Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = oxides coated sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1812 KiB  
Article
Testing Concrete for the Construction of Winemaking Tanks
by Eleftherios K. Anastasiou, Alexandros Liapis, Eirini-Chrysanthi Tsardaka, Alexandros Chortis and Argyris Gerovassiliou
Appl. Sci. 2025, 15(14), 7816; https://doi.org/10.3390/app15147816 - 11 Jul 2025
Viewed by 217
Abstract
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using [...] Read more.
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using silicate aggregates and quartz sand as filler in order to obtain self-compacting concrete of strength class C 20/25. The optimal mixture was selected and further tests were carried out on the mechanical properties of permeability, durability and thermal conductivity. Three coatings and plain concrete were tested for their leachability of heavy metals in wine. The results show that the selected composition with 20% cement replacement by natural pozzolan has the desired workability and strength and is comparable to a reference concrete without natural pozzolan. The leachability tests show that heavy metals do not leach out upon contact with wine, but only calcium and potassium oxide, which can be easily addressed by coating or treating the surface of the concrete. Also, the optimum coating did not influence the pH of the wine. Full article
(This article belongs to the Special Issue Emerging Concrete Technologies and Applications)
Show Figures

Figure 1

23 pages, 3405 KiB  
Review
Reactive Filtration Water Treatment: A Retrospective Review of Sustainable Sand Filtration Re-Engineered for Advanced Nutrient Removal and Recovery, Micropollutant Destructive Removal, and Net-Negative CO2e Emissions with Biochar
by Paulo Yu, Martin C. Baker, Lusine Taslakyan, Daniel G. Strawn and Gregory Möller
Sustainability 2025, 17(13), 5799; https://doi.org/10.3390/su17135799 - 24 Jun 2025
Viewed by 582
Abstract
A core tertiary wastewater reactive filtration technology, where continuously renewed hydrous ferric oxide coated sand is created in an upflow continuous backwash filter, has been adopted in about 100 water resource recovery facilities in several countries. Primarily focused on ultralow phosphorus discharge requirements [...] Read more.
A core tertiary wastewater reactive filtration technology, where continuously renewed hydrous ferric oxide coated sand is created in an upflow continuous backwash filter, has been adopted in about 100 water resource recovery facilities in several countries. Primarily focused on ultralow phosphorus discharge requirements to address nutrient pollution impacts and harmful algae blooms, the technology has also demonstrated the capacity to address high-efficiency removals of Hg, As, Zn, N, and other pollutants of concern, in addition to water quality needs met by common sand filtration, including total suspended solids. Recent work has demonstrated the capability of an additive iron–ozone catalytic oxidation process to the core reactive filtration technology platform to address micropollutants such as pharmaceuticals. Most recently, direct injection of frangible biochar into the reactive sand filter bed as a consumable reagent demonstrates a novel biochar water treatment technology in a platform that yields dose-dependent carbon negativity. In this work, the reactive filtration technology performance is reviewed from field pilot-scale to full-scale installation scenarios for nutrient removal and recovery applications. We also review the potential of the technology for nutrient recovery with the addition of biochar and micropollutant destructive removal with catalytic oxidation. Research exploration of this reactive filtration technology includes life cycle assessment (LCA) and techno-economic assessment to evaluate the environmental and economic impacts of this advanced water treatment technology. A recent LCA study of a pilot-scale field research and full-scale municipal system with over 2200 inventory elements shows a dose-dependent carbon negativity when biochar is injected into the process stream of reactive filtration. In this study, LCA demonstrates that reactive filtration has the potential as a negative emissions technology with −1.21 kg CO2e/m3, where the negative contribution from the dosed biochar is −1.53 kg CO2e/m3. In this biochar water treatment configuration, the system not only effectively removes pollutants from wastewater but also contributes to carbon sequestration and nutrient recovery for agriculture, making it a potentially valuable approach for sustainable water treatment. Full article
(This article belongs to the Special Issue Sustainable Development and Application of Biochar)
Show Figures

Graphical abstract

17 pages, 2794 KiB  
Article
Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Separations 2025, 12(5), 119; https://doi.org/10.3390/separations12050119 - 7 May 2025
Viewed by 487
Abstract
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent [...] Read more.
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent was evaluated as function of column flow rate, solution type, and sorbent recyclability. Adsorption column experiments included two column flow rates of 2 mL/min and 10 mL/min using two different solutions: deionized water and a synthetic solution representative of groundwater. Greater fluoride column adsorption capacity was obtained at the lower flow rate for both solutions, mainly due to longer contact times between solution and AMCCS sorbent. Adsorption of fluoride occurred through physical adsorption, which followed the Langmuir adsorption model and second-order kinetics for deionized water and synthetic solution. A lower AMCCS column fluoride adsorption capacity was observed for the synthetic solution due to the competition from adsorption of other ions in the synthetic solution, whereas fluoride adsorption by the AMCCS column was influenced by interphase mass transfer to a lesser extent using the synthetic solution than deionized water. The re-coating of spent AMCCS sorbent in the adsorption column resulted in effective recycling and reuse of the AMCCS adsorption column for both deionized water and the synthetic solution, rendering the AMCCS adsorption column a recyclable and sustainable flow through water defluoridation system. Full article
Show Figures

Graphical abstract

32 pages, 7358 KiB  
Article
Retention of Engineered Nanoparticles in Drinking Water Treatment Processes: Laboratory and Pilot-Scale Experiments
by Norbert Konradt, Laura Schneider, Stefan Bianga, Detlef Schroden, Peter Janknecht and Georg Krekel
Appl. Nano 2024, 5(4), 279-310; https://doi.org/10.3390/applnano5040018 - 5 Dec 2024
Viewed by 2859
Abstract
While microparticles can be removed by a filtration step at a drinking water treatment plant (DWTP), engineered nanoparticles (ENPs), which are widely used in industry, commerce and households, pose a major problem due to their special properties, e.g., size, reactivity and polarity. In [...] Read more.
While microparticles can be removed by a filtration step at a drinking water treatment plant (DWTP), engineered nanoparticles (ENPs), which are widely used in industry, commerce and households, pose a major problem due to their special properties, e.g., size, reactivity and polarity. In addition, many ENPs exhibit toxic potential, which makes their presence in drinking water undesirable. Therefore, this study investigated the removal of ENPs in the laboratory and at a pilot-scale DWTP. Eight ENPs were synthesized and tested for stability in different types of water. Only three of them were stable in natural water: cetyltrimethylammonium bromide-coated gold (CTAB/AuNPs), polyvinylpyrrolidone-stabilized gold and silver nanoparticles (PVP/AuNPs, PVP/AgNPs). Their retention on quartz sand, silica gel and fresh anthracite was low, but CTAB/AuNPs could be retained on fresh river sand and thus should not overcome riverbank filtration, while PVP/AuNPs and PVP/AgNPs showed no retention and may be present in raw water. During ozonation, PVP/AuNPs remained stable while PVP/AgNPs were partially degraded. The advanced oxidation process (AOP) was less effective than ozone. PVP/AgNPs were almost completely retained on the pilot plant anthracite sand filter coated with manganese(IV) oxide and ferrihydrite from raw water treatment. PVP/AuNPs passed the filter with no retention. In contrast to PVP/AuNPs, PVP/AgNPs and CTAB/AuNPs were also retained on activated carbon. The integration of a flocculation step with iron(III) salts can improve ENP removal, with PVP/AuNPs requiring higher flocculant doses than PVP/AgNPs. PVP/AuNPs, in particular, are well-suited for testing the effectiveness of water treatment. Further data on the occurrence of stable ENPs in raw water and their behavior during water treatment are needed to perform a risk assessment and derive the measures. Full article
Show Figures

Figure 1

11 pages, 6379 KiB  
Article
Studying Characteristics of Hot Fine-Grained Asphalt Concrete with the Addition of Coked Sands from the Pyrolysis of Oil Sands
by Yerbol Tileuberdi, Yerdos Ongarbayev, Zhazira Mukatayeva, Khairulla Zhanbekov, Kairat Mukhambetkaliyev, Yerzhan Akkazin, Nurgul Shadin and Yerzhan Imanbayev
Processes 2024, 12(11), 2540; https://doi.org/10.3390/pr12112540 - 14 Nov 2024
Cited by 2 | Viewed by 1131
Abstract
This paper investigates the potential use of coked sands, a byproduct of the thermal processing (pyrolysis) of oil sands, in asphalt concrete mixtures. After pyrolysis extracts the oil from the oil sand, the remaining mineral part becomes coked and changes color to black [...] Read more.
This paper investigates the potential use of coked sands, a byproduct of the thermal processing (pyrolysis) of oil sands, in asphalt concrete mixtures. After pyrolysis extracts the oil from the oil sand, the remaining mineral part becomes coked and changes color to black as solid waste, resulting in a coating of biochar. The coked sand’s X-ray phase analysis (XRD) shows peaks at 4.2564, 3.6749, 3.3768, 3.2380, 3.1903, 2.4581, 2.2800, and 2.2365. Quartz, aluminosilicates, metal oxides, and possibly even carbonates make up the sand’s mineral makeup, as indicated by these peaks. One way to use them is in road construction. In this study, we substituted sand screenings with coked sand in amounts of 5%, 7%, and 10% to examine its impact on the composition of asphalt concrete. This study used 5% paving bitumen (BND 70/100) as a binder for asphalt mineral materials of varying sizes. It concludes that using coked sand to produce asphalt concrete can save 5–10% of sand screenings. The test results showed that adding 5% and 7% of coked sand increases the compressive strength at 50 °C by 8% and 31%, respectively. Adding 10% of coked sand does not increase the strength and actually makes it weaker. The results of the asphalt concrete samples meet type B grade 1 standards of ST RK 1225-2019. Full article
Show Figures

Figure 1

27 pages, 6930 KiB  
Article
Improvement of Removal Rates for Iron and Manganese in Groundwater Using Dual-Media Filters Filled with Manganese-Oxide-Coated Sand and Ceramic in Nepal
by Ankit Man Shrestha, Shinobu Kazama, Benyapa Sawangjang and Satoshi Takizawa
Water 2024, 16(17), 2450; https://doi.org/10.3390/w16172450 - 29 Aug 2024
Cited by 2 | Viewed by 2833
Abstract
Iron and manganese in groundwater impair the quality of drinking water; however, the rates of iron and manganese removal with conventional aeration and rapid sand filtration (RSF) processes vary extensively. Five full-scale aeration–RSF processes in Nepal also showed varying efficiencies of iron and [...] Read more.
Iron and manganese in groundwater impair the quality of drinking water; however, the rates of iron and manganese removal with conventional aeration and rapid sand filtration (RSF) processes vary extensively. Five full-scale aeration–RSF processes in Nepal also showed varying efficiencies of iron and manganese removal; while the iron concentration was below the national standard (0.30 mg/L) in 31 out of the 37 treated waters, the manganese concentration was higher than the standard (0.20 mg/L) in all of the treated waters. Re-aeration and stirring of the treated water did not oxidize soluble manganese, and this caused the poor removal rates for manganese. Bench-scale dual-media filters comprising anthracite on top of sand/ceramic layers with dosages of poly aluminum chloride and chlorine worked well by removing coagulated iron in the anthracite layer and then removing manganese in the sand/ceramic layers. A manganese-oxide-coated ceramic filter provided the highest manganese removal from 1.10 mg/L to <0.01 mg/L, followed by manganese-oxide-coated sand and quartz sand. Increasing the pH from 7.5 to 9.0 stabilized the manganese removal. Therefore, we propose a re-design of the present treatment processes and the selection of suitable filter media for better removal of iron and manganese. Full article
Show Figures

Graphical abstract

14 pages, 3006 KiB  
Article
Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water
by Jiaoying Luo, Yaru Zhang, Hailin Chang, Chenghai Lin, Yating Hu, Haochun Wang, Yanrui Wang and Xiaobin Tang
Water 2024, 16(17), 2374; https://doi.org/10.3390/w16172374 - 23 Aug 2024
Cited by 3 | Viewed by 1469
Abstract
Manganese pollution in surface water has been a new concern in decentralized drinking water treatment. The dissolved manganese cannot be effectively removed by the traditional ultrafiltration (UF) process, but will cause severe membrane fouling. To address such issues, an innovative gravity-driven membrane (GDM) [...] Read more.
Manganese pollution in surface water has been a new concern in decentralized drinking water treatment. The dissolved manganese cannot be effectively removed by the traditional ultrafiltration (UF) process, but will cause severe membrane fouling. To address such issues, an innovative gravity-driven membrane (GDM) coupled with a dynamic manganese oxide (MnOx) film on the membrane surface was proposed, with hopes of enhancing manganese removal and alleviating membrane fouling. The results demonstrated that pre-coating a dynamic MnOx film on the membrane surface of a GDM system would effectively reduce start-up time for removing iron and manganese pollutants, without affecting the flux stabilization of the GDM. Effective manganese removal (~80%) primarily depended on the adsorption and auto-catalytic oxidation facilitated by the pre-coating of MnOx. Furthermore, the MnOx film notably enhanced organic pollutant removal efficiency. Additionally, the MnOx coated on the membrane surface acted as a skeleton, promoting the gradual formation of a biocake layer with a heterogeneous and porous structure, which benefited the flux stabilization of the GDM. In particular, the fine and homogeneous MnOx-M derived from the backflushing water of the mature manganese sand filter exhibited precise and uniform coating on the membrane surface, effectively mitigating the irreversible pore plugging caused by organic matter penetration and thereby enhancing stable flux by ~16.3% compared to the control. This study offered a novel strategy to enhance the purification efficiency of GDM system treating manganese pollution and was expected to contribute to the technological advancement of decentralized water supply scenarios. Full article
(This article belongs to the Special Issue Application of Membrane-Based Technology in Water Treatment)
Show Figures

Figure 1

18 pages, 4167 KiB  
Article
Defluoridation of Water Using Cu-Mg-Binary-Metal-Oxide-Coated Sand
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Water 2024, 16(15), 2178; https://doi.org/10.3390/w16152178 - 1 Aug 2024
Cited by 1 | Viewed by 1462
Abstract
Defluoridation of water was evaluated using a copper–magnesium (Cu-Mg) coated sand (CMCS) as a sustainable adsorbent containing binary metal oxides. The CMCS sorbent coating contained mostly amorphous copper and magnesium oxides in the Cu-Mg coating on the crystalline sand surface. Pseudo-second-order kinetics was [...] Read more.
Defluoridation of water was evaluated using a copper–magnesium (Cu-Mg) coated sand (CMCS) as a sustainable adsorbent containing binary metal oxides. The CMCS sorbent coating contained mostly amorphous copper and magnesium oxides in the Cu-Mg coating on the crystalline sand surface. Pseudo-second-order kinetics was observed where most fluoride was removed rapidly within an hour. Favorable adsorption occurred according to the Langmuir and Freundlich adsorption equations, while physisorption occurred according to the Dubinin–Radushkevich (D-R) adsorption equation. The adsorption capacity of the CMCS sorbent based on sorbent surface was similar to various other adsorbents with larger adsorbent surface areas, likely due to the efficacy of the Cu-Mg coating despite the CMCS sorbent’s much smaller surface area. Fluoride was adsorbed effectively from pH 3 to pH 11 through adsorption of anionic fluoride onto the CMCS sorbent’s protonated surface with a pHPZC of 10.5, indicative of electrostatic attraction as the main adsorption mechanism. The CMCS sorbent’s re-coating was conducive to successful recycling and reuse of the CMCS sorbent as a sustainable adsorbent for water defluoridation. Full article
Show Figures

Figure 1

19 pages, 4852 KiB  
Article
Adsorption of Fluoride from Water Using Aluminum-Coated Silica Adsorbents: Comparison of Silica Sand and Microcrystalline Silica
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Separations 2024, 11(4), 125; https://doi.org/10.3390/separations11040125 - 19 Apr 2024
Cited by 2 | Viewed by 2242
Abstract
Two aluminum-coated silica adsorbents were evaluated using silica sand and microcrystalline silica as aluminum-oxide-based adsorbents with different crystalline silica base materials. The aluminum coating contained mainly amorphous aluminum oxides for both aluminum-coated silica adsorbents. The adsorption of fluoride onto both adsorbents was favorable [...] Read more.
Two aluminum-coated silica adsorbents were evaluated using silica sand and microcrystalline silica as aluminum-oxide-based adsorbents with different crystalline silica base materials. The aluminum coating contained mainly amorphous aluminum oxides for both aluminum-coated silica adsorbents. The adsorption of fluoride onto both adsorbents was favorable according to the Langmuir and Freundlich adsorption equations, while the physical adsorption of fluoride occurred for both adsorbents according to the Dubinin–Raduskevish (D-R) equation. The adsorption of fluoride was stronger for aluminum-coated silica sand based on adsorption parameters from the Langmuir, Freundlich, and D-R adsorption equations, with the stronger binding of fluoride likely due to the observed greater specific adsorption. The adsorption capacity determined using the Langmuir equation was about 7 times greater for aluminum-coated microcrystalline silica primarily due to the 1.22-orders-of-magnitude-larger surface area of aluminum-coated microcrystalline silica, whereas the surface-normalized adsorption capacity was 2.4 times greater for aluminum-coated silica sand, possibly due to more aluminum being present on the surface of silica sand. Fluoride adsorption occurred over a broad pH range from 3 to 10 for both adsorbents, with nearly the same pHPZC of 9.6, while aluminum-coated microcrystalline silica displayed a higher selectivity for fluoride adsorption from different natural water sources. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

18 pages, 5428 KiB  
Article
Polyolefin Pyrolysis in Multilayer Fluidized Beds: An Innovative Approach to Obtain Valuable Alternative Fuels
by Witold Żukowski, Krystian Leski, Gabriela Berkowicz-Płatek and Jan Wrona
Energies 2024, 17(5), 1034; https://doi.org/10.3390/en17051034 - 22 Feb 2024
Cited by 2 | Viewed by 1811
Abstract
This paper presents the application of two versions of the multilayer fluidized bed made out of two materials with significantly different densities. The first type of fluidized bed was composed of raw cenospheres and quartz sand. The second type of fluidized bed was [...] Read more.
This paper presents the application of two versions of the multilayer fluidized bed made out of two materials with significantly different densities. The first type of fluidized bed was composed of raw cenospheres and quartz sand. The second type of fluidized bed was composed of cenospheres coated with iron oxides and quartz sand. A variable vertical density profiles in the prepared fluidized beds were confirmed, making them suitable for processing polymeric materials, specifically, polyolefins with a density below 1 g/cm3. The polyolefin pyrolysis process was investigated in both versions of the fluidized bed at temperatures of 520, 540, 560, and 590 °C. The products of the pyrolysis were monitored using high-resolution infrared spectroscopy (with a resolution of 1 cm−1). While the process is organized in these fluidized beds, the absence of the accumulation of solid residues is notable. The results show that the pyrolytic gaseous mixture is composed of numerous compounds, namely, unsaturated and saturated aliphatic hydrocarbons and benzene. The possibility of producing a gas rich in ethylene, propylene, and 1-butene during the pyrolysis was demonstrated. Additionally, during the pyrolysis of both polymers, the production of benzene was shown with yields, ranging from 5%wt. in the fluidized bed made out of raw cenospheres to 11 %wt. in the fluidized bed made out of cenospheres modified by iron oxides. Due to the complex nature of the resulting pyrolytic gas, it is suggested that we process the created gaseous mixtures entirely in a steam conversion process, making them a potential source of hydrogen. Full article
(This article belongs to the Collection Energy-Efficient Chemistry)
Show Figures

Figure 1

15 pages, 7665 KiB  
Article
Study on the Influence of Surface Treatment Process on the Corrosion Resistance of Aluminum Alloy Profile Coating
by Lei Fan, Fatao Wang, Zhouhui Wang, Xuelong Hao, Neng Yang and Denglin Ran
Materials 2023, 16(17), 6027; https://doi.org/10.3390/ma16176027 - 1 Sep 2023
Cited by 10 | Viewed by 2305
Abstract
This work focuses on different surface treatment processes of the 6061 aluminum alloy profile coatings in the construction industry, mainly including the sand powder film coating, the flat powder coating, the hard anodized film, and the ordinary heat-sealing oxidized coating. The corrosion resistance [...] Read more.
This work focuses on different surface treatment processes of the 6061 aluminum alloy profile coatings in the construction industry, mainly including the sand powder film coating, the flat powder coating, the hard anodized film, and the ordinary heat-sealing oxidized coating. The corrosion resistance of the coated aluminum alloy in a 3.5 wt.% NaCl solution (pH 6.5–7.5) and the influence of different surface treatment processes on the corrosion resistance of different samples were studied by scanning electron microscope (SEM) and electrochemical workstation. The result shows that with the increase in corrosion time, the corrosion inhibition performance of the four coated aluminum alloy materials decreased significantly, and the order of decline is: sand powder film coating > hard anodized film > flat powder coating > ordinary heat-sealing oxidized coating. When corroded in a 3.5 wt.% NaCl solution for 2 h, the corrosion inhibition performances of the flat powder coating and ordinary heat-sealing oxidized coating are poor, while the inhibition performances of the sand powder film coating and hard anodized film are good, and the inhibition performance follows the following sequence: the sand powder film coating > hard anodized film> the flat powder coating > ordinary heat-sealing oxidized coating. When corroded in a 3.5 wt.% NaCl solution for 200 h, the corrosion inhibition performances of the sand powder film coating and the flat powder coating are poor, while the inhibition performances of hard anodized film and ordinary heat-sealing oxidized coating are good, and the inhibition performance follows the following sequence: hard anodized film > ordinary heat-sealing oxidized coating > the sand powder film coating > the flat powder coating. Full article
Show Figures

Figure 1

11 pages, 1783 KiB  
Article
Additional Treatment of Nitrogen and Phosphorus Using Natural Materials in Small-Scale Domestic Wastewater Treatment Unit
by Aušra Mažeikienė and Julita Šarko
Water 2023, 15(14), 2607; https://doi.org/10.3390/w15142607 - 18 Jul 2023
Cited by 6 | Viewed by 4352
Abstract
The conventional wastewater treatment methods only remove up to 80% of total nitrogen (N) or phosphorus (P) from wastewater, so additional facilities are needed. This article describes a newly created other wastewater treatment unit (NCU) that increases the effectiveness of P and N [...] Read more.
The conventional wastewater treatment methods only remove up to 80% of total nitrogen (N) or phosphorus (P) from wastewater, so additional facilities are needed. This article describes a newly created other wastewater treatment unit (NCU) that increases the effectiveness of P and N removal of the small-scale biological wastewater treatment plant. This work aims to evaluate the capacity of simultaneous elimination from wastewater nitrogen (NH4-N, NO3-N) and phosphorus (PO4-P) by adsorption. NCU was filled with the sorbent material zeolite (clinoptilolite) and OCS (Fe, Mn, Ca oxides coated sand). After treatment in the main plant, wastewater flows through the NCU without using electric power. A compact system consisting of a main treatment plant and the NCU worked for 4 months, as the harmonized European Standard EN 12566-7 recommended. The NCU unit reduced PO4-P, NH4-N, and NO3-N concentrations in the effluent (74–98%, 52–99%, and 50–98%, respectively). In general, the small-scale system treated wastewater did not contain more than 1 mg/L phosphorus concentration and not more than 10 mg/L nitrogen concentration. This study demonstrates that treatment in NCU is an ecological and environmentally friendly method suitable for decentralized wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 3737 KiB  
Article
Prototype Experiments Assessing Arsenic and Iron Removal Efficiencies through Adsorption Using Natural Skye Sand
by Shahnoor Alam Khan and Monzur Alam Imteaz
Water 2023, 15(4), 785; https://doi.org/10.3390/w15040785 - 17 Feb 2023
Cited by 1 | Viewed by 2465
Abstract
Based on earlier batch and column experimental results, it was established that Skye sand is suitable for removing arsenic from water through adsorption. As a real-size prototype may not always replicate results from batch and column experiments, this paper presents experimental results on [...] Read more.
Based on earlier batch and column experimental results, it was established that Skye sand is suitable for removing arsenic from water through adsorption. As a real-size prototype may not always replicate results from batch and column experiments, this paper presents experimental results on arsenic removal through a prototype arsenic filter using the same Skye sand used in the batch and column experiments. As arsenic-contaminated water is often associated with a high concentration of iron, which causes blockage of the filter system, this study also investigates the removal of iron from the water through the same filter media. First, several physical properties of the Skye sand were established through XRF, XRD, SEM and EDX analyses. Then, a real-size prototype was made based on an earlier design of a similar filter made of iron oxide-coated sand (IOCS). It was found that the current filter is capable of removing arsenic consistently to a level below the detection limit (0.05 µg/L) for a considerable period (up to 150 bed volumes). Additionally, the same filter is capable of removing iron to a level below the WHO-acceptable limit (0.3 mg/L). Analytical calculation suggests that the current prototype filter with Skye sand can produce arsenic-free water continuously for 600 days (100 L per day) with a feed arsenic concentration of 500 µg/L. Full article
(This article belongs to the Special Issue Water, Waste and Wastewater: Treatment and Resource Recovery)
Show Figures

Figure 1

16 pages, 5987 KiB  
Article
Durable Superhydrophobic Coatings on Tungsten Surface by Nanosecond Laser Ablation and Fluorooxysilane Modification
by Ekaterina A. Kuzina, Kirill A. Emelyanenko, Maria A. Teplonogova, Alexandre M. Emelyanenko and Ludmila B. Boinovich
Materials 2023, 16(1), 196; https://doi.org/10.3390/ma16010196 - 26 Dec 2022
Cited by 4 | Viewed by 2415
Abstract
Tungsten is an attractive material for a variety of applications, from constructions in high-temperature vacuum furnaces to nontoxic shields for nuclear medicine, because of its distinctive properties, such as high thermal conductivity, high melting point, high hardness and high density. At the same [...] Read more.
Tungsten is an attractive material for a variety of applications, from constructions in high-temperature vacuum furnaces to nontoxic shields for nuclear medicine, because of its distinctive properties, such as high thermal conductivity, high melting point, high hardness and high density. At the same time, the areas of the applicability of tungsten, to a large extent, are affected by the formation of surface oxides, which not only strongly reduce the mechanical properties, but are also prone to easily interacting with water. To alleviate this shortcoming, a series of superhydrophobic coatings for the tungsten surface was elaborated using the method of nanosecond laser treatment followed by chemical vapor deposition of hydrophobic fluorooxysilane molecules. It is shown that the durability of the fabricated coatings significantly depends on surface morphology and composition, which in turn can be effectively controlled by adjusting the parameters of the laser treatment. The coating prepared with optimized parameters had a contact angle of 172.1 ± 0.5° and roll-off angle of 1.5 ± 0.4°, and preserved their high superhydrophobic properties after being subjected to oscillated sand abrasion for 10 h, continuous contact with water droplets for more than 50 h, and to several cycles of the falling sand test. Full article
Show Figures

Figure 1

20 pages, 4168 KiB  
Article
Kinetic and Equilibrium Isotherm Studies for the Removal of Tetracycline from Aqueous Solution Using Engineered Sand Modified with Calcium Ferric Oxides
by Osamah Al-Hashimi, Khalid Hashim, Edward Loffill, Ismini Nakouti, Ayad A. H. Faisal and Tina Marolt Čebašek
Environments 2023, 10(1), 7; https://doi.org/10.3390/environments10010007 - 25 Dec 2022
Cited by 11 | Viewed by 3567
Abstract
The novel aspect of this research is the fabrication, characterisation, and application of an engineered adsorbent made from quartz sand coated with calcium ferric oxides (QS/CFO) derived from the wastepaper sludge ash (WPSA) for the removal of tetracycline (TC) from synthetic water. Initially, [...] Read more.
The novel aspect of this research is the fabrication, characterisation, and application of an engineered adsorbent made from quartz sand coated with calcium ferric oxides (QS/CFO) derived from the wastepaper sludge ash (WPSA) for the removal of tetracycline (TC) from synthetic water. Initially, the new adsorbent was fabricated using a Ca/Fe molar ratio, sand/FeCl3 ratio, pH (of synthesising environment), ethylene glycol dose, and temperature of 1:0.75, 1:1, 12, 6 mL/100 mL, and 95 °C, respectively. Then, the new adsorbent was applied to treat water having 50 mg/L of TC in batch experiments, taking into account the effects of the contact time (0–180 min), pH of water (2–12), the dose of adsorbent (0.05–0.5 g), and agitation speed (0–250 rpm). The results obtained proved the engineered adsorbent can remove as much as 90% of the TC (adsorption capacity of 21.96 mg/g) within 180 min at an initial pH, adsorbent dosage, and agitation speed of 7, 0.3 g per 50 mL, and 200 rpm, respectively. It was also found that the pseudo-second-order model describes the kinetic measurements better than the pseudo-first-order model, which indicates that the TC molecules have been bonded with the prepared sorbent through chemical forces. Furthermore, the intra-particle diffusion model results demonstrated that the diffusion mechanism plays a significant role in TC adsorption; however, it was not the predominant one. Finally, the outcomes of the characterisation analysis proved that the newly formed layer on the quartz sand substantially contributed to the removal of the TC from the contaminated water. Full article
(This article belongs to the Special Issue Recent Advances in Technologies for Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop