Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = oxytetracycline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

7 pages, 1045 KiB  
Proceeding Paper
Surveillance of Antimicrobial Use in Animal Production: A Cross-Sectional Study of Kaduna Metropolis, Nigeria
by Aliyu Abdulkadir, Marvelous Oluwashina Ajayi and Halima Abubakar Kusfa
Med. Sci. Forum 2025, 35(1), 4; https://doi.org/10.3390/msf2025035004 - 4 Aug 2025
Abstract
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and [...] Read more.
Measuring antimicrobial use (AMU) in animal production can provide useful data for monitoring AMU over time, which will promote antimicrobial resistance (AMR) reduction. This study involved the daily collation and validation of active primary drug sales and prescription data from veterinary outlets and clinics of the Kaduna metropolis. In total, 83.7% of the identified antimicrobials were in the form of oral medication, and most were registered antibiotics (52.8%). Parenteral and topical forms were also identified, with 94% also being antibiotics. The estimated AMU was 282 mg/kg population correction unit (PCU). Poultry represented the most significant population, constituting 99% (31,502,004) of the study population. The class-specific AMU was antibiotics, with 274 mg/kg PCU. The antiprotozoal AMU was 418 mg/kg PCU. The anthelminthic AMU was the highest at 576 mg/kg PCU. This study has provided useful and practical information on the trends in antimicrobial use in animals, with poultry being the most important animal population involved in AMU and oxytetracycline being the most abused antibiotic in animal production. Antimicrobial stewardship (AMS) should be targeted at poultry populations, with an emphasis on reducing antibiotic use/consumption. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

18 pages, 3417 KiB  
Article
Persistence of Phytoplasma and Control Efficacy of Oxytetracycline Tree Injection for Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara Decline Disease
by Geon-Woo Lee, Kyung-Don Kang, Yeong-Don Lee, Sun Keun Lee and Sang-Sub Han
Forests 2025, 16(8), 1260; https://doi.org/10.3390/f16081260 - 1 Aug 2025
Viewed by 170
Abstract
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving [...] Read more.
Elaeocarpus sylvestris (Lour.) Poir. var. ellipticus (Thunb.) H.Hara, an evergreen tree species native to Jeju Island, South Korea, has experienced a progressive decline associated with phytoplasma infection. This study aimed to evaluate the efficacy of oxytetracycline-based tree injection for suppressing phytoplasma and improving tree vitality. Two formulations—oxytetracycline hydrochloride (4.3%) and oxytetracycline calcium alkyltrimethyl ammonium (17%)—were administered to 40 infected individuals across two sites using a gravity-fed injection system. Treatment efficacy was evaluated based on chlorophyll content as an indicator of physiological recovery, while phytoplasma presence was assessed by PCR at 150 days after injection. The oxytetracycline hydrochloride group showed the highest suppression, with a 70% phytoplasma non-detection rate as determined by PCR analysis. Treated trees exhibited significantly higher chlorophyll content compared to untreated infected controls. These findings suggest that minimally invasive tree injection using oxytetracycline can provide temporary suppression of phytoplasma and support physiological recovery in E. sylvestris. Full article
(This article belongs to the Special Issue Forest Pathogen Detection, Diagnosis and Control)
Show Figures

Figure 1

16 pages, 775 KiB  
Article
Residue Elimination Patterns and Determination of the Withdrawal Times of Seven Antibiotics in Taihang Chickens
by Huan Chen, Cheng Zhang, Nana Gao, Guohua Yan, Yandong Li, Xuejing Wang, Liyong Wu, Heping Bai, Hongyu Ge, Huage Liu and Juxiang Liu
Animals 2025, 15(15), 2219; https://doi.org/10.3390/ani15152219 - 28 Jul 2025
Viewed by 193
Abstract
Antibiotic residues in poultry pose health and resistance risks, necessitating breed-specific WDTs. In this study, the residue elimination patterns of seven antibiotics in Taihang chicken tissues under free-range conditions were studied and the appropriate WDT was formulated. A total of 240 healthy Taihang [...] Read more.
Antibiotic residues in poultry pose health and resistance risks, necessitating breed-specific WDTs. In this study, the residue elimination patterns of seven antibiotics in Taihang chicken tissues under free-range conditions were studied and the appropriate WDT was formulated. A total of 240 healthy Taihang chickens aged 100 days were randomly divided into 8 groups, each comprising 30 chickens. Chickens in groups 1 to 7 were administered oxytetracycline, chlortetracycline, erythromycin, tylosin, tylvalosin, lincomycin, and tiamulin, respectively. Regarding the administration method, we adopted the highest dose and maximum course of treatment recommended by the Veterinary Pharmacopoeia of the People’s Republic of China. Group 8 served as the control group. Muscle, sebum, liver, and kidney samples were collected at 4 h, 1 d, 2 d, 3 d, 5 d, 7 d, 10 d, 13 d, and 16 d after drug withdrawal. Our results demonstrated that the drug residues after drug withdrawal gradually decreased with the increase in drug withdrawal days, and the elimination rate in the early stage of drug withdrawal was significantly faster than that in the later stage. At 4 h after drug withdrawal, the drug residues in various tissues reached their highest values. In most cases, the drug concentrations in the kidney and liver were higher than those in the muscles and sebum; however, some drugs also exhibited concentration peaks in the sebum. On the first day of drug withdrawal, the amount of residues in various tissues decreased rapidly. In general, the elimination rate of various drugs in the muscles, liver, and kidneys is faster but slower in the sebum. Based on the WDT calculation software WT1.4, the recommended WDTs for oxytetracycline, chlortetracycline, erythromycin, tylosin, tylvalosin, lincomycin, and tiamulin chickens are 4 d, 5 d, 11 d, 8 d, 13 d, 13 d, and 7 d, respectively. These findings support food safety and industry development. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 1937 KiB  
Article
Anti-Bacterial and Anti-Fungal Properties of a Set of Transition Metal Complexes Bearing a Pyridine Moiety and [B(C6F5)4]2 as a Counter Anion
by Ahmed K. Hijazi, Mohammad El-Khateeb, Ziyad A. Taha, Mohammed I. Alomari, Noor M. Khwaileh, Abbas I. Alakhras, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2025, 30(15), 3121; https://doi.org/10.3390/molecules30153121 - 25 Jul 2025
Viewed by 232
Abstract
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in [...] Read more.
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in various chemical and biological contexts. Methods: A set of metal(II) complexes of the general formula [MPy6][B(C6F5)4]2 where (Py = pyridine, M = Mn (1), Fe (2), Co (3), Ni (4), Cu (5), Zn (6)) have been synthesized by direct reaction of metal halides and pyridine in the presence of Ag[B(C6F5)4]. The complexes were characterized using different techniques to assure their purity, such as elemental analysis (EA), electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) spectroscopy, 11B-NMR, 1H-NMR, and FT-IR spectroscopy. The antimicrobial and antifungal properties against different types of bacteria and fungi were studied for all prepared complexes. Results: The synthesized complexes exhibited broad-spectrum antimicrobial activity, demonstrating variable efficacy compared to the reference antibiotic, oxytetracycline (positive control). Notably, complex 6 displayed exceptional antibacterial activity against Streptococcus pyogenes, with a minimum inhibitory concentration (MIC) of 4 µg/mL, outperforming the control (MIC = 8 µg/mL). Complexes 1, 2, and 4 showed promising activity against Shigella flexneri, Klebsiella pneumoniae, and Streptococcus pyogenes, each with MIC values of 8 µg/mL. Conversely, the lowest activity (MIC = 512 µg/mL) was observed for complexes 3, 5, and 6 against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae, respectively. Regarding antifungal properties, complexes 5 and 6 demonstrated the highest activity against Candida albicans, with MIC values of 8 µg/mL, equivalent to that of the positive control, fluconazole. Density functional theory (DFT) calculations confirmed an overall octahedral coordination geometry for all complexes, with tetragonal distortions identified in complexes 3, 4, and 5. Full article
Show Figures

Figure 1

20 pages, 2048 KiB  
Article
Photocatalytic Degradation of Oxytetracycline and Imidacloprid Under Visible Light with Sr0.95Bi0.05TiO3: Influence of Aqueous Matrix
by Maria J. Nunes, Ana Lopes, Maria J. Pacheco, Paulo T. Fiadeiro, Guilherme J. Inacio, Jefferson E. Silveira, Alyson R. Ribeiro, Wendel S. Paz and Lurdes Ciríaco
Water 2025, 17(15), 2177; https://doi.org/10.3390/w17152177 - 22 Jul 2025
Viewed by 202
Abstract
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic [...] Read more.
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic experiments were carried out in both distilled water and a real environmental sample (surface water). The Sr0.95Bi0.05TiO3 perovskite showed high photocatalytic performance under visible light, achieving nearly complete degradation of oxytetracycline after 2 h, and significant removal of imidacloprid in river water (60% after 3 h). Enhanced degradation in surface water was attributed to favorable ionic composition and pH. The perovskite oxide maintained its photocatalytic performance over five consecutive cycles, with no significant loss in photocatalytic activity or structural and morphological stability. Ecotoxicological assessment using Daphnia magna confirmed that the treated water was non-toxic, indicating that no harmful byproducts were formed. Complementary Density Functional Theory calculations were conducted to complement experimental findings, providing insights into the structural, electronic, and optical properties of the photocatalyst, enhancing the understanding of the degradation mechanisms involved. This integrated approach, combining experimental photocatalytic performance evaluation in different matrices, ecotoxicity testing, and theoretical modeling, highlights Sr0.95Bi0.05TiO3 as a promising, stable, and environmentally safe photocatalyst for practical wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2997 KiB  
Article
Contribution to Distribution and Toxicity Prediction of Organic Pollutants in Receiving Waters from Wastewater Plant Tailwater: A Case Study of the Yitong River, China
by Xiaoyu Zhang, Mingxuan Bai, Ang Dong, Xinrong Du, Yuzhu Ding and Ke Zhao
Water 2025, 17(14), 2061; https://doi.org/10.3390/w17142061 - 10 Jul 2025
Viewed by 329
Abstract
Urban river ecosystems are increasingly threatened by anthropogenic activities, with wastewater discharge being a significant contributor. The complex nature and diverse sources of wastewater pose challenges in assessing its impact on water quality and ecological health. This study investigated the distribution, toxicity, and [...] Read more.
Urban river ecosystems are increasingly threatened by anthropogenic activities, with wastewater discharge being a significant contributor. The complex nature and diverse sources of wastewater pose challenges in assessing its impact on water quality and ecological health. This study investigated the distribution, toxicity, and ecological effects of organic pollutants in an urban river system during the dry season. A comprehensive analysis was conducted of 16 phthalate esters (PAEs), 16 polycyclic aromatic hydrocarbons (PAHs), and 8 antibiotics, with a focus on several key pollutants. The results revealed distinct pollutant profiles: Dibutyl phthalate (DBP), Dimethyl phthalate (DEHP), and Diisobutyl phthalate (DIBP) were the predominant PAEs, while Chrysene was the most abundant PAH. Among antibiotics, Oxytetracycline and Norfloxacin were the dominant compounds. Wastewater treatment plant (WWTP) effluents significantly altered the composition of organic pollutants in receiving waters. Although dilution reduced the concentrations of some pollutants, certain organic compounds were detected for the first time downstream of the WWTP, and some specific compounds exhibited increased concentrations. Toxicity prediction using the Concentration Addition (CA) model identified DBP as the primary contributor to overall toxicity, accounting for the highest toxic load among all detected pollutants. Furthermore, WWTP effluents induced significant shifts in microbial community structure downstream, with incomplete recovery to upstream conditions. Integrated analysis of 16S rRNA gene sequencing, water quality assessment, and toxicity prediction elucidated the multifaceted impacts of pollution sources on aquatic ecosystems. This study provides critical insights into the composition, spatial distribution, and toxicity characteristics of organic pollutants in urban rivers, as well as their effects on bacterial community structure. The findings offer a scientific foundation for urban river water quality management and ecological protection strategies. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

28 pages, 3054 KiB  
Review
Impact of Antibacterial Agents in Horticulture: Risks to Non-Target Organisms and Sustainable Alternatives
by Mirza Abid Mehmood, Muhammad Mazhar Iqbal, Muhammad Ashfaq, Nighat Raza, Jianguang Wang, Abdul Hafeez, Samah Bashir Kayani and Qurban Ali
Horticulturae 2025, 11(7), 753; https://doi.org/10.3390/horticulturae11070753 - 1 Jul 2025
Viewed by 699
Abstract
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable [...] Read more.
The global population is rising at an alarming rate and is projected to reach 10 billion by 2050, necessitating a substantial increase in food production. However, the overuse of chemical pesticides, including antibacterial agents and synthetic fertilizers, poses a major threat to sustainable agriculture. This review examines the ecological and health impacts of antibacterial agents (e.g., streptomycin, oxytetracycline, etc.) in horticultural crops, focusing on their effects on non-target organisms such as beneficial microbes involved in plant growth promotion and resistance development. Certain agents (e.g., triclosan, sulfonamides, and fluoroquinolones) leach into water systems, degrading water quality, while others leave toxic residues in crops, leading to human health risks like dysbiosis and antibiotic resistance. To mitigate these hazards, sustainable alternatives such as integrated plant disease management (IPDM) and biotechnological solutions are essential. Advances in genetic engineering including resistance-conferring genes like EFR1/EFR2 (Arabidopsis), Bs2 (pepper), and Pto (tomato) help combat pathogens such as Ralstonia solanacearum and Xanthomonas campestris. Additionally, CRISPR-Cas9 enables precise genome editing to enhance inherent disease resistance in crops. Emerging strategies like biological control, plant-growth-promoting rhizobacteria (PGPRs), and nanotechnology further reduce dependency on chemical antibacterial agents. This review highlights the urgent need for sustainable disease management to safeguard ecosystem and human health while ensuring food security. Full article
(This article belongs to the Special Issue New Insights into Stress Tolerance of Horticultural Crops)
Show Figures

Figure 1

19 pages, 2866 KiB  
Article
Intestinal Immune System Expression of Coho Salmon Challenged with Oxytetracycline: In Vivo and In Vitro Approach
by Daniela Nualart, José Luis P. Muñoz and Luis Vargas-Chacoff
Int. J. Mol. Sci. 2025, 26(13), 6330; https://doi.org/10.3390/ijms26136330 - 30 Jun 2025
Viewed by 337
Abstract
Oxytetracycline (OTC) has served as an antibiotic to treat various bacterial infections in fish raised in aquaculture. Nonetheless, administering OTC in overly high doses can lead to adverse side effects in fish and also negatively impact on their surroundings. The objective of this [...] Read more.
Oxytetracycline (OTC) has served as an antibiotic to treat various bacterial infections in fish raised in aquaculture. Nonetheless, administering OTC in overly high doses can lead to adverse side effects in fish and also negatively impact on their surroundings. The objective of this work was to evaluate the expression levels of immune markers such as TLR-1, TLR-2, IκB-α, MyD88, NF-κB, IFN-γ, and IL-6 in intestinal cell primary culture (foregut, midgut, and hindgut) using qRT-PCR, and in addition, to assess the in vivo response to different doses of OTC in coho salmon at different times. The expression levels of all genes increased significantly after 1 h on day 1 with high doses of OTC compared with control conditions in all tissues under both approaches (in vivo and in vitro). However, the transcriptional responses decreased to 3, 6, and 12 h in vitro and day 3 in vivo. In conclusion, the transcriptional responses were differentially modulated by OTC in the three intestinal portions under both experimental conditions. These results demonstrate for the first time in primary cell culture fish that the expression of immune biomarkers in all tissues induces a differential response of these genes, depending on the concentration of OTC and the kinetics of time. This study offers valuable insights that can be applied to enhance aquaculture, determine optimal drug doses, and improve fish health. Full article
(This article belongs to the Special Issue Cytokines in Inflammatory Signaling: 2nd Edition)
Show Figures

Figure 1

25 pages, 11349 KiB  
Article
Uric Acid, the End-Product of Purine Metabolism, Mitigates Tau-Related Abnormalities: Comparison with DOT, a Non-Antibiotic Oxytetracycline Derivative
by Bianca Andretto de Mattos, Rodrigo Hernán Tomas-Grau, Thaís Antonia Alves Fernandes, Florencia González-Lizárraga, Aurore Tourville, Ismaila Ciss, Jean-Michel Brunel, Rosana Chehin, Annie Lannuzel, Laurent Ferrié, Rita Raisman-Vozari, Bruno Figadère, Elaine Del Bel and Patrick Pierre Michel
Biomolecules 2025, 15(7), 941; https://doi.org/10.3390/biom15070941 - 28 Jun 2025
Viewed by 415
Abstract
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product [...] Read more.
We aimed to simulate tau abnormalities—specifically hyperphosphorylation and aggregation—that are hallmarks of tauopathies, including Alzheimer’s disease, to evaluate tau-targeting therapies. To model pathological p-tau accumulation at early disease stages, we exposed mouse cortical cultures to redox-active iron from hemin (Hm), a breakdown product of hemoglobin, or challenged them with the excitatory neurotransmitter glutamate. Using the AT8 phospho-specific antibody, we demonstrate that a subtoxic concentration of Hm (3 µM) promotes pathological p-tau accumulation in a subpopulation of cultured cortical neurons and their proximal neurites. Uric acid (UA; 0.1–200 µM), the metabolic end-product of purines in humans, prevented p-tau build-up. Neither xanthine, the immediate precursor of UA, nor allantoin, its oxidized product, reproduced this effect. Live cell imaging studies revealed that UA operates by repressing iron-driven lipid peroxidation. DOT (3 µM), a brain-permeant tetracycline (TC) without antibiotic activity, mimicked UA’s anti-tau and antioxidant effects. Interestingly, both UA and DOT remained effective in preventing p-tau accumulation induced by glutamate (10 µM). To simulate tau aggregation at more advanced disease stages, we conducted a Thioflavin-T aggregation assay. Our findings revealed that UA and DOT prevented tau aggregation seeded by heparin. However, only DOT remained effective when heparin-assembled tau fibrils were used as the seeding material. In summary, our results indicate that UA-elevating agents may hold therapeutic utility for tauopathies. The non-purine compound DOT could serve as an effective alternative to UA-related therapies. Full article
Show Figures

Figure 1

11 pages, 5712 KiB  
Case Report
Pseudomonas-Enterobacter Co-Infection Drives Cellulitis and Lymphangitis in Equines: A Case Report
by Xiangning Huang, Renjie Deng, Haoen Huang, Huisheng Xie and Aolei Chen
Vet. Sci. 2025, 12(6), 574; https://doi.org/10.3390/vetsci12060574 - 11 Jun 2025
Viewed by 611
Abstract
This case report detailed a rare co-infection of Pseudomonas asiatica and Enterobacter hormaechei in a 9-year-old warmblood mare, leading to severe cellulitis and secondary lymphangitis following traditional hoof blood-letting therapy. The mare exhibited acute limb swelling, fever, cutaneous ulceration, lymphatic dysfunction and unknown [...] Read more.
This case report detailed a rare co-infection of Pseudomonas asiatica and Enterobacter hormaechei in a 9-year-old warmblood mare, leading to severe cellulitis and secondary lymphangitis following traditional hoof blood-letting therapy. The mare exhibited acute limb swelling, fever, cutaneous ulceration, lymphatic dysfunction and unknown anemia. Comprehensive diagnostics, including bacterial culture, whole-genome sequencing, anti-elastin antibody (AEAb) ELISA, and diagnostic imaging, confirmed the pathogens causing cellulitis and secondary lymphangitis. AEAb levels were elevated, correlating with lymphatic degradation, while radiography and lymphangiography ruled out laminitis but identified tortuous lymphatic vessels. The treatment integrated systemic antimicrobials, anti-inflammatory therapy, combined decongestive therapy, and traditional Chinese herbal medicine, resulting in resolution of infection, improved hematological parameters, and restored athletic performance. The therapeutic regimen primarily included gentamicin, enrofloxacin, oxytetracycline, and the Wei Qi Booster. The case highlights the critical role of pathogen-directed antimicrobial selection and the potential benefits of combining conventional and holistic therapies. This report emphasizes the necessity of early, multifaceted interventions to prevent life-threatening complications in equine cellulitis–lymphangitis cases. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Figure 1

20 pages, 5439 KiB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 1 | Viewed by 1117
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

14 pages, 1347 KiB  
Article
Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (OXA-23) and Klebsiella pneumoniae (KPC-2) Causing Hospital-Acquired Infections in Dogs
by Isabela Pádua Zanon, João Victor Ferreira Campos, Yasmin Gonçalves de Castro, Isadora Maria Soares de Melo, Flávia Figueira Aburjaile, Bertram Brenig, Vasco Azevedo and Rodrigo Otávio Silveira Silva
Antibiotics 2025, 14(6), 584; https://doi.org/10.3390/antibiotics14060584 - 6 Jun 2025
Viewed by 901
Abstract
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have [...] Read more.
Background/Objectives: Antimicrobial resistance is a major global health threat. Among the most problematic pathogens are carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae, which are significant causes of mortality in humans, particularly in the context of nosocomial infections. In companion animals, these bacteria have been reported mainly as colonizers of healthy animals or, less frequently, in community-acquired infections. However, no confirmed cases of healthcare-associated infections caused by these species have been documented in this population. This study reports the first confirmed fatal cases of infection with carbapenem-resistant A. baumannii and KPC-producing K. pneumoniae in dogs. Methods: Three hospitalized dogs developed infections associated with distinct anatomical devices, including a venous catheter, an endotracheal tube, and a Penrose drain. Bacterial isolation followed by antimicrobial susceptibility testing identified carbapenem-resistant A. baumannii and K. pneumoniae. The isolates were subsequently subjected to additional antimicrobial resistance tests and whole-genome sequencing (WGS). Results: WGS confirmed the presence of the OXA-23 carbapenemase gene in both A. baumannii isolates and the KPC-2 carbapenemase gene was detected in the K. pneumoniae strain. All three strains exhibited resistance to multiple antimicrobial classes, including β-lactams (amoxicillin-clavulanic acid, ampicillin, cephalotin, piperacillin-tazobactam, cefoxitin, ceftiofur, cefotaxime, ertapenem, imipenem and meropenem), aminoglycosides (gentamicin, neomycin), tetracyclines (doxycycline, tetracycline and oxytetracycline), fluoroquinolones (ciprofloxacin, enrofloxacin), and folate pathway antagonists (trimethoprim-sulfamethoxazole). Multilocus sequence typing identified two high-risk clones: K. pneumoniae ST340 (CC258) and A. baumannii ST15 (CC15). Single nucleotide polymorphism analysis confirmed a high degree of genetic similarity between these isolates and strains previously associated with human infections in Brazil. Conclusions: These findings provide the first evidence of fatal, healthcare-associated infections caused by these multidrug-resistant pathogens in dogs and underscore the need to strengthen surveillance and infection control practices in veterinary hospitals. Furthermore, the results raise concerns about the potential of companion animals to act as reservoirs for multidrug-resistant organisms of public health relevance. Full article
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Unlocking Synergistic Photo-Fenton Catalysis with Magnetic SrFe12O19/g-C3N4 Heterojunction for Sustainable Oxytetracycline Degradation: Mechanisms and Applications
by Song Cui, Yaocong Liu, Xiaolong Dong and Xiaohu Fan
Nanomaterials 2025, 15(11), 833; https://doi.org/10.3390/nano15110833 - 30 May 2025
Viewed by 477
Abstract
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study [...] Read more.
The widespread contamination of aquatic environments by tetracycline antibiotics (TCs) poses a substantial threat to public health and ecosystem stability. Although photo-Fenton processes have demonstrated remarkable efficacy in degrading TCs, their practical application is limited by challenges associated with catalyst recyclability. This study reports the development of a novel magnetic recoverable SrFe12O19/g-C3N4 heterostructure photocatalyst synthesized via a facile one-step co-calcination method using industrial-grade precursors. Comprehensive characterization revealed that nitrogen defects and the formation of heterojunction structures significantly suppress electron (e)–hole (h+) pair recombination, thereby markedly enhancing catalytic activity. The optimized 7-SFO/CN composite removes over 90% of oxytetracycline (OTC) within 60 min, achieving degradation rate constants of 0.0393 min−1, which are 9.1 times higher than those of SrFe12O19 (0.0043 min−1) and 4.2 times higher than those of g-C3N4 (0.0094 min−1). The effectively separated e play three critical roles: (i) directly activating H2O2 to generate ·OH radicals, (ii) promoting the redox cycling of Fe2+/Fe3+ ions, and (iii) reducing dissolved oxygen to form ·O2 species. Concurrently, h+ directly oxidize OTC molecules through surface-mediated reactions. Furthermore, the 7-SFO/CN composite exhibits exceptional operational stability and applicability, offering a transformative approach for scalable photocatalytic water treatment systems. This work provides an effective strategy for designing efficient and recoverable photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Catalysis for Pollution Control)
Show Figures

Graphical abstract

16 pages, 5020 KiB  
Article
Fate and Removal of Oxytetracycline and Antibiotic Resistance Genes in Vertical-Flow Constructed Wetland with Different Substrates
by Wei Yuan, Yan Liu, Yijun Shang, Meng Bai, Leicheng Li, Xunan Li, Peiyuan Deng, Luqman Riaz, Yiping Guo and Jianhong Lu
Water 2025, 17(10), 1412; https://doi.org/10.3390/w17101412 - 8 May 2025
Viewed by 472
Abstract
The presence of antibiotics and antibiotic resistance genes (ARGs) in natural habitats has recently sparked increased concern. Vertical-flow constructed wetlands (VFCWs) represent a novel approach to reducing these new contaminants. In the current work, four laboratory-scale VFCW models with various substrates were built [...] Read more.
The presence of antibiotics and antibiotic resistance genes (ARGs) in natural habitats has recently sparked increased concern. Vertical-flow constructed wetlands (VFCWs) represent a novel approach to reducing these new contaminants. In the current work, four laboratory-scale VFCW models with various substrates were built to decrease oxytetracycline (OTC) and ARGs. The findings showed that the combination of zeolite and activated carbon exhibited high OTC removal efficiency (up to 97%), with lesser accumulation than in other experimental groups. Furthermore, the combination of zeolite and activated carbon had the lowest absolute and relative abundance of ARGs. This was ascribed to the synergistic benefits of zeolite and activated carbon in CW-D, which exceeded other VFCWs in terms of ARGs removal efficiency. The treatment groups had a considerable but not absolute inhibitory impact on ARGs proliferation; this was attributable to the fact that many dominant bacteria in the community under antibiotic stress were antibiotic-resistant, allowing ARGs to propagate more easily. Network analysis and correlation analysis emphasized the importance of horizontal gene transfer (HGT) in ARGs dissemination, and antibiotic pressure is unlikely to have a substantial influence on ARGs propagation in the medium-term future. Furthermore, it was found that hydrophilic phages and Legionella species might serve as possible hosts for ARGs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop