Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (677)

Search Parameters:
Keywords = oxidation weight gain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 306
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

11 pages, 432 KiB  
Article
Impact of Capsaicinoid Supplementation in Health and Performance of Broiler Chickens Subjected to Lipopolysaccharide Challenge
by Rayanne A. Nunes, Kelly M. M. Dias, Marcio S. Duarte, Claudson O. Brito, Ricardo V. Nunes, Tiago G. Petrolli, Samuel O. Borges, Larissa P. Castro, Beatriz G. Vale and Arele A. Calderano
Animals 2025, 15(15), 2203; https://doi.org/10.3390/ani15152203 - 26 Jul 2025
Viewed by 323
Abstract
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly [...] Read more.
This study investigated the effects of dietary capsaicinoid (CAP) supplementation on broiler chickens subjected to an inflammatory challenge induced by lipopolysaccharide (LPS). A total of 144 Cobb500™ male broilers (Rivelli Alimentos SA, Matheus Leme, Brazil), raised from 1 to 21 days, were randomly assigned to three treatments, with eight replicates of six birds. Treatments were a control diet (CON), a control diet with LPS administration (CON+LPS), and a control diet supplemented with 1 mg CAP/kg feed and LPS (CAP+LPS). LPS was administered intraperitoneally on days 14, 16, 18, and 20. Performance, intestinal morphometry, serum metabolites, and jejunal gene expression related to oxidative and inflammatory responses were evaluated. Slaughter was at 20 days. Data were subjected to ANOVA and means compared by Tukey’s test at 0.05 significance. CON broilers exhibited the highest feed intake and a better feed conversion ratio (p < 0.05) compared to CON+LPS. CAP+LPS broilers showed higher body weight gain than CON+LPS but lower than CON broilers (p < 0.001). CON+LPS broilers had the highest crypt depth (p = 0.002). Higher mRNA expression of superoxide dismutase and catalase (p > 0.05) was observed in CON broilers. In conclusion, supplementation with a 1 mg CAP/kg diet improves the growth performance and intestinal morphometry of LPS-challenged broiler chickens. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

16 pages, 1501 KiB  
Article
Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
by Jiajie Wang, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang and Zhaoyu Han
Animals 2025, 15(15), 2167; https://doi.org/10.3390/ani15152167 - 23 Jul 2025
Viewed by 252
Abstract
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to [...] Read more.
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to 9 months old) and body weight (370 ± 10 kg) were randomly divided into two groups, each containing 15 animals. A control group was fed the basal diet, and a treatment group was fed the same basal diet with the addition of 4 g/kg of thermally modified attapulgite. After 75 days of formal experiment, the calves in the two groups were weighed, and blood samples were collected by tail vein blood sampling for determinations of the serum biochemical indices and serum metabolites using liquid chromatography–mass spectrometry (LC-MS) analysis. The results indicated that the addition of thermally modified attapulgite to the diet had no significant effects on the daily weight gain of fattening beef cattle. After feeding with modified attapulgite, the glutathione peroxidase and superoxide dismutase activities in the serum of the experimental group were 55.02% (257.26 U·mL−1 to 165.95 U·mL−1, p < 0.05) and 13.11% (18.98 U·mL−1 to 16.78 U·mL−1, p < 0.05) higher than that in the control group. Compared with the control group, the tumor necrosis factor-alpha content was reduced by 14.50% (31.27 pg·mL−1 to 36.57 pg·mL−1, p < 0.01), and the concentration of interleukin-6 and lipopolysaccharide decreased by 17.00% (34.33 pg·mL−1 to 41.36 pg·mL−1, p < 0.001) and 23.05% (51.34 EU·L−1 to 66.72 EU·L−1, p < 0.001) in the serum of the experimental group. Contrastingly, the thermally modified attapulgite had no significant effects on the levels of serum total protein, albumin, or globulin in Simmental fattening cattle (p > 0.05). Furthermore, the results of serum metabolomic analyses revealed that there were a total of 98 differential metabolites, which were mainly enriched with respect to glycerophospholipid metabolism, Th1 and Th2 cell differentiation, autophagy-other, retrograde endogenous cannabinoid signaling, and the NF-κB signaling pathway. Overall, thermally modified attapulgite was found to effectively increase the activity of antioxidant enzymes, reduce serum inflammatory mediators, may suppress oxidative damage, enhance immunity, and have a positive influence on the health of Simmental fattening beef calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 353
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

14 pages, 4114 KiB  
Article
Effect of Silica Sol on the Preparation and Oxidation Resistance of MoSi2@SiO2
by Linlin Guo, Jinjun Zhang, Chengpeng Miao, Shuang Feng, Xiaozhen Fan, Haiyan Du, Jiachen Liu and Mingchao Wang
Materials 2025, 18(13), 3203; https://doi.org/10.3390/ma18133203 - 7 Jul 2025
Viewed by 249
Abstract
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic [...] Read more.
The limited oxidation resistance of MoSi2 between 400 °C and 600 °C restricts its aerospace applications. This study develops a silica-sol derived core-shell MoSi2@SiO2 composite to enhance the low-temperature oxidation resistance of MoSi2. Acidic, neutral, and basic silica sols were systematically applied to coat MoSi2 powders through sol-adsorption encapsulation. Two pathways were used, one was ethanol-mediated dispersion, and the other was direct dispersion of MoSi2 particles in silica sol. Analysis demonstrated that ethanol-mediated dispersion significantly influenced the coating efficiency and oxidation resistance, exhibited significantly decreased coating weight gains (maximum 27%) and increased oxidation weight gains (10–20%) between 340 °C and 600 °C compared with direct dispersion of MoSi2 particles with silica sol, ascribe to the kinetic inhibition of hydroxyl group condensation and steric hindrance of MoSi2-silica sol interface interactions of ethanol. Systematic investigation of silica sol encapsulation of MoSi2 revealed critical correlations between colloid properties and oxidation resistance of MoSi2@SiO2. Basic silica sol coated MoSi2 (BS-MoSi2) exhibits the lowest coating efficiency (coating weight gain of 7.74 ± 0.06%) as well as lowest oxidation weight gain (18.45%) between 340 °C and 600 °C compared with those of acid and neutral silica sol coated MoSi2 (AS-MoSi2 and NS-MoSi2), arises from optimal gelation kinetics, enhanced surface coverage via reduced agglomeration, and suppressed premature nucleation through controlled charge interactions under alkaline conditions. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

20 pages, 2783 KiB  
Article
Dietary Tea Polyphenols Improve Growth Performance and Intestinal Microbiota Under Chronic Crowding Stress in Hybrid Crucian Carp
by Zhe Yang, Gege Sun, Jinsheng Tao, Weirong Tang, Wenpei Li, Zehong Wei and Qifang Yu
Animals 2025, 15(13), 1983; https://doi.org/10.3390/ani15131983 - 5 Jul 2025
Viewed by 385
Abstract
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group [...] Read more.
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group (44.4 fish/m3, basal diet without TPs) and four high-density crowding stress groups (222.2 fish/m3) were established, one fed the basal diet without TPs (CS) and three fed basal diets supplemented with 100 (CSLTP), 200 (CSMTP), or 400 (CSHTP) mg/kg TPs. We analyzed the impacts of TPs on growth performance, serum biochemical parameters, antioxidant capacity, expression of lipid metabolism-related genes, and intestinal microbiota composition. The results demonstrated that chronic crowding stress significantly suppressed the final body weight, weight gain rate, and specific growth rate of HCC2, while increasing serum lactate LDH, TG, and ALB and decreasing GLU, LDL-C, ALT, AST, and ALP levels. Dietary TPs supplementation enhanced antioxidant capacity (T-AOC, SOD, CAT, and GSH) and alleviated lipid metabolic disorders by activating the Nrf2/Keap1 and PPARα signaling pathways, thereby upregulating the expression of liver antioxidant genes (CAT and SOD) and fatty acid oxidation genes (CPT1 and acox1). Furthermore, intestinal microbiota analysis revealed that chronic crowding stress significantly increased the abundance of Proteobacteria and decreased the proportion of Firmicutes compared to the low-density control. Dietary TPs intervention, particularly at higher doses, partially restored the Firmicutes abundance and reduced the enrichment of potential pathogenic bacteria associated with stress. This study is the first to comprehensively elucidate the mechanism by which TPs alleviate crowding stress through enhanced antioxidant capacity, metabolic regulation, and microbiota remodeling, providing robust theoretical support for the application of plant-based additives in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 1721 KiB  
Article
Evaluating the Impact of Arginine-to-Lysine Ratios on Growth Performance, Antioxidant Defense, and Immune Modulation in Juvenile Largemouth Bass (Micropterus salmoides)
by Yulong Sun, Shuailiang Zhang, Xueyao Luan, Tao Liu, Jiale He, Jiteng Wang and Tao Han
Animals 2025, 15(13), 1947; https://doi.org/10.3390/ani15131947 - 2 Jul 2025
Viewed by 430
Abstract
This study examines the impact of the arginine/lysine ratio in feed on the growth, serum amino acids, arginine metabolism, and antioxidant capacity of juvenile largemouth bass (5.95 ± 0.02 g). Five isonitrogenous and isolipidic diets with varying arginine/lysine ratios were formulated and administered [...] Read more.
This study examines the impact of the arginine/lysine ratio in feed on the growth, serum amino acids, arginine metabolism, and antioxidant capacity of juvenile largemouth bass (5.95 ± 0.02 g). Five isonitrogenous and isolipidic diets with varying arginine/lysine ratios were formulated and administered over an eight-week period. The results indicated that the treatments had no significant effect on protein efficiency ratio (PER), daily feed intake (DFI), or morphological indices of juvenile largemouth bass (p > 0.05). When the arginine/lysine ratio was 0.85 (2.25/2.65; 2.54/3.00), liver antioxidant capacity was maximized, and inflammatory factors were suppressed. Conversely, a ratio of 2.25/2.99 significantly reduced weight gain (WG) and specific growth rate (SGR) in juvenile largemouth bass, inhibited arginase activity, and increased serum total nitric oxide synthase (T-NOS) activity. When lysine was in excess (2.25/2.99 group), elevating arginine content (2.54/3.00 group) enhanced growth, antioxidant, and immune performance. Analysis of glutathione metabolism and innate immune-related pathway revealed that an optimal arginine/lysine ratio mitigates inflammatory damage induced by oxidative stress. An arginine/lysine imbalance significantly elevated liver malondialdehyde (MDA) content while reducing total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) activities, and glutathione (GSH) content, thereby increasing the expression levels of inflammatory factors (IL1B, IL8, TGFB1, BAX). These findings demonstrate that an imbalance in arginine/lysine adversely affects the growth, metabolism, and antioxidant capacity of largemouth bass. When lysine is in excess, increasing the arginine content to achieve an arginine/lysine ratio of 0.85 alleviates the negative effects of antagonism, suggesting arginine supplementation may regulate oxidative damage caused by lysine excess. Full article
Show Figures

Figure 1

28 pages, 795 KiB  
Review
Efficacy of Feeding Grape By-Products on Performance, Nutrient Digestibility, Gut Morphology, Gut Microbial Community, Oxidative Stress and Immune Response in Fast-Growing Broilers
by Robert Ringseis, Klaus Eder and Denise K. Gessner
Animals 2025, 15(13), 1943; https://doi.org/10.3390/ani15131943 - 1 Jul 2025
Viewed by 403
Abstract
By-products from winemaking, such as grape pomace, grape seeds, grape skins, or extracts made from them, represent a cost-effective and sustainable bioresource. These by-products are a source of polyphenolic compounds, plant fibers and—in the case of seeds—essential fatty acids with various health-promoting effects [...] Read more.
By-products from winemaking, such as grape pomace, grape seeds, grape skins, or extracts made from them, represent a cost-effective and sustainable bioresource. These by-products are a source of polyphenolic compounds, plant fibers and—in the case of seeds—essential fatty acids with various health-promoting effects for livestock. Numerous studies involving fast-growing broiler breeds—which often suffer from metabolic inflammation and oxidative stress due to disproportionate breast muscle growth leading to issues like cardiorespiratory insufficiency—indicate that supplementing feed with grape by-products improves performance, particularly weight gain and feed efficiency. This literature review demonstrates that the performance-enhancing effects of grape by-products in fast-growing broiler breeds can be attributed to various mechanisms such as improved nutrient digestibility, a positive influence on intestinal morphology and integrity, the favorable modulation of the microbial community in the gut, the inhibition of oxidative stress or the enhancement of the antioxidant defense system, and the stimulation of the immune response. Full article
(This article belongs to the Special Issue Plant Extracts as Feed Additives in Animal Nutrition and Health)
Show Figures

Figure 1

16 pages, 3566 KiB  
Article
Effects of Dietary β-Carotene on the Gonadal Color, Pigmentation, and Regulation Mechanisms in Sea Urchin Strongylocentrotus Intermedius
by Weixiao Di, Yinuo Zhang, Huinan Zuo, Haijing Liu, Lina Wang, Jun Ding, Yaqing Chang and Rantao Zuo
Fishes 2025, 10(7), 304; https://doi.org/10.3390/fishes10070304 - 24 Jun 2025
Viewed by 370
Abstract
This study aims to clarify the dose–response relationship between dietary β-carotene levels and gonadal pigment deposition and regulation mechanisms related to the carotenoid synthesis of Strongylocentrotus intermedius based on a 60-day feeding trial and subsequent transcriptome analysis. Adult sea urchins (initial weight: 9.33 [...] Read more.
This study aims to clarify the dose–response relationship between dietary β-carotene levels and gonadal pigment deposition and regulation mechanisms related to the carotenoid synthesis of Strongylocentrotus intermedius based on a 60-day feeding trial and subsequent transcriptome analysis. Adult sea urchins (initial weight: 9.33 ± 0.21 g) of three cages were given one of the dry feeds with different doses of β-carotene (0 mg/kg, 150 mg/kg, 300 mg/kg) or fresh kelp (Saccharina japonica). The results indicated that the weight gain rate (WGR) of sea urchins increased with the addition of β-carotene, with that of the C300 group being markedly higher than that of the C0 group. The addition of β-carotene significantly improved the redness (a*) and yellowness (b*) values of the gonads, with sea urchins in the C300 group exhibiting closest gonad coloration to those in the kelp-fed group. Meanwhile, β-carotene and echinenone in the gonads of the C300 group showed the highest contents, reaching 1.96 μg/kg and 11.97 μg/kg, respectively. Several differential genes, enriched in the pathways of steroid biosynthesis, oxidative phosphorylation, and ubiquitination, were screened based on transcriptome analysis. Real-time PCR further demonstrated that β-carotene significantly upregulated the expression of cholesterol 25-hydroxylase (CH25H), NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 2 (ND2), and NADH dehydrogenase subunit 4 (ND4) while it downregulated the expression of 24-dehydrocholesterol reductase (DHCR24). These results showed that 300 mg/kg β-carotene significantly increased the WGR, redness, and yellowness values, as well as the contents of β-carotene and echinenone in the gonads of S. intermedius. On the one hand, dietary β-carotene increased NADH enzyme activity, which participates in echinenone synthesis by donating electrons for the transformation of β-carotene to echinenone synthesis. On the other hand, the addition of β-carotene inhibited cholesterol synthesis by increasing the expression of CH25H and decreasing the expression of DHCR24, which could in turn increase the fluidity and permeability of the cell membranes and the transport efficiency of β-carotene and echinenone from the digestive tract to the gonads. These results provided fundamental insights into the production of sea urchin gonads with market-favored colors. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Graphical abstract

24 pages, 3014 KiB  
Article
Tunable Intranasal Polymersome Nanocarriers Triggered Olanzapine Brain Delivery and Improved In Vivo Antipsychotic Activity
by Ahmed A. Katamesh, Hend Mohamed Abdel-Bar, Rania Mahafdeh, Mohammed Khaled Bin Break, Shimaa M. Hassoun, Gehad M. Subaiea, Mostafa E. El-Naggar, Khaled Almansour, Hadel A. Abo El-Enin and Heba A Yassin
Pharmaceutics 2025, 17(7), 811; https://doi.org/10.3390/pharmaceutics17070811 - 23 Jun 2025
Viewed by 512
Abstract
Background: Olanzapine (Ola) is a second-generation antipsychotic with clinical utility limited by poor brain bioavailability due to blood–brain barrier restriction, hepatic first-pass metabolism, and systemic side effects. This study aimed to develop and optimize a novel intranasal polymersome-based nanocarrier (PolyOla) [...] Read more.
Background: Olanzapine (Ola) is a second-generation antipsychotic with clinical utility limited by poor brain bioavailability due to blood–brain barrier restriction, hepatic first-pass metabolism, and systemic side effects. This study aimed to develop and optimize a novel intranasal polymersome-based nanocarrier (PolyOla) to enhance brain targeting, therapeutic efficacy, and safety of Ola. Methods: PolyOla was prepared using poloxamer 401 and optimized through a Box–Behnken Design to minimize particle size and maximize entrapment (EE%) and loading efficiency (LE%). The formulation was characterized by size, morphology, drug release, and serum stability. In vivo studies in adult male Sprague-Dawley rats assessed pharmacokinetics (plasma and brain concentrations), pharmacodynamic efficacy in a ketamine-induced schizophrenia model, and systemic safety markers including metabolic, hepatic, and testicular oxidative stress indicators. Results: Optimized PolyOla exhibited a particle size of 78.3 ± 4.5 nm, high EE% (91.36 ± 3.55%), and sustained in vitro drug release. It remained stable in serum for 24 h. Intranasal administration significantly improved brain delivery of Ola, achieving a 2.7-fold increase in Cmax and a 5.7-fold increase in AUC compared to oral dosing. The brain Tmax was 15 min, with high drug-targeting efficiency (DTE% = 365.38%), confirming efficient nose-to-brain transport. PolyOla-treated rats showed superior antipsychotic performance, reduced extrapyramidal symptoms, and improved systemic safety evidenced by mitigated weight gain, glycemic control, normalized liver enzymes, and reduced oxidative stress. Conclusions: PolyOla offers a safe and effective intranasal delivery platform for Ola, enabling targeted brain delivery and improved management of schizophrenia with reduced peripheral toxicity. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 562 KiB  
Article
Impact of Sucrose Consumption on the Metabolic, Immune, and Redox Profile of Mice with Gestational Diabetes Mellitus
by Cristian Ángel Rosales-Gómez, Beatriz Elina Martínez-Carrillo, Ana Laura Guadarrama-López, Aldo Arturo Reséndiz-Albor, Ivonne Maciel Arciniega-Martínez and Efrén Aguilar-Rodríguez
Life 2025, 15(7), 989; https://doi.org/10.3390/life15070989 - 20 Jun 2025
Viewed by 1145
Abstract
Carbohydrate consumption during pregnancy represents an important source of energy; its consumption, however, can cause gestational diabetes mellitus (GDM), body weight gain, inflammation, increased glucose transport to the fetus, adiposity, and a risk of macrosomia. The objective was to research the impact of [...] Read more.
Carbohydrate consumption during pregnancy represents an important source of energy; its consumption, however, can cause gestational diabetes mellitus (GDM), body weight gain, inflammation, increased glucose transport to the fetus, adiposity, and a risk of macrosomia. The objective was to research the impact of sucrose consumption during pregnancy on the metabolic, immune, and redox profile in female mice with GDM. A total of 24 female CD1 mice were used, divided into two groups: Control and GDM. Each group was subdivided into two subgroups: (a) Without sucrose and (b) With sucrose. The females were mated, and, once pregnancy was confirmed, GDM was induced by administering 230 mg/kg of streptozotocin subcutaneously. GDM was confirmed by glucose ≥ 200 mg/dL and the presence of polyphagia, polydipsia, and change in body weight. Metabolic, immune, and redox profile parameters were determined. Sucrose consumption groups increase HOMA-IR and the secretion of insulin, adiponectin, and leptin; it also increased the secretion of proinflammatory cytokines and the production of IgA and IgG antibodies, decreased the activity of the Glutathione Reductase enzyme, and increased the production of TBARS and AGE. High sucrose consumption increases the inflammatory response mediated mainly by CD8+ lymphocytes and the production of proinflammatory cytokines; it can trigger a compensatory humoral response and alter redox mechanisms, causing a state of Oxidant Stress. Full article
(This article belongs to the Special Issue Management of Patients with Diabetes)
Show Figures

Graphical abstract

16 pages, 1240 KiB  
Article
The Effect of Zinc Oxide Nanoparticles on the Quantitative and Qualitative Traits of Scutellaria baicalensis Georgi in In Vitro Culture
by Anna Krzepiłko, Roman Prażak, Agata Święciło and Jacek Gawroński
Int. J. Mol. Sci. 2025, 26(12), 5836; https://doi.org/10.3390/ijms26125836 - 18 Jun 2025
Viewed by 329
Abstract
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this [...] Read more.
Zinc oxide nanoparticles (ZnONPs) are increasingly used in agriculture to stimulate plant growth and development, including under in vitro culture conditions. However, there is limited data on the effects of ZnONPs on the micropropagation of Scutellaria baicalensis Georgi. The pharmacological properties of this species make it a valuable medicinal plant. In Poland, it does not occur naturally but is cultivated for the production of herbal material. In vitro micropropagation is an effective method for obtaining genetically uniform plantlets. The aim of this study was to evaluate the effects of various concentrations of ZnONPs on growth parameters and the content of mineral nutrients, phenolic compounds, antioxidants, and photosynthetic pigments in Scutellaria baicalensis cultured in vitro. Shoot tip explants were cultured on MS medium supplemented with 1.0 mg dm−3 BA and 0.1 mg dm−3 IBA, together with ZnONPs at concentrations of 0 (control), 10, 20, 30, and 40 mg dm−3. The results showed that ZnONPs at concentrations of 10–20 mg dm−3 had no statistically significant effect on shoot or root development or on fresh weight gain. However, higher concentrations (30 and 40 mg dm−3) had a significantly negative impact on the number and length of shoots and roots, as well as on biomass accumulation. ZnONPs at 10–20 mg dm−3 significantly increased the content of potassium, calcium, magnesium, iron, and zinc in regenerated multi-shoot plantlets. A strong positive correlation (r = 0.951) was observed between ZnONP concentration and zinc accumulation in the plantlets. The levels of manganese and copper were not significantly different from the control. Plantlets treated with 30–40 mg dm−3 ZnONPs had significantly lower levels of calcium, iron, manganese, and copper. Those grown at 30 mg dm−3 had the highest potassium and magnesium levels, while plantlets exposed to 40 mg dm−3 had the highest zinc content. The total phenolic content and antioxidant activity (measured using ABTS and DPPH assays) were significantly higher in ZnONP-treated plantlets compared to the control. In contrast, the levels of chlorophyll a, chlorophyll b, total chlorophyll (a + b), and carotenoids were significantly lower in plants treated with ZnONPs. A strong negative correlation was found between ZnONP concentration and photosynthetic pigment content, while the ZnONP concentration was positively correlated with total phenolic content and antioxidant activity (ABTS+ and DPPH). Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

18 pages, 2209 KiB  
Article
Impact of Dietary Carbohydrate Levels on Growth Performance, Feed Efficiency, and Immune Response in Litopenaeus vannamei Cultured in Biofloc Systems
by Yulong Sun, Shuailiang Zhang, Wenping Feng, Yunqi Zhang, Tao Han and Jiteng Wang
Metabolites 2025, 15(6), 409; https://doi.org/10.3390/metabo15060409 - 17 Jun 2025
Viewed by 515
Abstract
Background/Objective: Over an eight-week period, this study assessed the influence of dietary carbohydrate levels on growth, metabolism, and immunity in Pacific white shrimp (Litopenaeus vannamei) raised within a biofloc technology (BFT) system. Methods: Five isonitrogenous and isolipidic diets, spanning carbohydrate levels [...] Read more.
Background/Objective: Over an eight-week period, this study assessed the influence of dietary carbohydrate levels on growth, metabolism, and immunity in Pacific white shrimp (Litopenaeus vannamei) raised within a biofloc technology (BFT) system. Methods: Five isonitrogenous and isolipidic diets, spanning carbohydrate levels from 11% to 47%, were evaluated. Results: The results showed that dietary carbohydrate significantly impacted both growth performance and feed utilization. The diet containing 38% carbohydrate yielded the best outcomes, resulting in the highest weight gain, specific growth rate, and an optimal feed conversion ratio in the shrimp. Hepatopancreatic metabolic analysis revealed that the shrimp adapted to diets high in carbohydrates through the upregulation of glycolytic enzymes (PK, PFK) and downregulation of gluconeogenic enzymes (PEPCK, G6Pase). By optimizing the water quality and supplementing microbial nutrition, L. vannamei in the BFT system exhibited enhanced dietary carbohydrate utilization and strengthened innate immunity. Specifically, SOD and CAT activities remained largely unaffected by varying carbohydrate levels. However, excessive carbohydrate intake still induced oxidative stress. The high-sugar group (47%) exhibited a significant increase in hemolymph MDA content (p < 0.05), with corresponding metabolic alterations observed in glucose, triglyceride, and total protein levels. On the basis of the results of this study, the BFT system may mitigate the adverse effects of a high-carbohydrate diet by enhancing lysosomal enzyme activity (e.g., ACP) and increasing total protein levels. Conclusions: These findings suggest that the BFT system enhances shrimp immunity and mitigates the potential adverse effects of imbalanced dietary components. Piecewise regression analysis determined the optimal dietary carbohydrate level for shrimp within the BFT system to be 31.44–31.77%. Full article
(This article belongs to the Special Issue Nutrition, Metabolism and Physiology in Aquatic Animals)
Show Figures

Figure 1

25 pages, 4789 KiB  
Systematic Review
The Impact of Kefir Consumption on Inflammation, Oxidative Stress Status, and Metabolic-Syndrome-Related Parameters in Animal Models: A Systematic Review and Meta-Analysis
by Zahid Naeem Qaisrani, Wai Phyo Lin, Bo Bo Lay, Khin Yadanar Phyo, Myat Mon San, Nurulhusna Awaeloh, Sasithon Aunsorn, Rinrada Pattanayaiying, Susakul Palakawong Na Ayudthaya, Choosit Hongkulsup, Nirunya Buntin and Sasitorn Chusri
Foods 2025, 14(12), 2077; https://doi.org/10.3390/foods14122077 - 12 Jun 2025
Viewed by 1837
Abstract
Metabolic syndrome (MetS) is a complex condition defined by central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Kefir, a fermented beverage rich in probiotics and beneficial compounds, has emerged as a functional food that may offer metabolic advantages. Nevertheless, preclinical results have been [...] Read more.
Metabolic syndrome (MetS) is a complex condition defined by central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Kefir, a fermented beverage rich in probiotics and beneficial compounds, has emerged as a functional food that may offer metabolic advantages. Nevertheless, preclinical results have been variable. This systematic review and meta-analysis aimed to assess the influence of kefir and its derived compositions on parameters associated with MetS, inflammation, and oxidative stress in rodent studies. A comprehensive literature search was conducted in PubMed, Scopus, AMED, and LILACS through June 2024. Eligible studies involving kefir interventions in rodent MetS models were included. Data extraction followed PRISMA guidelines, with the risk of bias assessed using the CAMARADES and SYRCLE tools. Meta-analyses were performed with a random effects model. Thirty-eight studies involving 1462 rodents (mice and rats) were analyzed. Kefir significantly reduced body weight gain in both mice (MD = –3.33; 95% CI: –4.89 to –1.77) and rats (MD = –41.53; 95% CI: –54.33 to –28.72). In mice, triglycerides and LDL-C levels decreased significantly; in rats, kefir lowered total cholesterol and triglycerides. Insulin levels were reduced (MD = –0.69; 95% CI: –1.16 to –0.22), suggesting improved insulin sensitivity. Several studies also reported reductions in TNF-α, IL-1β, and IL-6. Despite promising results, the high heterogeneity and methodological variability emphasize the need for standardized preclinical protocols and clinical validation. These findings support the role of kefir as a functional food for metabolic health promotion. Full article
Show Figures

Graphical abstract

Back to TopTop