Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,416)

Search Parameters:
Keywords = oxygen sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3069 KB  
Article
Development and Field Testing of a Cavitation-Based Robotic Platform for Sustainable In-Water Hull Cleaning
by Uroš Puc, Andreja Abina, Edvin Salvi, Vlado Malačič, Janja Francé, Riccardo Zanelli and Aleksander Zidanšek
J. Mar. Sci. Eng. 2026, 14(2), 227; https://doi.org/10.3390/jmse14020227 - 21 Jan 2026
Abstract
Biofouling on ship hulls significantly increases hydrodynamic drag, fuel consumption, and greenhouse gas emissions, while also facilitating the spread of invasive species in regional and global waters, thereby threatening marine biodiversity. To address these environmental and economic issues, we developed an innovative robotic [...] Read more.
Biofouling on ship hulls significantly increases hydrodynamic drag, fuel consumption, and greenhouse gas emissions, while also facilitating the spread of invasive species in regional and global waters, thereby threatening marine biodiversity. To address these environmental and economic issues, we developed an innovative robotic platform for in-water hull cleaning. The platform utilizes a cavitation-based cleaning module that removes biofouling while minimizing hull surface damage and preventing the spread of detached particles into the marine environment. This paper describes the design, operation, and testing of a developed robotic cleaning system prototype. Emphasis is placed on integrating components and sensors for continuous monitoring of key seawater parameters (temperature, salinity, turbidity, dissolved oxygen, chlorophyll-a, etc.) before, during, and after underwater cleaning. Results from real-sea trials show the platform’s effectiveness in removing biofouling and its minimal environmental impact, confirming its potential as a sustainable solution for in-water hull cleaning. Full article
(This article belongs to the Section Ocean Engineering)
16 pages, 3612 KB  
Article
An Ultrasensitive Ethanolamine Sensor Based on MoO3/BiOI Heterostructure at Room Temperature
by Xiaomeng Zheng, Qi Liu, Qingjiang Pan and Guo Zhang
Chemosensors 2026, 14(1), 28; https://doi.org/10.3390/chemosensors14010028 - 18 Jan 2026
Viewed by 139
Abstract
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor [...] Read more.
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor based on the MoO3/BiOI composite was prefabricated using hydrothermal and cyclic impregnation methods. The response value toward 100 ppm EA reached 861.3, which was 3.5-times higher compared to that of pure MoO3. In addition, the MoO3/BiOI composite exhibited a low detection limit (0.13 ppm), excellent selectivity, short response/recovery times, exceptional repeatability and long-term stability. The outstanding gas sensing performance of the MoO3/BiOI is attributed to the formation of a p-n heterojunction, synergistic effects between the two materials, abundant adsorbed oxygen species and superior charge transfer efficiency. The sensor developed in this work effectively addresses the long-standing challenges, demonstrating unprecedented practical application potential for EA gas detection. Simultaneously, this study provides a novel strategy, a new approach and a promising material for the subsequent development of advanced amine sensors. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

29 pages, 5970 KB  
Article
SIGMaL: An Integrated Framework for Water Quality Monitoring in a Coastal Shallow Lake
by Anja Batina, Ante Šiljeg, Andrija Krtalić and Ljiljana Šerić
Remote Sens. 2026, 18(2), 312; https://doi.org/10.3390/rs18020312 - 16 Jan 2026
Viewed by 82
Abstract
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS [...] Read more.
Coastal lakes require monitoring approaches that capture spatial and temporal variability beyond the limits of conventional in situ measurements. In this study, a SIGMaL framework (Satellite–In situ–GIS-multicriteria decision analysis (MCDA)–Machine Learning (ML)) was developed, a unified methodology that integrates in situ monitoring, GIS MCDA-derived water quality index (WQI), satellite imagery, and ML models for comprehensive coastal lake water quality assessment. A WQI, derived from a 12-month series of in situ measurements and environmental parameters, was used alongside four physicochemical parameters measured by a multiparameter probe. First, satellite reflectance from each sensor was used to train a set of nine regression models for modelling electrical conductivity (EC), turbidity, water temperature (WT), and dissolved oxygen (DO). Second, convolutional neural networks (CNNs) with spectral and temporal inputs were trained to classify WQI classes, enabling a cross-sensor evaluation of their suitability for lake water quality monitoring. Third, the trained CNNs were applied to generate WQI maps for a subsequent 12-month period without in situ data. Across all analyses, WQI-based models provided more stable and accurate models than those trained on raw parameters. Sentinel-2 achieved the most consistent WQI performance (AUC ≈ 1.00, R2 ≈ 0.84), PlanetScope captured fine-scale spatial detail (R2 ≈ 0.77), while Landsat 8–9 was most effective for WT but less reliable for multi-class WQI discrimination. Sentinel-2 is recommended as the primary satellite sensor for WQI mapping within the SIGMaL framework. These findings demonstrate the advantages of WQI-based modelling and highlight the potential of ML–remote sensing integration to support coastal lake water quality monitoring. Full article
(This article belongs to the Special Issue Remote Sensing in Water Quality Monitoring)
Show Figures

Figure 1

20 pages, 740 KB  
Review
Mitochondrial Metabolic Checkpoints in Human Fertility: Reactive Oxygen Species as Gatekeepers of Gamete Competence
by Sofoklis Stavros, Nikolaos Thomakos, Efthalia Moustakli, Nikoleta Daponte, Dimos Sioutis, Nikolaos Kathopoulis, Athanasios Zikopoulos, Ismini Anagnostaki, Chrysi Christodoulaki, Themos Grigoriadis, Ekaterini Domali and Anastasios Potiris
Cells 2026, 15(2), 149; https://doi.org/10.3390/cells15020149 - 14 Jan 2026
Viewed by 269
Abstract
Crucial regulators of gamete metabolism and signaling, mitochondria synchronize energy generation with redox equilibrium and developmental proficiency. Once thought of as hazardous byproducts, reactive oxygen species (ROS) are now understood to be vital signaling molecules that provide a “redox window of competence” that [...] Read more.
Crucial regulators of gamete metabolism and signaling, mitochondria synchronize energy generation with redox equilibrium and developmental proficiency. Once thought of as hazardous byproducts, reactive oxygen species (ROS) are now understood to be vital signaling molecules that provide a “redox window of competence” that is required for oocyte maturation, sperm capacitation, and early embryo development. This review presents the idea of mitochondrial metabolic checkpoints, which are phases that govern gamete quality and fertilization potential by interacting with cellular signaling, redox balance, and mitochondrial activity. Recent research shows that oocytes may sustain a nearly ROS-free metabolic state by blocking specific respiratory-chain components, highlighting the importance of mitochondrial remodeling in gamete competence. Evidence from in vitro and in vivo studies shows that ROS act as dynamic gatekeepers at critical points in oogenesis, spermatogenesis, fertilization, and early embryogenesis. However, assisted reproductive technologies (ARTs) may inadvertently disrupt this redox–metabolic equilibrium. Potential translational benefits can be obtained via targeted techniques that optimize mitochondrial function, such as modifying oxygen tension, employing mitochondria-directed antioxidants like MitoQ and SS-31, and supplementing with nutraceuticals like melatonin, CoQ10, and resveratrol. Understanding ROS-mediated checkpoints forms the basis for developing biomarkers of gamete competence and precision therapies to improve ART outcomes. By highlighting mitochondria as both metabolic sensors and redox regulators, this review links fundamental mitochondrial biology to clinical reproductive medicine. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Figure 1

15 pages, 3846 KB  
Article
Noble Metal-Enhanced Chemically Sensitized Bi2WO6 for Point-of-Care Detection of Listeria monocytogenes in Ready-to-Eat Foods
by Yong Zhang, Hai Yu, Yu Han, Shu Cui, Jingyi Yang, Bingyang Huo and Jun Wang
Foods 2026, 15(2), 293; https://doi.org/10.3390/foods15020293 - 13 Jan 2026
Viewed by 165
Abstract
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of [...] Read more.
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of raw materials and further functionalized them with noble metal Au to construct a high-performance Au-Bi2WO6 composite nanomaterial. The composite exhibited high sensing performance toward acetoin, including high sensitivity (Ra/Rg = 36.9@50 ppm), rapid response–recovery kinetics (13/12 s), and excellent selectivity. Through UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS) characterizations, efficient electron exchange between Au and Bi2WO6 was confirmed. This electron exchange increased the initial resistance of the material, effectively enhancing the response value toward the target gas. Furthermore, the chemical sensitization effect of Au significantly increased the surface-active oxygen content, promoted gas–solid interfacial reactions, and improved the adsorption capacity for target gases. Compared to conventional turbidimetry, the Au-Bi2WO6 nanoflower-based gas sensor demonstrates superior practical potential, offering a novel technological approach for non-destructive and rapid detection of foodborne pathogens. Full article
Show Figures

Graphical abstract

10 pages, 2349 KB  
Article
Long Period Grating Modified with Quasi-2D Perovskite/PAN Hybrid Nanofibers for Relative Humidity Measurement
by Dingyi Feng, Changjiang Zhang, Syed Irshad Haider, Jing Tian, Jiandong Wu, Fu Liu and Biqiang Jiang
Nanomaterials 2026, 16(2), 99; https://doi.org/10.3390/nano16020099 - 12 Jan 2026
Viewed by 204
Abstract
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to [...] Read more.
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to fabricate a long-period grating (LPG) humidity sensor based on the perovskite/polyacrylonitrile (PAN) hybrid nanofibers film. The pure-bromide quasi-2D perovskite nanocrystals were in situ synthesized and encapsulated in the PAN matrix on the fiber grating via an electrospinning technique. Humidity-induced variation in the complex permittivity of perovskites can alter the evanescent field of the co-propagating cladding modes, resulting in changes in both resonant amplitude and wavelength in the transmission spectrum of the LPG. These effects yielded an intensity sensitivity of ~0.21 dB/%RH and a wavelength sensitivity of ~18.2 pm/%RH, respectively, in the relative humidity range of 50–80%RH. The proposed LPG sensor demonstrated a good performance, indicating its potential application in the humidity-sensing field. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Figure 1

34 pages, 719 KB  
Article
Prototype of Hydrochemical Regime Monitoring System for Fish Farms
by Sergiy Ivanov, Oleksandr Korchenko, Grzegorz Litawa, Pavlo Oliinyk and Olena Oliinyk
Sensors 2026, 26(2), 497; https://doi.org/10.3390/s26020497 - 12 Jan 2026
Viewed by 175
Abstract
This paper presents a prototype of an autonomous hydrochemical monitoring system developed for large freshwater aquaculture facilities, directly addressing the need for smart monitoring in Agriculture 4.0. The proposed solution employs low-power sensor nodes based on commercially available components and long-range LoRaWAN communication [...] Read more.
This paper presents a prototype of an autonomous hydrochemical monitoring system developed for large freshwater aquaculture facilities, directly addressing the need for smart monitoring in Agriculture 4.0. The proposed solution employs low-power sensor nodes based on commercially available components and long-range LoRaWAN communication to achieve continuous, scalable, and energy-efficient water quality monitoring. Each sensor module performs on-board signal preprocessing, including anomaly detection and short-term forecasting of key hydrochemical parameters. An ecological pond dynamics model incorporating an Extended Kalman Filter is used to fuse heterogeneous sensor data with predictive estimates, thus increasing measurement reliability. High-level data analysis, long-term storage, and cross-site comparison are performed on the server side. This integration enables adaptive tracking of environmental variations, supports early detection of hazardous trends associated with fish mortality risks, and allows one to explain and justify the reasoning behind every recommended corrective action. The performance of the forecasting and filtering algorithms is evaluated, and key system characteristics—including measurement accuracy, power consumption, and scalability—are discussed. Preliminary tests of the system prototype have shown that it can predict the dissolved oxygen level with RMSE = 0.104 mg/L even with a minimum set of sensors. The results demonstrate that the proposed conceptual design of the system can be used as a base for real-time monitoring and predictive assessment of hydrochemical conditions in aquaculture environments. Full article
Show Figures

Figure 1

19 pages, 1753 KB  
Article
Multimodal Physiological Monitoring Using Novel Wearable Sensors: A Pilot Study on Nocturnal Glucose Dynamics and Meal-Related Cardiovascular Responses
by Emi Yuda, Yutaka Yoshida, Hiroyuki Edamatsu and Junichiro Hayano
Bioengineering 2026, 13(1), 69; https://doi.org/10.3390/bioengineering13010069 - 8 Jan 2026
Viewed by 355
Abstract
This pilot study investigated multimodal physiological monitoring using minimally invasive and wearable sensors across two experimental settings. Experiment 1 involved five healthy adults (1 female) who simultaneously wore an interstitial fluid glucose (ISFG) sensor and a ring-type wearable device during sleep (00:00–06:00). Time-series [...] Read more.
This pilot study investigated multimodal physiological monitoring using minimally invasive and wearable sensors across two experimental settings. Experiment 1 involved five healthy adults (1 female) who simultaneously wore an interstitial fluid glucose (ISFG) sensor and a ring-type wearable device during sleep (00:00–06:00). Time-series analyses revealed that ISFG levels decreased during sleep in four of the five participants. ISFG values were significantly lower in the latter half of the sleep period compared with the first half (0–3 h vs. 3–6 h, p = 0.01, d = 2.056). Four participants also exhibited a mild reduction in SpO2 between 03:00–04:00. These results suggest that nocturnal ISFG decline may be associated with subtle oxygen-saturation dynamics. Experiment 2 examined whether wearable sensors can detect physiological changes across meal-related phases. Nine male participants were monitored for heart rate (HR) and skin temperature during three periods: pre-meal (Phase 1: 09:00–09:30), during meal consumption (Phase 2: 12:30–13:00), and post-meal (Phase 3: 13:00–13:30). A paired comparison demonstrated a significant difference in median HR between Phase 1 and Phase 2 (p = 0.029, d = 0.812), indicating a large effect size. In contrast, HR–temperature correlation was weak and not statistically significant (Pearson r = 0.067, p = 0.298). Together, these findings demonstrate that multimodal wearable sensing can capture both nocturnal glucose fluctuations and meal-induced cardiovascular changes. This integrative approach may support real-time physiological risk assessment and future development of remote healthcare applications. Full article
Show Figures

Figure 1

15 pages, 2133 KB  
Article
Impact of Helicopter Vibrations on In-Ear PPG Monitoring for Vital Signs—Mountain Rescue Technology Study (MoReTech)
by Aaron Benkert, Jakob Bludau, Lukas Boborzi, Stephan Prueckner and Roman Schniepp
Sensors 2026, 26(1), 324; https://doi.org/10.3390/s26010324 - 4 Jan 2026
Viewed by 418
Abstract
Pulsoximeters are widely used in the medical care of preclinical patients to evaluate the cardiorespiratory status and monitor basic vital signs, such as pulse rate (PR) and oxygen saturation (SpO2). In many preclinical situations, air transport of the patient by helicopter [...] Read more.
Pulsoximeters are widely used in the medical care of preclinical patients to evaluate the cardiorespiratory status and monitor basic vital signs, such as pulse rate (PR) and oxygen saturation (SpO2). In many preclinical situations, air transport of the patient by helicopter is necessary. Conventional pulse oximeters, mostly used on the patient’s finger, are prone to motion artifacts during transportation. Therefore, this study aims to determine whether simulated helicopter vibration has an impact on the photoplethysmogram (PPG) derived from an in-ear sensor at the external ear canal and whether the vibration influences the calculation of vital signs PR and SpO2. The in-ear PPG signals of 17 participants were measured at rest and under exposure to vibration generated by a helicopter simulator. Several signal quality indicators (SQI), including perfusion index, skewness, entropy, kurtosis, omega, quality index, and valid pulse detection, were extracted from the in-ear PPG recordings during rest and vibration. An intra-subject comparison was performed to evaluate signal quality changes under exposure to vibration. The analysis revealed no significant difference in any SQI between vibration and rest (all p > 0.05). Furthermore, the vital signs PR and SpO2 calculated using the in-ear PPG signal were compared to reference measurements by a clinical monitoring system (ECG and SpO2 finger sensor). The results for the PR showed substantial agreement (CCCrest = 0.96; CCCvibration = 0.96) and poor agreement for SpO2 (CCCrest = 0.41; CCCvibration = 0.19). The results of our study indicate that simulated helicopter vibration had no significant impact on the calculation of the SQIs, and the calculation of vital signs PR and SpO2 did not differ between rest and vibration conditions. Full article
(This article belongs to the Special Issue Novel Optical Sensors for Biomedical Applications—2nd Edition)
Show Figures

Figure 1

17 pages, 4506 KB  
Article
3D Printing of Oxygen-Sensing ECM-Based Skin Graft for Personalized Treatment of Chronic Wounds—A Technological Proof of Concept
by Yehonatan Zur, Rotem Hayam, Nir Almog, Inna Kovrigina, Limor Baruch, Aharon Blank and Marcelle Machluf
J. Funct. Biomater. 2026, 17(1), 28; https://doi.org/10.3390/jfb17010028 - 1 Jan 2026
Viewed by 596
Abstract
Chronic diabetic wounds are often characterized by persistent hypoxia and poor healing outcomes, highlighting the need for regenerative grafts that not only promote tissue repair but also provide insights into the wound microenvironment. In this study, we introduce a novel strategy for diabetic [...] Read more.
Chronic diabetic wounds are often characterized by persistent hypoxia and poor healing outcomes, highlighting the need for regenerative grafts that not only promote tissue repair but also provide insights into the wound microenvironment. In this study, we introduce a novel strategy for diabetic ulcer treatment through the development of a structurally personalized skin graft. The graft is fabricated via 3D bioprinting of natural porcine skin extracellular matrix (psECM) and integrated with microsensors for oxygen monitoring. We established a porcine skin decellularization protocol that efficiently removed cellular components, while preserving the integrity of the ECM, as verified by DNA quantification and scanning electron microscopy. The resulting psECM bioink demonstrated rheological properties suitable for 3D printing, which depended on psECM concentration and exhibited temperature-responsive gelation behavior. Incorporation of LiNC-BuO oxygen microsensors into the bioink enabled real-time, non-invasive oxygen level monitoring within the printed constructs. Both in vitro and in vivo studies confirmed the cytocompatibility and low immunogenicity of the psECM-based grafts with embedded microsensors. Moreover, the 3D bioprinting technology enabled the manufacturing of grafts tailored to match individual wound geometries. The technological proof of concept presented herein for this multifunctional platform, which integrates the regenerative benefits of ECM scaffolds with advanced biosensing capabilities, represents a promising approach for enhancing future therapeutic outcomes in the management of diabetic ulcers. Full article
Show Figures

Graphical abstract

17 pages, 3867 KB  
Article
Detection of Water Quality COD Based on the Integration of Laser Absorption and Fluorescence Spectroscopy Technology
by Hanyu Zhang, Zhaoshuo Tian, Xiaohua Che, Ying Guo and Zongjie Bi
Water 2026, 18(1), 93; https://doi.org/10.3390/w18010093 - 30 Dec 2025
Viewed by 279
Abstract
Chemical oxygen demand (COD) serves as a critical indicator for assessing the extent of water pollution caused by organic matter. This study proposes an integrated COD detection methodology that combines laser absorption spectroscopy with laser-induced fluorescence spectroscopy, enabling accurate measurement of COD parameters [...] Read more.
Chemical oxygen demand (COD) serves as a critical indicator for assessing the extent of water pollution caused by organic matter. This study proposes an integrated COD detection methodology that combines laser absorption spectroscopy with laser-induced fluorescence spectroscopy, enabling accurate measurement of COD parameters across a wide concentration range. For high-concentration COD, conventional ultraviolet absorption spectrophotometry based on the Lambert–Beer law is employed. However, since laser absorption spectrophotometry exhibits substantial errors in detecting low-concentration COD, laser-induced fluorescence spectroscopy is adopted for the precise quantification of trace-level COD. By integrating these two laser-based approaches, a spectroscopic COD detection system has been developed that simultaneously records absorbance after the laser passes through the sample and quantifies fluorescence intensity perpendicular to the beam with an image sensor, thereby achieving comprehensive COD analysis. Laboratory validation using COD standard solutions demonstrated relative errors below 11% across the concentration range of 2–220 mg/L. Further application to natural water samples confirmed that the integrated laser absorption–fluorescence spectroscopy approach achieves wide-range COD measurement with high sensitivity, a compact configuration, and rapid response, demonstrating strong potential for real-time online water quality monitoring. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 6691 KB  
Article
Continuous Detonation Combustor Operating on a Methane–Oxygen Mixture: Test Fires, Thrust Performance, and Thermal State
by Sergey M. Frolov, Vladislav S. Ivanov, Yurii V. Kozarenko and Igor O. Shamshin
Aerospace 2026, 13(1), 30; https://doi.org/10.3390/aerospace13010030 - 28 Dec 2025
Viewed by 297
Abstract
Test fires of a rotating detonation engine (RDE) annular combustor operating on a methane–oxygen mixture were conducted. Compared to the original RDE combustor previously tested, it was modified in terms of changing the layout of the water cooling system, the positions of ports [...] Read more.
Test fires of a rotating detonation engine (RDE) annular combustor operating on a methane–oxygen mixture were conducted. Compared to the original RDE combustor previously tested, it was modified in terms of changing the layout of the water cooling system, the positions of ports for sensors, and the shape of the supersonic nozzle. The stable operation process with a single detonation wave continuously rotating in the annular gap with the velocity of ~1900 m/s (rotation frequency of ~6 kHz) was obtained in the wide range of flow rates of propellant components. This is an important distinguishing feature of the present RDE combustor compared to the analogs known from the literature, which usually exhibit an increase in the number of simultaneously rotating detonation waves with an increase in the flow rates of propellant components. Compared to the original RDE combustor, the maximum duration of operation and the attained sea-level specific impulse were increased from 1 to 30 s and from 250 to 277 s, respectively. The thermal states of all heat-stressed elements of the combustor were obtained. The maximum heat fluxes are registered in the water cooling jackets of the central body and the combustor outer wall. Heat losses in the water cooling system are shown to increase with the average pressure in the combustor. The maximum value of the average heat flux over 20 MW/m2 is achieved on the combustor outer wall. The average heat flux into the combustor outer wall is approximately 20% higher than that into the central body. The average heat flux into the nozzle is several times lower than similar values for the combustor outer wall and central body. The total heat loss into the water-cooled walls of the combustor reach about 10% of the total thermal power of the combustor. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion (2nd Edition))
Show Figures

Figure 1

30 pages, 1996 KB  
Review
Electrochemical Choline Sensing: Biological Context, Electron Transfer Pathways and Practical Design Strategies
by Angel A. J. Torriero, Sarah M. Thiak and Ashwin K. V. Mruthunjaya
Biomolecules 2026, 16(1), 23; https://doi.org/10.3390/biom16010023 - 23 Dec 2025
Viewed by 283
Abstract
Choline is a central metabolite that connects membrane turnover, neurotransmission, and one-carbon metabolism, and its reliable measurement across diverse biological matrices remains a significant analytical challenge. This review brings together biological context, electrochemical mechanisms, and device engineering to define realistic performance targets for [...] Read more.
Choline is a central metabolite that connects membrane turnover, neurotransmission, and one-carbon metabolism, and its reliable measurement across diverse biological matrices remains a significant analytical challenge. This review brings together biological context, electrochemical mechanisms, and device engineering to define realistic performance targets for choline sensors in blood, cerebrospinal fluid, extracellular space, and milk. We examine enzymatic sensor architectures ranging from peroxide-based detection to mediated electron transfer via ferrocene derivatives, quinones, and osmium redox polymers and assess how applied potential, oxygen availability, and film structure shape electron-transfer pathways. Evidence for direct electron transfer with choline oxidase is critically evaluated, with emphasis on the essential controls needed to distinguish true flavin-based communication from peroxide-related artefacts. We also examine bienzymatic formats that allow operation at low or negative bias and discuss strategies for matrix-matched validation, selectivity, drift control, and resistance to fouling. To support reliable translation, we outline reporting standards that include matrix-specific concentration ranges, reference electrode notation, mediator characteristics, selectivity panels, and access to raw electrochemical traces. By connecting biological requirements to mechanistic pathways and practical design considerations, this review provides a coherent framework for developing choline sensors that deliver stable, reproducible performance in real samples. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

19 pages, 21542 KB  
Article
Cannabidiol Mitigates Pollution-Induced Inflammatory, Oxidative, and Barrier Damage in Ex Vivo Human Skin
by Wannita Klinngam, Orathai Loruthai and Sornkanok Vimolmangkang
Biomolecules 2026, 16(1), 10; https://doi.org/10.3390/biom16010010 - 20 Dec 2025
Viewed by 547
Abstract
Airborne particulate matter (PM) is a major environmental pollutant that accelerates skin aging, inflammation, and barrier impairment. Cannabidiol (CBD), a non-psychoactive phytocannabinoid derived from Cannabis sativa, has shown anti-inflammatory and cytoprotective effects, yet its role in protecting full-thickness human skin from pollution-induced [...] Read more.
Airborne particulate matter (PM) is a major environmental pollutant that accelerates skin aging, inflammation, and barrier impairment. Cannabidiol (CBD), a non-psychoactive phytocannabinoid derived from Cannabis sativa, has shown anti-inflammatory and cytoprotective effects, yet its role in protecting full-thickness human skin from pollution-induced damage remains unclear. In this study, human full-thickness ex vivo skin explants were topically exposed to PM (0.54 mg/cm2) and treated with CBD (6.4 mM) administered via the culture medium for 48 h. Proinflammatory mediators (interleukin-6, IL-6; matrix metalloproteinase-1, MMP-1; cyclooxygenase-2, COX-2), oxidative stress markers (reactive oxygen species, ROS; 8-hydroxy-2′-deoxyguanosine, 8-OHdG), the xenobiotic sensor aryl hydrocarbon receptor (AhR), extracellular matrix proteins (procollagen type I C-peptide, PIP; fibrillin), and the barrier protein filaggrin were quantified using ELISA and immunofluorescence. PM exposure triggered significant inflammation, oxidative stress, AhR induction, extracellular matrix degradation, and barrier disruption. CBD selectively counteracted these effects by reducing IL-6, MMP-1, COX-2, ROS, and 8-OHdG levels, downregulating AhR expression, and restoring PIP, fibrillin, and filaggrin expression. No measurable effects were observed in unstressed control tissues. These results demonstrate that CBD protects human skin from PM-induced molecular damage and supports its potential as a functional bioactive ingredient for anti-pollution applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

24 pages, 2834 KB  
Review
Biosensors for Detection of Labile Heme in Biological Samples
by Krysta Dobill, Delphine Lechardeur and Jasmina Vidic
Biosensors 2026, 16(1), 4; https://doi.org/10.3390/bios16010004 - 19 Dec 2025
Viewed by 574
Abstract
Heme, a protoporphyrin IX iron complex, functions as an essential prosthetic group in hemoglobin and myoglobin, mediating oxygen storage and transport. Additionally, heme serves as a critical cofactor in various enzymes such as cytochrome c, enabling electron transfer within the mitochondrial respiratory chain. [...] Read more.
Heme, a protoporphyrin IX iron complex, functions as an essential prosthetic group in hemoglobin and myoglobin, mediating oxygen storage and transport. Additionally, heme serves as a critical cofactor in various enzymes such as cytochrome c, enabling electron transfer within the mitochondrial respiratory chain. Unlike protein-bound heme, free or labile heme exhibits cytotoxic, pro-oxidant, and pro-inflammatory properties. Elevated levels of free heme are associated with various pathophysiological conditions, including hemolytic disorders such as sickle cell disease, malaria, and sepsis. In this review, we introduce the physiological roles of heme and its involvement in human health and disease. We also examine the mechanisms of heme sensing and regulation in bacterial cells. A variety of analytical methods have been developed to detect and quantify heme, enabling differentiation between protein-bound and free forms. These tools are discussed in the context of their applications in studying cellular heme regulation and their use in monitoring pathological conditions in humans. In particular, we describe examples of biosensors employing bacterial heme sensor proteins as recognition elements. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop