Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = parking lot runoff

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2214 KiB  
Article
Anthropogenic Influences on the Chemical and Mineral Composition in Pond Sediment by X-Ray Absorption Spectroscopy and X-Ray Powder Diffraction
by Jalal Sawas, Derek Blanco, Mary Kroll, Aleida Perez, Juergen Thieme, Eric Dooryhee, Sarah Nicholas, Paul Northrup and Dana Schaefer
Quantum Beam Sci. 2025, 9(2), 21; https://doi.org/10.3390/qubs9020021 - 19 Jun 2025
Viewed by 461
Abstract
Manmade detention ponds have historically been impacted by anthropogenic activities such as rainwater runoff, car emissions, and drainage from infrastructures, which can lead to complications for pond ecosystems. Sediment samples collected from the northern, southern, western, and eastern regions of a small pond [...] Read more.
Manmade detention ponds have historically been impacted by anthropogenic activities such as rainwater runoff, car emissions, and drainage from infrastructures, which can lead to complications for pond ecosystems. Sediment samples collected from the northern, southern, western, and eastern regions of a small pond on a suburban high school campus on Long Island, NY, were analyzed for potential chemical changes resulting from an inundation of water by a broken water main. Incorporating synchrotron X-ray techniques, sediment was analyzed using Submicron Resolution Spectroscopy, Tender Energy X-ray Spectroscopy, and X-ray Powder Diffraction to examine heavy metals, light elements, and minerals. Results include a Zn:Cu ratio increase from 4:1 to 10:1 in the eastern zone and a higher heavy metal presence in the western zone for all elements examined, with greater distribution throughout the pond post-inundation. Lighter elements appear to remain relatively unchanged. The appearance of diopside in the eastern zone post-inundation samples suggests contamination from the water main break, while the presence of carbonate minerals in the western zone is consistent with erosion of asphalt material from the adjacent parking lot. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

20 pages, 7282 KiB  
Article
Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA
by Neal D. Mundahl and John Howard
Hydrology 2025, 12(4), 76; https://doi.org/10.3390/hydrology12040076 - 28 Mar 2025
Cited by 1 | Viewed by 725
Abstract
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and [...] Read more.
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and rainfall events flowing into an urban Minnesota, USA, lake during two different years, predicting that specific stormwater drainages with greater concentrations of roadways and parking lots would produce higher chloride loads during runoff than other drainages with fewer impervious surfaces. Chloride levels were measured in runoff draining into Lake Winona via 11 stormwater outfalls, a single channelized creek inlet, and two in-lake locations during each snowmelt or rainfall event from mid-February through early April in 2021 and 2023. In total, 33% of outfall runoff samples entering the lake collected over two years had chloride concentrations exceeding the 230 ppm chronic standard for aquatic life in USA surface waters, but no sample exceeded the 860 ppm acute standard. Chloride concentrations in outfall runoff (mean ± SD; 190 ± 191 ppm, n = 143) were significantly higher than in-lake concentrations (43 ± 14 ppm, n = 25), but chloride levels did not differ significantly between snowmelt and rainfall runoff events. Runoff from highway locations had higher chloride concentrations than runoff from residential areas. Site-specific chloride levels were highly variable both within and between years, with only a single monitored outfall displaying high chloride levels in both years. There are several possible avenues available within the city to reduce deicer use, capture and treat salt-laden runoff, and prevent or reduce the delivery of chlorides to the lake. Full article
Show Figures

Figure 1

22 pages, 4717 KiB  
Article
Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater
by Anna Marszałek, Ewa Puszczało, Katarzyna Szymańska, Marek Sroka, Edyta Kudlek and Agnieszka Generowicz
Materials 2024, 17(12), 2917; https://doi.org/10.3390/ma17122917 - 14 Jun 2024
Cited by 5 | Viewed by 1448
Abstract
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical [...] Read more.
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94–95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

33 pages, 7908 KiB  
Article
Integration of Building Information Modeling and Stormwater Runoff Modeling: Enhancing Design Tools for Nature-Based Solutions in Sustainable Landscapes
by Peter Petschek, Aye P. P. Aung, Asan Suwanarit and Kim N. Irvine
Sustainability 2024, 16(9), 3694; https://doi.org/10.3390/su16093694 - 28 Apr 2024
Cited by 5 | Viewed by 3213
Abstract
Building information modeling (BIM) has been used by the architectural and engineering disciplines to streamline the building design, construction, and management process, but there has been much more limited experience in extending the application to landscape design and implementation. This study integrated BIM [...] Read more.
Building information modeling (BIM) has been used by the architectural and engineering disciplines to streamline the building design, construction, and management process, but there has been much more limited experience in extending the application to landscape design and implementation. This study integrated BIM software (Autodesk InfraWorks 2024.1) with a dynamic, process-oriented, conceptual hydrologic/hydraulic model (PCSWMM 2023, version 7.6.3665) to enhance the analytical tools for sustainable landscape design. We illustrate the model integration through a case study that links an existing nature-based solution (NbS) development, the PTT Metro Forest Park, Bangkok, Thailand, with theoretical new-build NbS for an adjacent property. A BIM school building was virtually situated on an empty lot beside the Metro Forest Park and seven NbS scenarios were run with design storms having 2-year, 5-year, and 100-year return intervals. The combination of a rain garden, permeable pavement, a retention pond, and a green roof was effective in sustainably managing runoff from the theoretical new-build site discharging to the Metro Forest. NbS design characteristics such as rain garden substrate depth and green roof area were optimized using the hydrologic/hydraulic model. Model results showed that even with the 100-year rainfall event, the existing Metro Forest pond storage capacity was sufficient so that flooding on the property would not occur. The consideration of connectivity between NbS features is facilitated by the modeling approach, which is important for NbS planning and assessment at a regional scale. Full article
Show Figures

Figure 1

21 pages, 4732 KiB  
Article
Porous Asphalt Mixture with Improved Fatigue Resistance and Stormwater Pollutant Reduction in Urban Road Pavement
by Gabriela Hammes and Liseane Padilha Thives
Water 2023, 15(16), 2962; https://doi.org/10.3390/w15162962 - 17 Aug 2023
Cited by 11 | Viewed by 2861
Abstract
One alternative measure to minimise the stormwater runoff volume and its pollutants and reduce impervious areas is to use permeable pavement. However, due to weak mechanical performance under heavy-load traffic related to fatigue resistance, porous mixtures and permeable pavements have restricted applications, i.e., [...] Read more.
One alternative measure to minimise the stormwater runoff volume and its pollutants and reduce impervious areas is to use permeable pavement. However, due to weak mechanical performance under heavy-load traffic related to fatigue resistance, porous mixtures and permeable pavements have restricted applications, i.e., parking lots and low-traffic roads. This work aims to evaluate the fatigue resistance of a porous asphalt mixture produced with highly modified asphalt (HiMA) and its potential contribution to reducing stormwater runoff and pollutants. In order to estimate the capability of runoff pollutants and stormwater flood reduction, a case study was performed on an urban road. A permeable pavement was designed using the porous mixture as a surface layer. The mixture volumetric parameters and asphalt content were established using the Marshall method, considering the void content, interconnected voids, permeability, Cantabro test, and moisture damage test evaluation. The resilient modulus and fatigue resistance tests were performed on a diametral compression device. The mixture design resulted in an asphalt content of 5.1% and a void content of 21.5%. The resilient modulus was 2764 MPa, and the porous mixture obtained excellent fatigue performance, allowing its application in diverse traffic conditions. The porous mixture efficiency infiltration capacity was 90%, and some runoff pollutants could be reduced after being filtered by the pavement surface, contributing to minimizing environmental contamination. This work filled part of a gap in predicting porous mixtures’ fatigue performance, collaborating to popularise and expand its use for various purposes. Full article
(This article belongs to the Special Issue Review Papers of Urban Water Management 2023)
Show Figures

Figure 1

13 pages, 5006 KiB  
Article
Protecting Salt Vulnerable Areas Using an Enhanced Roadside Drainage System (ERDS)
by Sepideh E. Tabrizi, Jessica Pringle, Zahra Moosavi, Arman Amouzadeh, Hani Farghaly, William R. Trenouth and Bahram Gharabaghi
Water 2022, 14(22), 3773; https://doi.org/10.3390/w14223773 - 20 Nov 2022
Cited by 4 | Viewed by 3582
Abstract
De-icing road salt application as a part of winter road maintenance is a standard practice with over 60 billion kilograms applied to roads worldwide each winter to ensure traffic safety. However, high concentrations of chlorides in melted ice and snow runoff from roads [...] Read more.
De-icing road salt application as a part of winter road maintenance is a standard practice with over 60 billion kilograms applied to roads worldwide each winter to ensure traffic safety. However, high concentrations of chlorides in melted ice and snow runoff from roads and parking lots can have adverse effects on both surface and ground water, especially in salt vulnerable areas. A salt vulnerable area is a sensitive area to road salts where additional salt management measures may be required to mitigate potential adverse environmental effects. The main objectives of this paper were to present a new design method for sizing Enhanced Roadside Drainage Systems (ERDS), demonstrate the findings of a 3 year field monitoring and to assess the long term performance of the ERDS design using PCSWMM. A new conceptual design of ERDS was also modelled to demonstrate its effectiveness in protecting salt vulnerable areas. To showcase the new design method, we completed two case studies, one for a relatively pristine headwater stream and one for a moderately impacted urban stream. Stormwater management models were developed for the two scenarios—with and without the ERDS—to assess the benefits of the new system and its effectiveness in protecting salt vulnerable areas at each site. Full article
(This article belongs to the Special Issue Water Quality for Sustainable Development)
Show Figures

Figure 1

17 pages, 4224 KiB  
Article
Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins
by Viravid Na Nagara, Dibyendu Sarkar and Rupali Datta
Molecules 2022, 27(21), 7169; https://doi.org/10.3390/molecules27217169 - 23 Oct 2022
Cited by 8 | Viewed by 3065
Abstract
Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. [...] Read more.
Phosphorus and heavy metals are washed off and transported with stormwater runoff to nearby surface water bodies resulting in environmental and human health risks. Catch basins remain one of the primary gateways through which stormwater runoff and pollutants from urban areas are transported. Retrofitting catch basins to enhance their phosphorus and heavy metal removal can be an effective approach. In this study, aluminum-based water treatment residual (WTR, a non-hazardous byproduct of the water treatment process) was granulated via a green method to serve as a sustainable filter material, called WTR granules, for enhancing the capabilities of catch basins to remove phosphorus and heavy metals. The WTR granules were field tested in a parking lot in Hoboken, New Jersey. Twelve storm events were monitored. The results showed that the WTR granules significantly (p < 0.05) reduced dissolved P, Cu, and Zn, as well as total P, Cu, Pb, and Zn concentrations in stormwater runoff without signs of disintegration. No flooding or water ponding was observed during the implementation. Results suggest the WTR granules are an inexpensive, green filter material that can be used for retrofitting catch basins to remove phosphorus and heavy metals effectively. Full article
Show Figures

Graphical abstract

19 pages, 474 KiB  
Review
A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands
by Yang Wang, Hao Yin, Zhiruo Liu and Xinyu Wang
Sustainability 2022, 14(19), 12906; https://doi.org/10.3390/su141912906 - 10 Oct 2022
Cited by 4 | Viewed by 3186
Abstract
Even though the common acknowledgment that vacant urban lands (VUL) can play a positive role in improving stormwater management, little synthesized literature is focused on understanding how VUL can take advantage of different stormwater control measures (SCMs) to advance urban water quality. The [...] Read more.
Even though the common acknowledgment that vacant urban lands (VUL) can play a positive role in improving stormwater management, little synthesized literature is focused on understanding how VUL can take advantage of different stormwater control measures (SCMs) to advance urban water quality. The project aims to provide urban planners with information on the remediation of vacant lands using urban runoff pollutant removal techniques. To find the most effective removal method, relevant scholarly papers and case studies are reviewed to see what types of vacant land have many urban runoff pollutants and how to effectively remove contaminants from stormwater runoff in the city by SCMs. The results show that previously developed/used land (but now vacant) has been identified as contaminated sites, including prior residential, commercial, industrial, and parking lot land use from urban areas. SCMs are effective management approaches to reduce nonpoint source pollution problems runoff. It is an umbrella concept that can be used to capture nature-based, cost-effective, and eco-friendly treatment technologies and redevelopment strategies that are socially inclusive, economically viable, and with good public acceptance. Among these removal techniques, a bioretention system tends to be effective for removing dissolved and particulate components of heavy metals and phosphorus. Using different plant species and increasing filter media depth has identified the effectiveness of eliminating nitrate nitrogen (NO3-N). A medium with a high hydraulic conductivity covers an existing medium with low hydraulic conductivity, and the result will be a higher and more effective decrease for phosphorus (P) pollutants. In addition, wet ponds were found to be highly effective at removing polycyclic aromatic hydrocarbons, with removal rates as high as 99%. For the removal of perfluoroalkyl acid (PFAA) pollutants, despite the implementation of SCMs in urban areas to remove PFAAs and particulate-related contaminants in stormwater runoff, the current literature has little information on SCMs’ removal of PFAAs. Studies have also found that VUL’s size, shape, and connectivity are significantly inversely correlated with the reduction in stormwater runoff. This paper will help planners and landscape designers make efficient decisions around removing pollutants from VUL stormwater runoff, leading to better use of these spaces. Full article
Show Figures

Graphical abstract

22 pages, 14587 KiB  
Article
Micropollutants in Urban Runoff from Traffic Areas: Target and Non-Target Screening on Four Contrasted Sites
by Johnny Gasperi, Julien Le Roux, Steven Deshayes, Sophie Ayrault, Louise Bordier, Lila Boudahmane, Hélène Budzinski, Emilie Caupos, Nadège Caubrière, Kelsey Flanagan, Martin Guillon, Nina Huynh, Pierre Labadie, Laurent Meffray, Pascale Neveu, Chandirane Partibane, Julien Paupardin, Mohamed Saad, Lucie Varnede and Marie-Christine Gromaire
Water 2022, 14(3), 394; https://doi.org/10.3390/w14030394 - 27 Jan 2022
Cited by 34 | Viewed by 6524 | Correction
Abstract
Although runoff from trafficked urban areas is recognized as a potentially significant pathway of micropollutants, runoff pollution remains poorly documented, except for relatively few historical pollutants such as some metals and hydrocarbons. Therefore, in this work, road and parking lot runoff from four [...] Read more.
Although runoff from trafficked urban areas is recognized as a potentially significant pathway of micropollutants, runoff pollution remains poorly documented, except for relatively few historical pollutants such as some metals and hydrocarbons. Therefore, in this work, road and parking lot runoff from four sites with contrasting traffic levels were analyzed for a very broad spectrum of molecules and elements. A total of 128 pollutants and micropollutants were monitored, including inorganic (n = 41) and organic (n = 87) pollutants. Both the dissolved and particulate phases were considered. For a reduced number of samples, non-targeted screening by high-resolution mass spectrometry (HRMS) was carried out. For targeted screening, the contamination profiles were quite homogeneous, but the concentrations significantly differed between the different sites. Sites with the highest traffic density exhibited the highest concentrations for polycyclic aromatic hydrocarbons (PAHs), some traffic-related metals, alkylphenols and phthalates. Overall, for most micropollutants, the parking lot runoff exhibited the lowest concentrations, and the specificity of this site was confirmed by its HRMS fingerprint. Non-target screening allowed the sites to be discriminated based on the occurrence of specific compounds. Unlike the results of targeted screening, the HRMS intra-site variability was lower than its inter-site variability. Unknown substances were tentatively identified, either characteristic of each site or ubiquitous of all samples. Full article
(This article belongs to the Special Issue Research on Urban Runoff Pollution)
Show Figures

Figure 1

13 pages, 5139 KiB  
Article
Hydrological Effects of Prefabricated Permeable Pavements on Parking Lots
by Kechang Dai, Weixing Liu, Xiaotian Shui, Dafang Fu, Chris Zevenbergen and Rajendra Prasad Singh
Water 2022, 14(1), 45; https://doi.org/10.3390/w14010045 - 24 Dec 2021
Cited by 10 | Viewed by 4210
Abstract
Permeable pavements can infiltrate and reduce stormwater runoff in parking lots, but issues around long construction periods and proper maintenance still required proper research and further understanding. The application of precast concrete can help to solve this. In this study, precast concrete components [...] Read more.
Permeable pavements can infiltrate and reduce stormwater runoff in parking lots, but issues around long construction periods and proper maintenance still required proper research and further understanding. The application of precast concrete can help to solve this. In this study, precast concrete components were applied to the design of permeable pavements to form prefabricated permeable pavements. The laboratory study is one of the first to examine the hydrological effect of prefabricated pervious pavements in parking lots. Four kinds of permeable pavements were designed and manufactured. These had different materials (natural sand-gravel, medium sand) which comprised the leveling layer or different assembly forms of precast concrete at the base. Three scenarios of rainfall intensity (0.5, 1, and 2 mm/min) and three rainfall intervals (one, three, and seven days) were simulated using rainfall simulators. The initial runoff time, runoff coefficient, and runoff control rate of each permeable pavement were investigated during the process of simulating. Results showed that the initial runoff time was no earlier than 42 min, the maximum runoff coefficient was 0.52, and the minimum runoff control rate was 47.7% within the rainfall intensity of 2 mm/min. The initial runoff time of each permeable pavement was no earlier than 36 min when the rainfall interval was one day, whereas, the maximum runoff coefficient was 0.64, and the average runoff control rate was 41.5%. The leveling layer material had a greater impact on the hydrological effect of permeable pavements, while the assembly form of precast concrete had no significant effect. Compared with natural sand-gravel, when the leveling layer was medium sand, the runoff generation was advanced by 4.5–7.8 min under different rainfall intensities, and 7–10 min under different rainfall intervals. The maximum runoff coefficient increased with about 14.6% when the rainfall interval was one day. Among four kinds of permeable pavements, the type I permeable pavement had the best runoff regulation performance. The results revealed that all prefabricated permeable pavements used in this study had good runoff control performance, and this design idea proved to be an alternative for the future design of permeable pavements. Full article
(This article belongs to the Special Issue Greenhouse Gas Emission from Freshwater Ecosystem)
Show Figures

Figure 1

12 pages, 7267 KiB  
Article
Implications of Microbial Community to the Overall Performance of Tree-Box Filter Treating Parking Lot Runoff
by Franz Kevin Geronimo, Nash Jett Reyes, Hyeseon Choi and Lee-Hyung Kim
Sustainability 2021, 13(19), 10877; https://doi.org/10.3390/su131910877 - 30 Sep 2021
Cited by 2 | Viewed by 2239
Abstract
Most of the studies about stormwater low-impact development technologies (LID) used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from the catchment to the facility itself. At present, these LID technologies have been treated as black box [...] Read more.
Most of the studies about stormwater low-impact development technologies (LID) used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from the catchment to the facility itself. At present, these LID technologies have been treated as black box due to fluctuating flow and environmental conditions affecting its operation and treatment performance. As such, the implications of microbial community to the overall performance of the tree-box filter (TBF) were investigated in this study. Based on the results, summer season was found to be the most suitable season for microorganism growth as greater microorganism count was found in TBF during this season compared to other seasons. Least microorganism count was found in spring which might have been affected by the plant growth during this season since plant penology influences the seasonal dynamics of soil microorganisms. Litterfall during fall season might have affected the microorganism count during winter as, during this season, the compositional variety of soil organic matter changes affecting growth of soil microbial communities. Microbial analyses of soil samples collected in TBF revealed that the most dominant microorganism phylum is Proteobacteria in all the seasons in both inlet and outlet comprising 37% to 47% of the total microorganism count. Proteobacteria is of great importance to carbon, sulfur, and nitrogen cycling in soil. Proteobacteria was followed by Acidobacteria, Actinobacteria, and Chloroflexi which comprises 6% to 20%, 9% to 20%, and 2% to 27%, respectively, of the total microorganism count for each season. Each microorganism phylum was found to have varying correlation to different soil chemical parameters implying the effects of these parameters to microorganism survival in LID technologies. Depending on the target biogeochemical cycle, maintaining a good environment for a specific microbial phylum may be decided. These findings were useful in optimizing the design and performance of tree box filters considering physical, chemical, and biological pollutant removal mechanisms. Full article
Show Figures

Figure 1

12 pages, 2286 KiB  
Article
Investigation of the Factors Affecting the Treatment Performance of a Stormwater Horizontal Subsurface Flow Constructed Wetland Treating Road and Parking Lot Runoff
by Hyeseon Choi, Franz Kevin F. Geronimo, Minsu Jeon and Lee-Hyung Kim
Water 2021, 13(9), 1242; https://doi.org/10.3390/w13091242 - 29 Apr 2021
Cited by 20 | Viewed by 3153
Abstract
This study assessed the factors affecting the growth and survival of microorganisms in a small horizontal subsurface flow constructed wetland (HSSF CW) treating stormwater runoff from highly impervious road and parking lot through long-term monitoring from 2010 until present. The HSSF CW facility [...] Read more.
This study assessed the factors affecting the growth and survival of microorganisms in a small horizontal subsurface flow constructed wetland (HSSF CW) treating stormwater runoff from highly impervious road and parking lot through long-term monitoring from 2010 until present. The HSSF CW facility consisted of sedimentation or pre-treatment zone, vegetation zone, and effluent zone, and employed filter media including bio-ceramics, sand, gravel, and wood chips. Results showed that flow reduction in the wetland through filtration and sedimentation played an important part in the overall performance of the HSSF CW. In addition, vegetation growth was found to be affected by pollutant and stormwater inflow in the HSSF CW. Vegetation near the outflow port exhibited greater growth rates by about 6.5% to 64.2% compared to the vegetation near the inflow port due to the less stormwater pollutant concentrations via filtration mechanism in the plant or media zone of the HSSF CW. The pollutant inflow from road and parking lot played an important role in providing good environment for microbial growth especially for the dominant microbial phyla including Proteobacteria, Actinobacteria and Acidobacteria in the HSSF CW. The findings of this research are useful in understanding treatment mechanisms and identifying appropriate design considerations for HSSF CW. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

19 pages, 4550 KiB  
Article
Flexural Performance and Toughness Characteristics of Geogrid-Reinforced Pervious Concrete with Different Aggregate Sizes
by Xiaoyu Meng, Qinghui Jiang and Ruyan Liu
Materials 2021, 14(9), 2295; https://doi.org/10.3390/ma14092295 - 29 Apr 2021
Cited by 7 | Viewed by 2671
Abstract
Pervious concrete is an environmentally friendly paving material to reduce surface runoff in urban construction. However, due to low flexural strength and cracking susceptibility caused by the high porosity, pervious concrete is only used in low-volume traffic roadways and parking lots for current [...] Read more.
Pervious concrete is an environmentally friendly paving material to reduce surface runoff in urban construction. However, due to low flexural strength and cracking susceptibility caused by the high porosity, pervious concrete is only used in low-volume traffic roadways and parking lots for current service. This study investigated the permeability, strength, and flexural performance of pervious concrete with different coarse aggregate size, geogrid position, and geogrid layer number. Test results indicate that the geogrid placed at an appropriate position in pervious concrete improved the permeability and compressive strength. Four-point bending tests were conducted in the laboratory to evaluate the flexural performance and toughness characteristics of pervious concrete beam. Meanwhile, this study also proposed a new evaluation method to distinguish the contribution of geogrids and concrete mixture to the flexural toughness of pervious concrete beam at the pre-peak and post-peak stages by two toughness indices. Test results indicate that geogrids improved the flexural strength, deformability, and energy absorption capability of pervious concrete beam. The geogrids placed at both one-third and two-thirds of the heights of pervious concrete beam resulted in the optimum flexural performance. Besides, the small size (5–10 mm) aggregates were conducive to providing high flexural strength for the geogrid-reinforced pervious concrete beam, while the large size (10–15 mm) aggregates played a significant role in obtaining noteworthy post-cracking performance. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

9 pages, 9433 KiB  
Article
Analysis of Infiltrating Water Characteristics of Permeable Pavements in a Parking Lot at Full Scale
by Jaerock Park, Jaehyun Park, Jonghyun Cheon, Jaehyuk Lee and Hyunsuk Shin
Water 2020, 12(8), 2081; https://doi.org/10.3390/w12082081 - 22 Jul 2020
Cited by 16 | Viewed by 3625
Abstract
Impermeable materials are used for parking lots at apartment complexes and large stores which are concentrated in urban areas. These materials increase the amount of surface runoff by blocking infiltration, resulting in flood damage, dry stream phenomena in rivers in urban watersheds, and [...] Read more.
Impermeable materials are used for parking lots at apartment complexes and large stores which are concentrated in urban areas. These materials increase the amount of surface runoff by blocking infiltration, resulting in flood damage, dry stream phenomena in rivers in urban watersheds, and the depletion of ground water. In this study, a parking lot plot was constructed to quantitatively evaluate the efficiency of pavements using various materials (impermeable concrete, permeable concrete, and permeable block pavement). Four scenarios of rainfall intensity were simulated using a rainfall simulator within each plot (36 mm h−1, 48 mm h−1, 60 mm h−1, 72 mm h−1). The flow was observed by monitoring the system with a bucket flow meter. The efficiency and flow characteristics of the permeable concrete and block pavement were analyzed. The results were used to calculate the ratio of the surface flow to the infiltrating flow between impermeable and permeable pavements. The permeable concrete had a ratio of 1:0.9, and the permeable block pavement had a ratio of 1:0.58. Full article
Show Figures

Figure 1

13 pages, 2333 KiB  
Article
The Use of Permeable Interlocking Concrete Pavement to Filter Stormwater for Non-Potable Uses in Buildings
by Enedir Ghisi, Thiago Belotto and Liseane Padilha Thives
Water 2020, 12(7), 2045; https://doi.org/10.3390/w12072045 - 18 Jul 2020
Cited by 20 | Viewed by 8911
Abstract
A reduction in potable water demand in buildings could be made by using non-potable water for certain uses, such as flushing toilets. This represents a sustainable strategy that results in potable water savings while also using an underutilised resource. This work assesses the [...] Read more.
A reduction in potable water demand in buildings could be made by using non-potable water for certain uses, such as flushing toilets. This represents a sustainable strategy that results in potable water savings while also using an underutilised resource. This work assesses the use of permeable interlocking concrete pavement to filter stormwater that could be used for non-potable purposes in buildings. Two pavement model systems were tested. One of the model systems presents a filter course layer with coarse sand and the other model system has no filter course layer. In order to evaluate the filtering capacity, the model systems were exposed to rain events. The amount of water infiltrated through the layers was measured to represent the potential quantity available for use. Stormwater runoff samples were collected from a parking lot paved with impermeable interlocked blocks and then, these were tested in both model systems. Water samples were subjected to quality tests according to the parameters recommended by the Brazilian National Water Agency. The model system with no filter course showed filtering capacity higher (88.1%) than the one with a filter course layer (78.8%). The model system with a filter course layer was able to reduce fecal coliforms (54.7%), total suspended solids (62.5%), biochemical oxygen demand (78.8%), and total phosphorus concentrations (55.6%). Biochemical oxygen demand (42.4%) and total phosphorus concentrations (44.4%) increased in the model system with no filter course layer. In conclusion, one can state that the filter course layer used in permeable interlocking concrete pavement can contribute to decreasing pollutants and can improve stormwater quality. The use of permeable interlocking concrete pavement showed to be a potential alternative for filtering stormwater prior to subsequent treatment for non-potable uses in buildings. Full article
Show Figures

Figure 1

Back to TopTop