Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Feed Water
2.2. Experimental Materials
2.3. Experimental Setup
2.4. Characterization and Analysis
3. Results and Discussion
3.1. Removal Performance of Iron and Manganese
3.1.1. Iron Removal
3.1.2. Manganese Removal
3.2. Removal of Organic Pollutants
3.3. Flux Development of GDM Process
3.4. Structure of GDM Biocake Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Earle, M.R.; Stoddart, A.K.; Gagnon, G.A. Raw water biofiltration for surface water manganese control. Sci. Rep. 2023, 13, 9020. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Singh, A.K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. J. Hazard. Mater. 2014, 265, 305–314. [Google Scholar] [CrossRef] [PubMed]
- McCormick, N.E.; Earle, M.; Ha, C.; Hakes, L.; Evans, A.; Anderson, L.; Stoddart, A.K.; Langille, M.G.I.; Gagnon, G.A. Biological and physico-chemical mechanisms accelerating the acclimation of Mn-removing biofilters. Water Res. 2021, 207, 117793. [Google Scholar] [CrossRef]
- Superville, P.-J.; Ivanovsky, A.; Bhurtun, P.; Prygiel, J.; Billon, G. Diel cycles of reduced manganese and their seasonal variability in the Marque River (northern France). Sci. Total Environ. 2018, 624, 918–925. [Google Scholar] [CrossRef]
- Tang, X.; Wang, J.; Zhang, H.; Yu, M.; Guo, Y.; Li, G.; Liang, H. Respective role of iron and manganese in direct ultrafiltration: From membrane fouling to flux improvements. Sep. Purif. Technol. 2021, 259, 118174. [Google Scholar] [CrossRef]
- Dion, L.-A.; Bouchard, M.F.; Sauve, S.; Barbeau, B.; Tucholka, A.; Major, P.; Gilbert, G.; Mergler, D.; Saint-Amour, D. MRI pallidal signal in children exposed to manganese in drinking water. Neurotoxicology 2016, 53, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Goher, M.E.; Khedr, A.I. Novel Combined Toxicity Indices (CTI) to assess the ecological risk of metals in sediments dependent on fractions and total metal content, application on Qarun Lake sediment, case study. Water Cycle 2024, 5, 59–75. [Google Scholar] [CrossRef]
- Hoyland, V.W.; Knocke, W.R.; Falkinham, J.O., III; Pruden, A.; Singh, G. Effect of drinking water treatment process parameters on biological removal of manganese from surface water. Water Res. 2014, 66, 31–39. [Google Scholar] [CrossRef]
- Li, G.; Ma, X.; Chen, R.; Yu, Y.; Tao, H.; Shi, B. Field studies of manganese deposition and release in drinking water distribution systems: Insight into deposit control. Water Res. 2019, 163, 114897. [Google Scholar] [CrossRef]
- Zheng, X.-w.; Fang, Y.-y.; Lin, J.-j.; Luo, J.-j.; Li, S.-j.; Aschner, M.; Jiang, Y.-m. Signal Transduction Associated with Mn-induced Neurological Dysfunction. Biol. Trace Elem. Res. 2023, 202, 4158–4169. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, S.; Huang, T.; Cheng, L.; Yao, X. Effects of coagulants on the catalytic properties of iron-manganese co-oxide filter films for ammonium and manganese removal from surface water. J. Clean. Prod. 2020, 242, 118494. [Google Scholar] [CrossRef]
- Cerrato, J.M.; Falkinham, J.O., III; Dietrich, A.M.; Knocke, W.R.; McKinney, C.W.; Pruden, A. Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems. Water Res. 2010, 44, 3935–3945. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, X.; Wang, Y.; Wen, X.; Chang, H.; Wang, J.; Li, G.; Liang, H.; Tang, X. NaClO-based rapid sand filter in treating manganese-containing surface water: Fast ripening and mechanism. J. Environ. Chem. Eng. 2023, 11, 109082. [Google Scholar] [CrossRef]
- Bruins, J.H.; Petrusevski, B.; Siokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, L.C.; Kennedy, M.D. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. Water Res. 2015, 69, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, R.; Huang, T.; Wen, G. The simultaneous removal of ammonium and manganese from surface water by MeOx: Side effect of ammonium presence on manganese removal. J. Environ. Sci. 2019, 77, 346–353. [Google Scholar] [CrossRef]
- Chang, H.; Sun, W.; Wang, Y.; Jiang, S.; Wang, J.; Liang, H.; Li, G.; Tang, X. Effects of organics concentration on the gravity-driven membrane (GDM) filtration in treating iron- and manganese-containing surface water. Water Res. 2022, 226, 119223. [Google Scholar] [CrossRef]
- Long, Y.; Yu, G.; Dong, L.; Xu, Y.; Lin, H.; Deng, Y.; You, X.; Yang, L.; Liao, B.-Q. Synergistic fouling behaviors and mechanisms of calcium ions and polyaluminum chloride associated with alginate solution in coagulation-ultrafiltration (UF) process. Water Res. 2021, 189, 116665. [Google Scholar] [CrossRef]
- Choo, K.H.; Lee, H.; Choi, S.J. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. J. Membr. Sci. 2005, 267, 18–26. [Google Scholar] [CrossRef]
- Ma, B.; Xue, W.; Bai, Y.; Liu, R.; Chen, W.; Liu, H.; Qu, J. Enhanced alleviation of ultrafiltration membrane fouling by regulating cake layer thickness with pre-coagulation during drinking water treatment. J. Membr. Sci. 2020, 596, 117732. [Google Scholar] [CrossRef]
- Tang, X.; Qiao, J.; Wang, J.; Huang, K.; Guo, Y.; Xu, D.; Li, G.; Liang, H. Bio-cake layer based ultrafiltration in treating iron-and manganese-containing groundwater: Fast ripening and shock loading. Chemosphere 2021, 268, 128842. [Google Scholar] [CrossRef]
- Ke, Z.; Liang, H.; Sun, Y.; Wang, T.; Luo, J.; Tang, Y.; Li, G.; Tang, X.; Wang, J. Permanganate-assisted pilot-scale gravity-driven membrane (GDM) filtration in treating Mn(II)-containing groundwater: Fast startup and mechanism. J. Environ. Chem. Eng. 2024, 12, 112073. [Google Scholar] [CrossRef]
- Feng, J.; Liu, Z.; Zhou, Z.; Ren, J.; Yang, Y.; Li, X.; Tan, X. Oxidants-assisted gravity-driven membrane (GDM) process for manganese removal from surface water: Rapid maturation and manganese oxide regulation. J. Water Process Eng. 2023, 56, 104452. [Google Scholar] [CrossRef]
- Ye, X.; Nan, J.; Ge, Z.; Xiao, Q.; Liu, B.; Chen, M.; Wu, F. Unexpected iron-enhanced water flux and pollutant removal by low-pressure ultrafiltration. J. Membr. Sci. 2023, 679, 121708. [Google Scholar] [CrossRef]
- Pronk, W.; Ding, A.; Morgenroth, E.; Derlon, N.; Desmond, P.; Burkhardt, M.; Wu, B.; Fane, A.G. Gravity-driven membrane filtration for water and wastewater treatment: A review. Water Res. 2019, 149, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.B.; Cheng, X.X.; Zhu, X.W.; Xie, B.H.; Guo, Y.Q.; Wang, J.L.; Ding, A.; Li, G.B.; Liang, H. Ultra-low pressure membrane-based bio-purification process for decentralized drinking water supply: Improved permeability and removal performance. Chemosphere 2018, 211, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, X.; Yang, Y.; Fan, X.; Zhou, Z.; Ren, J.; Tan, X.; Li, H. Insight into biofouling mechanism in biofiltration-facilitated gravity-driven membrane (GDM) system: Beneficial effects of pre-deposited adsorbents. J. Membr. Sci. 2022, 662, 121017. [Google Scholar] [CrossRef]
- Derlon, N.; Mimoso, J.; Klein, T.; Koetzsch, S.; Morgenroth, E. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration. Water Res. 2014, 60, 164–173. [Google Scholar] [CrossRef]
- Chen, R.; Hu, L.; Zhang, H.; Lin, D.; Wang, J.; Xu, D.; Gong, W.; Liang, H. Toward emerging contaminants removal using acclimated activated sludge in the gravity-driven membrane filtration system. J. Hazard. Mater. 2022, 438, 129541. [Google Scholar] [CrossRef]
- Ding, A.; Song, R.; Cui, H.; Cao, H.; Ngo, H.H.; Chang, H.; Nan, J.; Li, G.; Ma, J. Presence of powdered activated carbon/zeolite layer on the performances of gravity-driven membrane (GDM) system for drinking water treatment: Ammonia removal and flux stabilization. Sci. Total Environ. 2021, 799, 149415. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, X.; Huang, K.; Wang, J.; Guo, Y.; Xie, B.; Li, G.; Liang, H. Can ultrafiltration singly treat the iron- and manganese-containing groundwater? J. Hazard. Mater. 2021, 409, 124983. [Google Scholar] [CrossRef]
- Wang, R.; Hu, H.; Shi, D.; Liang, J.; Shao, S. Mechanism of Mn(II) removal by the cake layer containing biogenic manganese oxides in a flow-through mode: Biological or chemical catalysis? Sep. Purif. Technol. 2024, 330, 125214. [Google Scholar] [CrossRef]
- Ye, X.; Nan, J.; Ge, Z.; Xiao, Q.; Liu, B.; Men, Y.; Liu, J. Simultaneous removal of iron, manganese, and ammonia enhanced by preloaded MnO2 on low-pressure ultrafiltration membrane. J. Membr. Sci. 2022, 656, 120641. [Google Scholar] [CrossRef]
- Feng, C.-L.; Liu, C.; Yu, M.-Y.; Chen, S.-Q.; Mehmood, T. Removal performance and mechanism of the dissolved manganese in groundwater using ultrafiltration coupled with HA complexation. J. Environ. Chem. Eng. 2022, 10, 108931. [Google Scholar] [CrossRef]
- Tang, X.B.; Xie, B.H.; Chen, R.; Wang, J.L.; Huang, K.J.; Zhu, X.W.; Li, G.B.; Liang, H. Gravity-driven membrane filtration treating manganese-contaminated surface water: Flux stabilization and removal performance. Chem. Eng. J. 2020, 397, 125248. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, T.; Liu, C.; Zhang, S. Effects of dissolved oxygen on the start-up of manganese oxides filter for catalytic oxidative removal of manganese from groundwater. Chem. Eng. J. 2019, 371, 88–95. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, T.; Cheng, L.; Sun, Y.; Zhu, L.; Li, Y. Structural characteristic and ammonium and manganese catalytic activity of two types of filter media in groundwater treatment. J. Environ. Sci. 2018, 72, 89–97. [Google Scholar] [CrossRef]
- Sun, S.; Song, S.; Yang, S.; He, Y.L.; Shi, Y.; Zhou, P.; Xiong, Z.K.; Liu, Y.; Zhang, H.; Du, Y.; et al. Manganese oxide and derivative-modified materials in advanced oxidation processes: A review of modification enhancement and activation mechanisms. Chin. Chem. Lett. 2024, 35, 109242. [Google Scholar] [CrossRef]
- Shao, S.; Feng, Y.; Yu, H.; Li, J.; Li, G.; Liang, H. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system. Water Res. 2017, 108, 240–249. [Google Scholar] [CrossRef]
- Chomiak, A.; Traber, J.; Morgenroth, E.; Derlon, N. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration. Water Res. 2015, 85, 512–520. [Google Scholar] [CrossRef]
- Akhondi, E.; Wu, B.; Sun, S.; Marxer, B.; Lim, W.; Gu, J.; Liu, L.; Burkhardt, M.; McDougald, D.; Pronk, W.; et al. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization. Water Res. 2015, 70, 158–173. [Google Scholar] [CrossRef]
- Chomiak, A.; Mimoso, J.; Koetzsch, S.; Sinnet, B.; Pronk, W.; Derlon, N.; Morgenroth, E. Biofilm formation and permeate quality improvement in Gravity Driven Membrane ultrafiltration. Water Sci. Technol.-Water Supply 2014, 14, 274–282. [Google Scholar] [CrossRef]
- Li, K.; Xu, W.; Han, M.; Cheng, Y.; Wen, G.; Huang, T. Integration of iron-manganese co-oxide (FMO) with gravity-driven membrane (GDM) for efficient treatment of surface water containing manganese and ammonium. Sep. Purif. Technol. 2022, 282, 119977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhang, Y.; Chang, H.; Lin, C.; Hu, Y.; Wang, H.; Wang, Y.; Tang, X. Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water. Water 2024, 16, 2374. https://doi.org/10.3390/w16172374
Luo J, Zhang Y, Chang H, Lin C, Hu Y, Wang H, Wang Y, Tang X. Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water. Water. 2024; 16(17):2374. https://doi.org/10.3390/w16172374
Chicago/Turabian StyleLuo, Jiaoying, Yaru Zhang, Hailin Chang, Chenghai Lin, Yating Hu, Haochun Wang, Yanrui Wang, and Xiaobin Tang. 2024. "Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water" Water 16, no. 17: 2374. https://doi.org/10.3390/w16172374
APA StyleLuo, J., Zhang, Y., Chang, H., Lin, C., Hu, Y., Wang, H., Wang, Y., & Tang, X. (2024). Manganese Oxide Enhanced Gravity-Driven Membrane (GDM) Filtration in Treating Iron- and Manganese-Containing Surface Water. Water, 16(17), 2374. https://doi.org/10.3390/w16172374