Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. WTR Granule Generation
2.3. Study Area
2.4. Experimental Design
2.5. Sample Collection and Analytical Methodology
2.6. Statistical Analysis
2.7. Lifespan Analysis
3. Results and Discussion
3.1. Phosphorus
3.2. Heavy Metals
3.3. Total Suspended Solids (TSS)
3.4. Potential of Aluminum Export
3.5. Effect of Environmental Parameters
3.6. Disposal of the Spent WTR Granules
3.7. Lifespan Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The Pollution Conveyed by Urban Runoff: A Review of Sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-Y.; Lusk, M.G. Nutrients in Urban Stormwater Runoff: Current State of the Science and Potential Mitigation Options. Curr. Pollut. Reports 2018, 4, 112–127. [Google Scholar] [CrossRef]
- McKenzie, E.R.; Money, J.E.; Green, P.G.; Young, T.M. Metals Associated with Stormwater-Relevant Brake and Tire Samples. Sci. Total Environ. 2009, 407, 5855–5860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sörme, L.; Lagerkvist, R. Sources of Heavy Metals in Urban Wastewater in Stockholm. Sci. Total Environ. 2002, 298, 131–145. [Google Scholar] [CrossRef]
- Pamuru, S.T.; Forgione, E.; Croft, K.; Kjellerup, B.V.; Davis, A.P. Chemical Characterization of Urban Stormwater: Traditional and Emerging Contaminants. Sci. Total Environ. 2022, 813, 151887. [Google Scholar] [CrossRef]
- Huber, M.; Welker, A.; Helmreich, B. Critical Review of Heavy Metal Pollution of Traffic Area Runoff: Occurrence, Influencing Factors, and Partitioning. Sci. Total Environ. 2016, 541, 895–919. [Google Scholar] [CrossRef]
- Han, Y.H.; Lau, S.L.; Kayhanian, M.; Stenstrom, M.K. Correlation Analysis among Highway Stormwater Pollutants and Characteristics. Water Sci. Technol. 2006, 53, 235–243. [Google Scholar] [CrossRef]
- Anil, I.; Alagha, O.; Blaisi, N.I.; Mohamed, I.A.; Barghouthi, M.H.; Manzar, M.S. Source Identification of Episodic Rain Pollutants by New Approach: Combining Satellite Observations and Backward Air Mass Trajectories. Aerosol Air Qual. Res. 2019, 9, 2827–2843. [Google Scholar] [CrossRef]
- Mohiuddin, K.M.; Ogawa, Y.; Zakir, H.M.; Otomo, K.; Shikazono, N. Heavy Metals Contamination in Water and Sediments of an Urban River in a Developing Country. Int. J. Environ. Sci. Technol. 2011, 8, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Sharma, S. Heavy Metals in Water; The Royal Society of Chemistry: London, UK, 2015. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C.; Winogradoff, D. Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal. Water Environ. Res. 2003, 75, 73–82. [Google Scholar] [CrossRef]
- Sy, N.D.; Wheeler, S.S.; Reed, M.; Haas-stapleton, E.; Reyes, T.; Bear-johnson, M.; Kluh, S.; Cummings, R.F.; Su, T.; Xiong, Y.; et al. Pyrethroid Insecticides in Urban Catch Basins: A Potential Secondary Contamination Source for Urban Aquatic Systems ☆. Environ. Pollut. 2022, 314, 120220. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Stormwater O&M Fact Sheet: Catch Basin Cleaning; EPA 832-F-99-011; USEPA: Washington, DC, USA, 1999.
- Alam, M.Z.; Anwar, A.H.M.F.; Heitz, A.; Sarker, D.C. Improving Stormwater Quality at Source Using Catch Basin Inserts. J. Environ. Manage. 2018, 228, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Anwar, A.H.M.F.; Sarker, D.C.; Heitz, A.; Rothleitner, C. Characterising Stormwater Gross Pollutants Captured in Catch Basin Inserts. Sci. Total Environ. 2017, 586, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Anwar, A.H.M.F.; Heitz, A. Stormwater Solids Removal Characteristics of a Catch Basin Insert Using Geotextile. Sci. Total Environ. 2018, 618, 1054–1063. [Google Scholar] [CrossRef] [Green Version]
- Okaikue-Woodi, F.E.K.; Cherukumilli, K.; Ray, J.R. A Critical Review of Contaminant Removal by Conventional and Emerging Media for Urban Stormwater Treatment in the United States. Water Res. 2020, 187, 116434. [Google Scholar] [CrossRef]
- Huber, M.; Hilbig, H.; Badenberg, S.C.; Fassnacht, J.; Drewes, J.E.; Helmreich, B. Heavy Metal Removal Mechanisms of Sorptive Filter Materials for Road Runoff Treatment and Remobilization under De-Icing Salt Applications. Water Res. 2016, 102, 453–463. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Drapper, D.; Hornbuckle, A. Field Evaluation of a Stormwater Treatment Train with Pit Baskets and Filter Media Cartridges in Southeast Queensland. Water 2015, 7, 4496–4510. [Google Scholar] [CrossRef]
- Na Nagara, V.; Sarkar, D.; Barrett, K.; Datta, R. Greening the Gray Infrastructure: Green Adsorbent Media for Catch Basin Inserts to Remove Stormwater Pollutants. Environ. Technol. Innov. 2021, 21, 101334. [Google Scholar] [CrossRef]
- Makris, K.C.; Harris, W.G.; O’Connor, G.A.; Obreza, T.A.; Elliott, H.A. Physicochemical Properties Related to Long-Term Phosphorus Retention by Drinking-Water Treatment Residuals. Environ. Sci. Technol. 2005, 39, 4280–4289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, R.; Awe, O.W.; Yang, Y.; Shen, C. Acceptability of Land Application of Alum-Based Water Treatment Residuals—An Explicit and Comprehensive Review. Chem. Eng. J. 2018, 353, 717–726. [Google Scholar] [CrossRef]
- Turner, T.; Wheeler, R.; Stone, A.; Oliver, I. Potential Alternative Reuse Pathways for Water Treatment Residuals: Remaining Barriers and Questions—A Review. Water. Air. Soil Pollut. 2019, 230, 227. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Lee, L.Y.; Lim, Y.; Lyu, Z.; Zhu, H.; Ong, S.L.; Hu, J. Water Treatment Residual: A Critical Review of Its Applications on Pollutant Removal from Stormwater Runoff and Future Perspectives. J. Environ. Manage. 2020, 259, 109649. [Google Scholar] [CrossRef]
- Sarkar, D.; Na Nagara, V.; Datta, R. Method for Generating a Granular, Green Sorbent Media for Filtration of Contaminated Water by Processing Aluminum-Based Drinking Water Treatment Residuals. U.S. Patent Application Publication No. US 2020/0316556 A1, 8 October 2020. [Google Scholar]
- Ghernaout, D.; Ghernaout, B.; Naceur, M.W. Embodying the Chemical Water Treatment in the Green Chemistry-A Review. Desalination 2011, 271, 1–10. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Na Nagara, V.; Sarkar, D.; Elzinga, E.J.; Datta, R. Removal of Heavy Metals from Stormwater Runoff Using Granulated Drinking Water Treatment Residuals. Environ. Technol. Innov. 2022, 28, 102636. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W.; Bridgewater, L. 2540 D. Total Suspended Solids Dried at 103–105 °C. In Standard Methods for the Examination of Water & Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- USEPA. Method 200.7: Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry; USEPA: Washington, DC, USA, 2001.
- USEPA. Method 1311: Toxicity Characteristic Leaching Procedure; USEPA: Washington, DC, USA, 1992.
- USEPA. National Recommended Water Quality Criteria; USEPA: Washington, DC, USA, 2004.
- Stagge, J.H.; Davis, A.P.; Jamil, E.; Kim, H. Performance of Grass Swales for Improving Water Quality from Highway Runoff. Water Res. 2012, 46, 6731–6742. [Google Scholar] [CrossRef]
- Li, H.; Davis, A.P.; Asce, F. Water Quality Improvement through Reductions of Pollutant Loads Using Bioretention. J. Environ. Eng. 2009, 135, 567–576. [Google Scholar] [CrossRef]
- NJDEP. New Jersey Administrative Code 7:9B Surface Water Quality Standards; NJDEP: Trenton, NJ, USA, 2020. [Google Scholar]
- Manzar, M.S.; Benaafi, M.; Costache, R.; Alagha, O.; Mu’azu, N.D.; Zubair, M.; Abdullahi, J.; Abba, S.I. New Generation Neurocomputing Learning Coupled with a Hybrid Neuro-Fuzzy Model for Quantifying Water Quality Index Variable: A Case Study from Saudi Arabia. Ecol. Inform. 2022, 70, 101696. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, T.; Vellingiri, K.; Tsang, D.C.W.; Shon, J.R.; Kim, K.H.; Kumar, S. Recycling and Regeneration of Carbonaceous and Porous Materials through Thermal or Solvent Treatment. Chem. Eng. J. 2019, 364, 514–529. [Google Scholar] [CrossRef]
- Lata, S.; Singh, P.K.; Samadder, S.R. Regeneration of Adsorbents and Recovery of Heavy Metals: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef] [Green Version]
- Miguet, M.; Goetz, V.; Plantard, G.; Jaeger, Y. Sustainable Thermal Regeneration of Spent Activated Carbons by Solar Energy: Application to Water Treatment. Ind. Eng. Chem. Res. 2016, 55, 7003–7011. [Google Scholar] [CrossRef]
- Yan, Q.; Davis, A.P.; Asce, F.; James, B.R. Enhanced Organic Phosphorus Sorption from Urban Stormwater Using Modified Bioretention Media: Batch Studies. J. Environ. Eng. 2016, 142, 04016001. [Google Scholar] [CrossRef]
- NJDEP. NJDEP New Jersey Department of Environmental Protection-Rainfall. Available online: https://njdep.rutgers.edu/rainfall/graph_basic.php?station_id= (accessed on 6 May 2022).
- Babatunde, A.O.; Zhao, Y.Q.; Yang, Y.; Kearney, P. Reuse of Dewatered Aluminium-Coagulated Water Treatment Residual to Immobilize Phosphorus: Batch and Column Trials Using a Condensed Phosphate. Chem. Eng. J. 2008, 136, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, J.A.; Barbarick, K.A.; Heil, D.M.; Chandler, J.P.; Redente, E.F. Phosphorus Retention Mechanisms of a Water Treatment Residual. J. Environ. Qual. 2003, 32, 1857–1864. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.C.; Harris, W.G.; O’Conno, G.A.; Obreza, T.A. Phosphorus Immobilization in Micropores of Drinking-Water Treatment Residuals: Implications for Long-Term Stability. Environ. Sci. Technol. 2004, 38, 6590–6596. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.C.; Sarkar, D.; Salazar, J.; Punamiya, P.; Datta, R. Alternative Amendment for Soluble Phosphorus Removal from Poultry Litter. Environ. Sci. Pollut. Res. 2010, 17, 195–202. [Google Scholar] [CrossRef]
- Soleimanifar, H.; Deng, Y.; Wu, L.; Sarkar, D. Water Treatment Residual (WTR)-Coated Wood Mulch for Alleviation of Toxic Metals and Phosphorus from Polluted Urban Stormwater Runoff. Chemosphere 2016, 154, 289–292. [Google Scholar] [CrossRef]
- Punamiya, P.; Sarkar, D.; Rakshit, S.; Datta, R. Effectiveness of Aluminum-Based Drinking Water Treatment Residuals as a Novel Sorbent to Remove Tetracyclines from Aqueous Medium. J. Environ. Qual. 2013, 42, 1449–1459. [Google Scholar] [CrossRef]
- Nagar, R.; Sarkar, D.; Makris, K.C.; Datta, R. Effect of Solution Chemistry on Arsenic Sorption by Fe- and Al-Based Drinking-Water Treatment Residuals. Chemosphere 2010, 78, 1028–1035. [Google Scholar] [CrossRef]
- Borne, K.E.; Fassman, E.A.; Tanner, C.C. Floating Treatment Wetland Retrofit to Improve Stormwater Pond Performance for Suspended Solids, Copper and Zinc. Ecol. Eng. 2013, 54, 173–182. [Google Scholar] [CrossRef]
- Thompson, J.; Schwartz, J.S.; Hathaway, J.M. Performance Evaluation of a Regenerative Stormwater Conveyance System: Case Study in Knoxville, Tennessee. J. Environ. Eng. 2020, 146, 5020004. [Google Scholar] [CrossRef]
- Schueler, T. Irreducible Pollutant Concentrations Discharged from Stormwater Practices. Watershed Prot. Technol. 1996, 2, 369–372. [Google Scholar]
- Lange, K.; Österlund, H.; Viklander, M.; Blecken, G.T. Metal Speciation in Stormwater Bioretention: Removal of Particulate, Colloidal and Truly Dissolved Metals. Sci. Total Environ. 2020, 724, 138121. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, C.P.; Huang, C.P. Adsorption of Heavy Metals by Silicon and Aluminum Oxide Surfaces on Clay Minerals. Soil Sci. Soc. Am. J. 1990, 54, 679–688. [Google Scholar] [CrossRef]
- Rügner, H.; Schwientek, M.; Beckingham, B.; Kuch, B.; Grathwohl, P. Turbidity as a Proxy for Total Suspended Solids (TSS) and Particle Facilitated Pollutant Transport in Catchments. Environ. Earth Sci. 2013, 69, 373–380. [Google Scholar] [CrossRef]
- Baum, P.; Kuch, B.; Dittmer, U. Adsorption of Metals to Particles in Urban Stormwater Runoff—Does Size Really Matter? Water 2021, 13, 309. [Google Scholar] [CrossRef]
- Andral, M.C.; Roger, S.; Montréjaud-Vignoles, M.; Herremans, L. Particle Size Distribution and Hydrodynamic Characteristics of Solid Matter Carried by Runoff from Motorways. Water Environ. Res. 1999, 71, 398–407. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and Pollutant Removal Performance of Fine Media Stormwater Filtration Systems. Environ. Sci. Technol. 2008, 42, 2535–2541. [Google Scholar] [CrossRef]
- Rodak, C.M.; Moore, T.L.; David, R.; Jayakaran, A.D.; Vogel, J.R. Urban Stormwater Characterization, Control, and Treatment. Water Environ. Res. 2019, 91, 1034–1060. [Google Scholar] [CrossRef]
- Sansalone, J.; Kuang, X.; Ying, G.; Ranieri, V. Filtration and Clogging of Permeable Pavement Loaded by Urban Drainage. Water Res. 2012, 46, 6763–6774. [Google Scholar] [CrossRef] [PubMed]
- Nyström, F.; Nordqvist, K.; Herrmann, I.; Hedström, A.; Viklander, M. Removal of Metals and Hydrocarbons from Stormwater Using Coagulation and Flocculation. Water Res. 2020, 182, 115919. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dick, W.A.; Mccoy, E.L.; Phelan, P.L.; Grewal, P.S. Field Evaluation of a New Biphasic Rain Garden for Stormwater Flow Management and Pollutant Removal. Ecol. Eng. 2013, 54, 22–31. [Google Scholar] [CrossRef]
- Maniquiz, M.C.; Lee, S.; Kim, L.-H. Multiple Linear Regression Models of Urban Runoff Pollutant Load and Event Mean Concentration Considering Rainfall Variables. J. Environ. Sci. 2010, 22, 946–952. [Google Scholar] [CrossRef]
- Mitchell, K.E.; Lohmann, D.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Cosgrove, B.A.; Sheffield, J.; Duan, Q.; Luo, L.; et al. The Multi-Institution North American Land Data Assimilation System (NLDAS): Utilizing Multiple GCIP Products and Partners in a Continental Distributed Hydrological Modeling System. J. Geophys. Res. D Atmos. 2004, 109, D07S90. [Google Scholar] [CrossRef] [Green Version]
- Ames, D.P.; Horsburgh, J.S.; Cao, Y.; Kadlec, J.; Whiteaker, T.; Valentine, D. HydroDesktop: Web Services-Based Software for Hydrologic Data Discovery, Download, Visualization, and Analysis. Environ. Model. Softw. 2012, 37, 146–156. [Google Scholar] [CrossRef]
- Duan, R.; Fedler, C.B. Adsorptive Removal of Pb2+ and Cu2+ from Stormwater by Using Water Treatment Residuals. Urban Water J. 2021, 18, 237–247. [Google Scholar] [CrossRef]
- Singh, N.B.; Nagpal, G.; Agrawal, S.; Rachna. Water Purification by Using Adsorbents: A Review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
Storm Event No. | Date | Storm Event No. | Date |
---|---|---|---|
1 | 19 August 2021 | 7 | 16 October 2021 |
2 | 21 August 2021 | 8 | 26 October 2021 |
3 | 1 September 2021 | 9 | 29 October 2021 |
4 | 14 September 2021 | 10 | 12 November 2021 |
5 | 23 September 2021 | 11 | 1 January 2022 |
6 | 5 October 2021 | 12 | 17 January 2022 |
Pollutant | Statistics | Dissolved Concentration | Total Concentrations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inf. a (µg/L) | Eff. b (µg/L) | Change (%) | Inf. a (µg/L) | Eff. b (µg/L) | Change (%) | Water Quality Goal c (µg/L) | Exceedance (%) | |||||
Inf. a | Eff. b | |||||||||||
P | Median | 118.32 | 19.91 | −83.2 | 316.26 | 102.38 | −67.6 | 100 | 91.3 | 51.3 | ||
Mean | 198.98 | 33.72 | 364.18 | 124.07 | ||||||||
Std Dev | 198.53 | 45.4 | 268.66 | 86.98 | ||||||||
Cu | Median | 7.14 | 2.45 | −65.7 | 16.19 | 4.86 | −70.0 | 13 | 64.1 | 5.0 | ||
Mean | 7.48 | 2.37 | 16.65 | 5.47 | ||||||||
Std Dev | 3.11 | 1.06 | 7.66 | 3.02 | ||||||||
Pb | Median | 0.08 | 0.08 | 0 | 10.46 | 3.42 | −67.3 | 65 | 0 | 0 | ||
Mean | 0.6 | 0.32 | 11.8 | 6.03 | ||||||||
Std Dev | 0.83 | 0.42 | 7.84 | 5.22 | ||||||||
Zn | Median | 26.64 | 5.63 | −78.9 | 109.88 | 46.13 | −58.0 | 120 | 45.5 | 0 | ||
Mean | 29.05 | 7.04 | 113.99 | 47.83 | ||||||||
Std Dev | 15.37 | 7.34 | 48.51 | 17.93 | ||||||||
Al | Median | 20.66 | 20.06 | −2.9 | 538.66 | 275.43 | −48.9 | 750 | 34 | 25.2 | ||
Mean | 27.96 | 26.7 | 706.26 | 447.61 | ||||||||
Std Dev | 32.34 | 16.77 | 498.49 | 435.78 | ||||||||
TSS | Median | - | - | - | 40 d | 32 d | −18.1 | 25 d | 72.6 | 55.7 | ||
Mean | - | - | 43 d | 46 d | ||||||||
Std Dev | - | - | 22 d | 38 d |
Parameter | Unit | Statistics | Influent | Effluent | % Change |
---|---|---|---|---|---|
pH | - | Median | 6.77 | 6.69 | −1.18 |
Mean | 6.79 | 6.69 | |||
Std Dev | 0.26 | 0.21 | |||
EC | µS/cm | Median | 99.97 | 88.18 | −11.79 |
Mean | 142.77 | 104.13 | |||
Std Dev | 131.15 | 43.18 |
Analyte | Spent WTR Granules (µg/L) | USEPA Regulatory Level (µg/L) a |
---|---|---|
Ag | 0.40 | 5000 |
As | 16.21 | 5000 |
Ba | 48.98 | 100,000 |
Cd | 0.60 | 1000 |
Cr | 0.72 | 5000 |
Hg | BDL b | 200 |
Pb | 11.24 | 5000 |
Se | 10.66 | 1000 |
Al | 10,476 | NR c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na Nagara, V.; Sarkar, D.; Datta, R. Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins. Molecules 2022, 27, 7169. https://doi.org/10.3390/molecules27217169
Na Nagara V, Sarkar D, Datta R. Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins. Molecules. 2022; 27(21):7169. https://doi.org/10.3390/molecules27217169
Chicago/Turabian StyleNa Nagara, Viravid, Dibyendu Sarkar, and Rupali Datta. 2022. "Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins" Molecules 27, no. 21: 7169. https://doi.org/10.3390/molecules27217169
APA StyleNa Nagara, V., Sarkar, D., & Datta, R. (2022). Phosphorus and Heavy Metals Removal from Stormwater Runoff Using Granulated Industrial Waste for Retrofitting Catch Basins. Molecules, 27(21), 7169. https://doi.org/10.3390/molecules27217169