideal tantalum plasma based on a simplified theoretical model that accounts for high ionization states up to the atomic number of the element and the lowering of ionization energies. A comparison of the ionization compositions between tantalum and copper plasmas highlights the significant role of ionization energies in determining species populations. Additionally, the average electron–neutral momentum transfer cross-section significantly influences the electrical conductivity calculations, and calibration with experimental measurements offers a method for estimating this atomic parameter. The impact of electrical conductivity in the intermediate-density range on the laser absorption coefficient is discussed using the Drude model. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

22 pages, 2567 KiB  
Article
FA-YOLO: A Pedestrian Detection Algorithm with Feature Enhancement and Adaptive Sparse Self-Attention
by Hang Sui, Huiyan Han, Yuzhu Cui, Menglong Yang and Binwei Pei
Electronics 2025, 14(9), 1713; https://doi.org/10.3390/electronics14091713 - 23 Apr 2025
Viewed by 803
Abstract
Pedestrian detection technology refers to identifying pedestrians within the field of view and is widely used in smart cities, public safety surveillance, and other scenarios. However, in real-world complex scenes, challenges such as high pedestrian density, occlusion, and low lighting conditions lead to [...] Read more.
Pedestrian detection technology refers to identifying pedestrians within the field of view and is widely used in smart cities, public safety surveillance, and other scenarios. However, in real-world complex scenes, challenges such as high pedestrian density, occlusion, and low lighting conditions lead to blurred image boundaries, which significantly impact accuracy of pedestrian detection. To address these challenges, we propose a novel pedestrian detection algorithm, FA-YOLO. First, to address issues of limited effective information extraction in backbone network and insufficient feature map representation, we propose a feature enhancement module (FEM) that integrates both global and local features of the feature map, thereby enhancing the network’s feature representation capability. Then, to reduce redundant information and improve adaptability to complex scenes, an adaptive sparse self-attention (ASSA) module is designed to suppress noise interactions in irrelevant regions and eliminate feature redundancy across both spatial and channel dimensions. Finally, to further enhance the model’s focus on target features, we propose cross stage partial with adaptive sparse self-attention (C3ASSA), which improves overall detection performance by reinforcing the importance of target features during the final detection stage. Additionally, a scalable intersection over union (SIoU) loss function is introduced to address the vector angle differences between predicted and ground-truth bounding boxes. Extensive experiments on the WiderPerson and RTTS datasets demonstrate that FA-YOLO achieves State-of-the-Art performance, with a precision improvement of 3.5% on the WiderPerson and 3.0% on RTTS compared to YOLOv11. Full article
(This article belongs to the Special Issue Applications of Computer Vision, 3rd Edition)
Show Figures

Figure 1

20 pages, 6712 KiB  
Article
Effect of Sn Content on Wettability and Interfacial Structure of Cu–Sn–Cr/Graphite Systems: Experimental and First-Principles Investigations
by Wenjuan Ci, Qiaoli Lin, Xuefeng Lu, Yu Shi, Likai Yang and Wenkai Wang
Materials 2025, 18(8), 1793; https://doi.org/10.3390/ma18081793 - 14 Apr 2025
Viewed by 507
Abstract
The co-addition of chromium (Cr) and tin (Sn) is known to enhance the wettability between copper (Cu) and graphite (Cgr), but the effect of Sn content remains poorly understood. This study aims to systematically investigate the influence of Sn content a [...] Read more.
The co-addition of chromium (Cr) and tin (Sn) is known to enhance the wettability between copper (Cu) and graphite (Cgr), but the effect of Sn content remains poorly understood. This study aims to systematically investigate the influence of Sn content a (a = 0, 10, 20, 30, 40, 50, 80, 99 at. %) on the wettability, interfacial structure, surface/interface energy (σlv/σsl), and adhesion behavior of the Cu–aSn–1Cr/Cgr system at 1100 °C. The experimental results show that as the Sn content increases, the equilibrium contact angle (θe) of the metal droplet shows a non-monotonic trend; the thickness of the reaction product layer (RPL, consisting of Cr carbides (CrmCn)) gradually increases, accompanied by a decrease in the calculated adhesion work (Wadcal). A “sandwich” interface structure is observed, consisting of two interfaces: metal||CrmCn and CrmCn||Cgr. Sn content mainly affects the former. At metal||CrmCn, Sn exists in various forms (e.g., Cu–Sn solid solution, CuxSny compounds) in contact with CrmCn. To elucidate the wetting and bonding mechanisms of metal||CrmCn, simplified interfacial models are constructed and analyzed based on first-principles calculations of density functional theory (DFT). The trend of theoretically calculated results (σmetal and Wad) agrees with the experimental results (σlv and Wadcal). Further analysis of the partial density of state (PDOS) and charge density difference (CDD) reveals that charge distribution and bonding characteristics vary with Sn content, providing the microscopic insight into the nature of wettability and interfacial bonding strength. Full article
Show Figures

Figure 1

15 pages, 5787 KiB  
Communication
Theoretical Analysis and Characteristic Study of Li-Doped P-Type ZnO Ultra-Thin Cantilever Beam Accelerometer
by Yingqi Shang, Jiayu Bi, Weiwei Liu, Chunpeng Ai and Hongquan Zhang
Materials 2025, 18(8), 1766; https://doi.org/10.3390/ma18081766 - 11 Apr 2025
Viewed by 317
Abstract
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient [...] Read more.
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient approximations of Perdew–Burke–Erzerhof (GGA-PBE) functionals and Plain Wave Basis Sets were used to calculate the electronic structure, density of states, energy bands, charge density, and piezoelectric coefficient of intrinsic ZnO. Research and calculations were conducted on Li-doped ZnO with different ratios. According to our calculations, as the Li doping ratio increases from 0 to 10%, the bandgap width of ZnO material increases from 0.74 to 1.21 eV. The results for the density of states and partial density of states indicate that the increase in band gap is due to the movement of Zn-3d states towards the high-energy end, and the piezoelectric coefficient of the material increases from 2.07 to 3.3 C/m2. Meanwhile, based on the optimized Li-doped ZnO cantilever beam accelerometer, an ultra-thin cantilever beam accelerometer with a sensitivity of 7.04 mV/g was fabricated. Full article
Show Figures

Figure 1

15 pages, 2444 KiB  
Article
Optical Coherence Tomography Angiography, Elastography, and Attenuation Imaging for Evaluation of Liver Regeneration
by Svetlana Rodimova, Ekaterina Gubarkova, Nikolai Bobrov, Ilya Shchechkin, Vera Kozlova, Natalia Zolotova, Arseniy Potapov, Elena Kiseleva, Grigory Gelikonov, Natalia Gladkova, Vladimir Zagainov, Elena Zagaynova and Daria Kuznetsova
Diagnostics 2025, 15(8), 977; https://doi.org/10.3390/diagnostics15080977 - 11 Apr 2025
Viewed by 680
Abstract
Background/Objectives: As a result of metabolic changes and the disruption of tissue architecture and microcirculation, the regenerative potential of the liver decreases with violations at both micro and macro levels. The development of intraoperative approaches for assessing its regenerative potential is important for [...] Read more.
Background/Objectives: As a result of metabolic changes and the disruption of tissue architecture and microcirculation, the regenerative potential of the liver decreases with violations at both micro and macro levels. The development of intraoperative approaches for assessing its regenerative potential is important for reducing the risk of the occurrence of post-resection liver failure. In this study, we used multimodal optical coherence tomography (MM OCT), a combination of three optical coherence tomography modalities—OCT–angiography (OCTA), attenuation coefficient mapping, and OCT–elastography (OCE) to provide real-time three-dimensional and label-free assessment of changes in microcirculation, and in the structure and stiffness of the liver during regeneration. Methods: In our study, the regeneration of a healthy liver was induced by 70% partial hepatectomy. Monitoring of changes was carried out on the 0 (normal liver), 3rd and 7th day of regeneration using modalities of MM OCT. OCT offers the benefits of higher resolution and specificity compared with other clinical imaging modalities, and can be used, even intraoperatively. Results: By the 3rd day of liver regeneration, a decreased density of all observable vessels, together with increased values of the liver tissue’s attenuation coefficient and stiffness, was revealed compared to their initial state. However, by the 7th day, the studied parameters tended to return to their normal values, except that the density of large-caliber vessels continued to increase further. Histological and biochemical blood analysis methods were used to verify the MM OCT data. Conclusions: Such data are a first step towards further investigation of liver regeneration in pathology, and, taken in perspective, this should serve as a basis for predictive intraoperative assessment of the regenerative potential of the liver in a clinical setting. Full article
(This article belongs to the Section Biomedical Optics)
Show Figures

Figure 1

17 pages, 16706 KiB  
Article
Effects of Cu Substituting Mo in Sr2Fe1.5Mo0.5O6−δ Symmetrical Electrodes for CO2 Electrolysis in Solid Oxide Electrolysis Cells
by Wanting Tan, Pengzhan Hu, Tianxiang Feng, Siliang Zhao, Shuai Wang, Hui Song, Zhaoyu Qi and Wenjie Li
Nanomaterials 2025, 15(8), 585; https://doi.org/10.3390/nano15080585 - 11 Apr 2025
Viewed by 598
Abstract
Solid oxide electrolysis cells (SOECs) are considered one of the most promising technologies for carbon neutralization, as they can efficiently convert CO2 into CO fuel. Sr2Fe1.5Mo0.5O6−δ (SFM) double perovskite is a potential cathode material, but [...] Read more.
Solid oxide electrolysis cells (SOECs) are considered one of the most promising technologies for carbon neutralization, as they can efficiently convert CO2 into CO fuel. Sr2Fe1.5Mo0.5O6−δ (SFM) double perovskite is a potential cathode material, but its catalytic activity for CO2 reduction needs further improvement. In this study, Cu ions were introduced to partially replace Mo ions in SFM to adjust the electrochemical performance of the cathode, and the role of the Cu atom was revealed. The results show Cu substitution induced lattice expansion and restrained impurity in the electrode. The particle size of the Sr2Fe1.5Mo0.4Cu0.1O6−δ (SFMC0.1) electrode was about 500 nm, and the crystallite size obtained from the Williamson–Hall plot was 75 nm. Moreover, Cu doping increased the concentration of oxygen vacancies, creating abundant electrochemical active sites, and led to a reduction in the oxidation states of Fe and Mo ions. Compared with other electrodes, the SFMC0.1 electrode exhibited the highest current density and the lowest polarization resistance. The current density of SFMC0.1 reached 202.20 mA cm−2 at 800 °C and 1.8 V, which was 12.8% and 102.8% higher than the SFM electrodes with and without an isolation layer, respectively. Electrochemical impedance spectroscopy (EIS) analysis demonstrated that Cu doping not only promoted CO2 adsorption, dissociation and diffusion processes, but improved the charge transfer and oxygen ion migration. Theory calculations confirm that Cu doping lowered the surface and lattice oxygen vacancy formation energy of the material, thereby providing more CO2 active sites and facilitating oxygen ion transfer. Full article
(This article belongs to the Special Issue Nanoscale Material Catalysis for Environmental Protection)
Show Figures

Figure 1

Back to TopTop