Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (90,171)

Search Parameters:
Keywords = over capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5594 KB  
Article
Optimization of High-Pressure Grinding Roll (HPGR) Performance in an Industrial-Scale HPGR/Tower Mill Comminution Circuit
by Bo Wei, Zhitao Yuan, Quan Feng, Qiang Zhang, Xinyang Xu, Qingyou Meng, Bern Klein and Lixia Li
Minerals 2025, 15(10), 1065; https://doi.org/10.3390/min15101065 (registering DOI) - 11 Oct 2025
Abstract
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published [...] Read more.
The integration of high-pressure grinding roller (HPGR) with pre-concentration techniques and stirred mills is recognized for its energy efficiency. Studies have suggested that the feed with a P80 around 1 mm is acceptable for stirred mills or coarse particle flotation. Nonetheless, published experimental data characterizing the comminution behavior of single-stage HPGR circuits configured with a 1 mm screen aperture remain scarce. Moreover, extant research remains confined to laboratory scale. Consequently, critical performance metrics, including production capacity, screening efficiency, and process continuity, have not been substantively documented in the literature. In this paper, the HPGR performance in an industrial-scale HPGR/tower mill comminution circuit was assessed and optimized by laboratory and industrial tests. The research meticulously analyzed the impact of feed rate on the industrial-scale flip-flow screen and HPGR performance and found that the HPGR featuring two studded rolls with a diameter of 800 mm and a width of 400 mm, operating in a reverse classification circuit with a scalped feed by a 14.64 m2 flip-flow screen while running continuously 24 h per day, is capable of producing a −1 mm comminution product suitable for tower mill feed. Under the optimal operating conditions identified, it achieved a specific energy consumption of 4.57 kWh/t with a feed rate of 27.08 t/h. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 605 KB  
Article
Effect of Dietary PUFAs and Antioxidants on Antioxidant and Anti-Inflammatory Functions of HDL in a Cohort of Women
by Gianmarco Mola, Raffaella Riccetti, Domenico Sergi, Alessandro Trentini, Valentina Rosta, Angela Passaro, Juana M. Sanz and Carlo Cervellati
Antioxidants 2025, 14(10), 1221; https://doi.org/10.3390/antiox14101221 - 10 Oct 2025
Abstract
High-density lipoproteins (HDLs) protect against atherosclerosis through their antioxidant, anti-inflammatory, and other beneficial properties. Although interest is increasing in uncovering both physiological and external factors that influence these functions, definitive evidence remains lacking in this area. To fill this gap, we assessed for [...] Read more.
High-density lipoproteins (HDLs) protect against atherosclerosis through their antioxidant, anti-inflammatory, and other beneficial properties. Although interest is increasing in uncovering both physiological and external factors that influence these functions, definitive evidence remains lacking in this area. To fill this gap, we assessed for the first time how intake of saturated and unsaturated fatty acids and dietary antioxidants affects key HDL-associated proteins. We observed that myeloperoxidase (MPO) activity, a marker of HDL oxidation, was inversely correlated with total polyunsaturated fatty acids (PUFAs), omega-3 and omega-6 intake (p < 0.05), polyphenols (p < 0.001), and overall antioxidant capacity (p < 0.05). Levels of lipoprotein-associated phospholipase A2 also decreased with higher antioxidant consumption (p < 0.05). By contrast, glutathione peroxidase 3 (Gpx3) activity, a protective HDL enzyme, increased in tandem with omega-3 and antioxidant intake. Finally, a composite HDL-antioxidant/anti-inflammatory score integrating all measured proteins rose in association with total PUFAs (p < 0.001), omega-6 (p < 0.001), omega-3 (p < 0.01), polyphenols, and total antioxidants (p < 0.05). These findings suggest that higher dietary PUFA, especially omega-6, and antioxidant intake may enhance HDL’s atheroprotective properties. Full article
18 pages, 3503 KB  
Article
Effects of Granular Material Deposition on the Road’s Stormwater Drainage System
by Francesco Abbondati, Carlo Gualtieri, Salvatore Antonio Biancardo and Gianluca Dell’Acqua
Infrastructures 2025, 10(10), 271; https://doi.org/10.3390/infrastructures10100271 - 10 Oct 2025
Abstract
Travel safety and comfort depend on the design and maintenance of road and stormwater drainage systems. In low-lying areas, poor drainage systems can—especially near underpasses—lead to flooding and serious risks, such as reduced load-bearing capacity hydroplaning, where tires lose grip. This study focuses [...] Read more.
Travel safety and comfort depend on the design and maintenance of road and stormwater drainage systems. In low-lying areas, poor drainage systems can—especially near underpasses—lead to flooding and serious risks, such as reduced load-bearing capacity hydroplaning, where tires lose grip. This study focuses on the effect of granular material deposits on the surface roughness of roadside gutters, as expressed through the Gauckler–Strickler coefficient. The literature equations have pointed out that this coefficient is largely affected by the grain size distribution of granular material. To this end, a field study was carried out in six urban roads in San Nicola la Strada, Italy, with the objectives of the following: (1) identifying the grain size distribution of the material deposited in roadside gutters; (2) estimating how such material decreased in the cross-sectional area of the gutters, as well as increasing their flow resistance, ultimately resulting in decreased water conveyance. Considering gutters with deposited material rather than clean ones results in the failure of three out of six gutters to effectively drain stormwater. Full article
Show Figures

Figure 1

30 pages, 3728 KB  
Systematic Review
Gut Microbiota and Obsessive–Compulsive Disorder: A Systematic Review of Mechanistic Links, Evidence from Human and Preclinical Studies, and Therapeutic Prospects
by Shayan Eghdami, Mahdieh Saeidi, Sasidhar Gunturu, Mahsa Boroon and Mohammadreza Shalbafan
Life 2025, 15(10), 1585; https://doi.org/10.3390/life15101585 - 10 Oct 2025
Abstract
Obsessive–compulsive disorder (OCD) is a multifactorial condition, and interest in gut–brain interactions is increasing. We conducted a systematic two-step review, registered in PROSPERO (CRD420251083936). Step 1 mapped core OCD biology to gut-relevant pathways, including neuroimmune activation, epithelial barrier function, microbial metabolites, and stress [...] Read more.
Obsessive–compulsive disorder (OCD) is a multifactorial condition, and interest in gut–brain interactions is increasing. We conducted a systematic two-step review, registered in PROSPERO (CRD420251083936). Step 1 mapped core OCD biology to gut-relevant pathways, including neuroimmune activation, epithelial barrier function, microbial metabolites, and stress circuitry, to clarify plausible mechanisms. Step 2 synthesized evidence from human and preclinical studies that measured or manipulated microbiota. Searches across PubMed, EMBASE, Web of Science, PsycINFO, and Cochrane (September 2025) yielded 357 biological and 20 microbiota-focused studies. Risk of bias was assessed using the Joanna Briggs Institute checklist for human studies and SYRCLE’s tool for animal studies. Although taxonomic findings in human cohorts were heterogeneous, functional patterns converged: reduced short-chain fatty acid capacity, enrichment of pro-inflammatory pathways, and host markers of barrier disruption and inflammation correlating with OCD severity. Transferring patient microbiota to mice induced OCD-like behaviors with neuroinflammatory changes, partly rescued by metabolites or barrier-supporting strains. Mendelian randomization suggested possible causal contributions at higher taxonomic levels. Diet, especially fiber intake, and psychotropic exposure were major sources of heterogeneity. Evidence supports the microbiota as a modifiable co-factor in a subset of OCD, motivating diet-controlled, stratified clinical trials with composite host–microbe endpoints. Full article
Show Figures

Figure 1

27 pages, 4653 KB  
Article
Sustainability Assessment of Demountable and Reconfigurable Steel Structures
by Adrián Ouro Miguélez, Félix Fernández Abalde, Manuel Cabaleiro Núñez and Fernando Nunes Cavalheiro
Buildings 2025, 15(20), 3651; https://doi.org/10.3390/buildings15203651 - 10 Oct 2025
Abstract
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. [...] Read more.
Steel structures that support machines and industrial process installations should ideally be flexible, adaptable, and easily reconfigurable. However, in current practice, new profiles are frequently used and discarded whenever layout modifications are required, leading to considerable material waste, increased costs, and environmental burdens. Such practices conflict with the principles of the circular economy, in which reusability is preferable to recycling. This paper presents a life cycle sustainability assessment (life cycle cost, LCC, and life cycle assessment, LCA) applied to six structural typologies: (a) welded IPE profiles, (b) bolted IPE profiles, (c) welded tubular profiles, (d) bolted tubular profiles, (e) clamped IPE profiles with demountable joints, and (f) flanged tubular profiles with demountable joints. The assessment integrates structural calculations with an updatable database of costs, operation times, and service lives, providing a systematic framework for evaluating both economic and environmental performance in medium-load industrial structures (0.5–9.8 kN/m2). Application to nine representative case studies demonstrated that demountable clamped and flanged joints become economically competitive after three life cycles, and after only two life cycles under high-load conditions (9.8 kN/m2). The findings indicate relative cost savings of up to 75% in optimized configurations and carbon-footprint reductions of approximately 50% after three cycles. These results provide quantitative evidence of the long-term advantages of demountable and reconfigurable steel structures. Their capacity for repeated reuse without loss of performance supports sustainable design strategies, reduces environmental impacts, and advances circular economy principles, making them an attractive option for modern industrial facilities subject to frequent modifications. Full article
21 pages, 1765 KB  
Article
Assessing Infrastructure Readiness of Controlled-Access Roads in West Bangkok for Autonomous Vehicle Deployment
by Vasin Kiattikomol, Laphisa Nuangrod, Arissara Rung-in and Vanchanok Chuathong
Infrastructures 2025, 10(10), 270; https://doi.org/10.3390/infrastructures10100270 - 10 Oct 2025
Abstract
The deployment of autonomous vehicles (AVs) depends on the readiness of both physical and digital infrastructure. However, existing national and city-level indices often overlook deficiencies along specific routes, particularly in developing contexts such as Thailand, where infrastructure conditions vary widely. This study develops [...] Read more.
The deployment of autonomous vehicles (AVs) depends on the readiness of both physical and digital infrastructure. However, existing national and city-level indices often overlook deficiencies along specific routes, particularly in developing contexts such as Thailand, where infrastructure conditions vary widely. This study develops and applies a corridor-level framework to assess AV readiness on five controlled-access roads in western Bangkok. The framework evaluates key infrastructure dimensions beyond conventional vehicle requirements. In this study, infrastructure readiness means the extent to which essential physical (EV charging capacity, traffic sign visibility, and lane marking retroreflectivity) and digital (5G speed and coverage) subsystems meet minimum operational thresholds required for AV deployment. Data were collected through field measurements and secondary sources, utilizing tools such as a retroreflectometer, a handheld spectrum analyzer, and the Ookla Speedtest application. The results reveal significant contrasts for physical infrastructure, showing that traffic signage is generally satisfactory, but EV charging capacity and road marking retroreflectivity are insufficient on most routes. On the digital side, 5G coverage was generally adequate, but network speeds remained less than half of the global benchmark. Kanchanaphisek Road demonstrated comparatively higher digital readiness, whereas Ratchaphruek Road exhibited the weakest road marking conditions. These findings point out the need for stepwise enhancements to EV charging infrastructure, lane marking maintenance, and digital connectivity to support safe and reliable AV operations. The proposed framework not only provides policymakers in Thailand with a practical tool for prioritizing corridor-level investments but also offers transferability to other rapidly developing urban regions experiencing similar infrastructure challenges for AV deployment. Full article
12 pages, 433 KB  
Article
Safety of FEES Performed by Speech-Language Pathologists and Physicians–Evidence Supporting Task Sharing from a Retrospective Observational Study of 964 Consecutive Examinations
by Małgorzata Polit, Joanna Chmielewska-Walczak, Maria Sobol, Izabela Domitrz and Kazimierz Niemczyk
Nutrients 2025, 17(20), 3193; https://doi.org/10.3390/nu17203193 - 10 Oct 2025
Abstract
(1) Background: Fiberoptic Endoscopic Evaluation of Swallowing (FEES) is one of the two gold-standard tools for assessing oropharyngeal dysphagia (alongside Videofluoroscopic Swallowing Study). Although generally considered safe, concerns about complications persist, particularly in systems where FEES is not routine and professional roles differ. [...] Read more.
(1) Background: Fiberoptic Endoscopic Evaluation of Swallowing (FEES) is one of the two gold-standard tools for assessing oropharyngeal dysphagia (alongside Videofluoroscopic Swallowing Study). Although generally considered safe, concerns about complications persist, particularly in systems where FEES is not routine and professional roles differ. The aim of this study was to evaluate the safety of FEES performed by both speech-language pathologists (SLPs) and physicians, in order to provide evidence of its safety in a healthcare system where the procedure is not yet widely established and to identify patient subgroups potentially at higher risk of procedure-related complications. (2) Methods: This retrospective study analyzed 964 consecutive FEES procedures. Examinations were carried out by trained SLPs or physicians. Data included demographics, clinical status, operator qualifications, setting, and complications, classified as minor (vomiting, poor tolerance, early termination) or major (laryngospasm, epistaxis). (3) Results: The overall complication rate was 1.14% (11/964): 0.6% minor and 0.5% major. All events were self-limiting. Complication rates did not differ between SLPs (1.05%) and physicians (1.23%) or by experience, setting, drug use, penetration–aspiration scale score, or nasogastric tube. Four complications occurred in amyotrophic lateral sclerosis patients, suggesting higher risk. (4) Conclusions: FEES is safe and well tolerated when performed by either physicians or SLPs. These findings underscore the value of task sharing in dysphagia diagnostics, demonstrating that a shared model increases service capacity, reduces delays, and facilitates timely management of dysphagia. Full article
(This article belongs to the Section Geriatric Nutrition)
21 pages, 2285 KB  
Article
Vertical Bearing Behavior of Reinforced Composite Piles in Dense Sandy Soils
by Rui Zhang, Jinsong Tu, Donghua Wang, Lintao Fang and Mingxing Xie
Buildings 2025, 15(20), 3650; https://doi.org/10.3390/buildings15203650 - 10 Oct 2025
Abstract
Reinforced composite prestressed concrete hollow square (RCPHS) piles, installed through pre-drilling, grouting, and static jacking, integrate the large lateral contact area of cement–soil casings with the high strength and stiffness of prestressed concrete cores. This study combines full-scale vertical static load tests and [...] Read more.
Reinforced composite prestressed concrete hollow square (RCPHS) piles, installed through pre-drilling, grouting, and static jacking, integrate the large lateral contact area of cement–soil casings with the high strength and stiffness of prestressed concrete cores. This study combines full-scale vertical static load tests and finite-element (FE) simulations to explore the interaction among the core pile, plain-concrete casing, and surrounding soil. Results show that, at 3600 kN, RCPHS piles exhibit 76% less pile-head settlement compared to PHS piles, and a 36.5% reduction in pile-material expenditure is achieved using the RCPHS scheme. At the same settlement of 23 mm, RCPHS piles carry 87% more load than PHS piles. A 3D FE model developed in ABAQUS reveals that the core pile carries approximately 94% of the applied load. When the load exceeds 4180 kN, the axial force in the casing sharply increases at depths of 7–10 m. The simulated P–s curves align well with field measurements, confirming model accuracy. The superior performance of RCPHS piles is attributed to the graded elastic modulus and coordinated stress distribution of the core–casing–soil system, which enhances interface friction and overall load capacity. These findings provide a foundation for the design optimization of RCPHS piles in dense sandy foundations. Full article
(This article belongs to the Section Building Structures)
17 pages, 1058 KB  
Article
Collagen Hydrolysate–Cranberry Mixture as a Functional Additive in Sausages
by Yasin Uzakov, Aziza Aitbayeva, Madina Kaldarbekova, Madina Kozhakhiyeva, Arsen Tortay and Kadyrzhan Makangali
Processes 2025, 13(10), 3233; https://doi.org/10.3390/pr13103233 - 10 Oct 2025
Abstract
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing [...] Read more.
Consumers increasingly seek clean-label meat products with improved nutrition and stability. We evaluated a collagen hydrolysate–cranberry mixture (CH-CR) as a functional additive in cooked sausages. Two formulations—control and CH-CR—were assessed for fatty acid profile; lipid and protein oxidation during storage; antioxidant capacity ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and half-maximal inhibitory concentration (IC50); amino acid composition; and instrumental color. Relative to the control, CH-CR produced a more favorable lipid profile: lower saturated fatty acids (SFAs) 23.9% vs. 28.0%, higher monounsaturated fatty acids (MUFAs) 53.2% vs. 49.3%, slightly higher polyunsaturated fatty acids (PUFAs) 23.3% vs. 22.7%, a higher PUFA/SFA ratio of 0.97 vs. 0.81, and a lower omega-6/omega-3 (n-6/n-3) ratio of 13.5 vs. 27.1, driven by higher alpha-linolenic acid (ALA) 1.6% vs. 0.8%, with trans fats <0.1%. Storage studies showed attenuated oxidation in CH-CR: lower peroxide value (PV) at day 10 8.1 ± 0.4 vs. 9.8 ± 0.5 meq/kg and lower thiobarbituric acid-reactive substances (TBARS) at day 6 0.042 ± 0.004 vs. 0.055 ± 0.006 mg MDA/kg and day 10 0.156 ± 0.016 vs. 0.590 ± 0.041 mg MDA/kg); the acid value at day 10 was similar. Antioxidant capacity increased with CH-CR FRAP 30.5 mg gallic acid equivalents (GAE)/g vs. not detected; DPPH inhibition was 29.88% vs. 10.23%; IC50 56.22 vs. 149.51 µg/mL. The amino acid profile reflected collagen incorporation—higher glycine+proline+hydroxyproline 2.37 vs. 1.38 g/100 g and a modest rise in indispensable amino acids (IAAs) 5.72 vs. 5.42 g/100 g, increasing the IAA/total amino acid (TAA) ratio to 0.411 vs. 0.380. CH-CR samples were lighter and retained redness better under light, with comparable overall color stability. Overall, CH-CR is a natural strategy to improve fatty acid quality and oxidative/color stability in sausages. Full article
(This article belongs to the Special Issue Food Processing and Ingredient Analysis)
19 pages, 7499 KB  
Article
Experimental Shear Behavior of Macro-Synthetic Fiber-Reinforced Concrete Panels
by John P. Gaston, Benedikt F. Farag, Travis Thonstad and Paolo M. Calvi
Fibers 2025, 13(10), 136; https://doi.org/10.3390/fib13100136 - 10 Oct 2025
Abstract
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure [...] Read more.
The combined use of macro-synthetic fibers and traditional steel reinforcement in structural concrete shows promise for enhancing shear behavior, particularly with respect to crack control, ductility, and potentially strength. However, experimental data on such systems remain scarce, especially for elements subjected to pure in-plane shear, where the interaction between fibers and conventional reinforcement is not well understood. This study contributes essential experimental evidence toward addressing this gap. Nine reinforced concrete panels were tested under monotonic in-plane shear, with transverse reinforcement ratios ranging from ρv = 0% to 0.91%, and macro-synthetic fiber contents from Vf = 0% to 0.52% by volume. Results showed that fibers were highly effective in reducing crack widths at low reinforcement levels. For specimens with ρv = 0.34%, increasing Vf from 0% to 0.52% halved the maximum crack width (from 0.6 mm to 0.3 mm) and reduced the average crack width by 22% (from 0.32 mm to 0.25 mm). Potential ductility improvements were also detected at low reinforcement ratios, with increased shear strain capacities observed as fiber content increased. In contrast, the influence of fibers on shear strength was minimal across all reinforcement levels. These findings highlight the potential of macro-synthetic fibers to enhance the performance of shear-critical elements, particularly in lightly reinforced systems, while also illustrating the need for further experimental and numerical work. The results presented here provide a fundamental dataset that can support future efforts to develop reliable assessment and design approaches accounting for the simultaneous presence of steel reinforcement and synthetic fibers in concrete elements subjected to shear. Full article
15 pages, 6920 KB  
Article
A Cryopreservation and Regeneration Protocol for Embryogenic Callus of Larix olgensis
by Chen Wang, Wenna Zhao, Yu Liu, Hao Dong, Yajing Ning, Chengpeng Cui, Hanguo Zhang, Meng Li and Shujuan Li
Plants 2025, 14(20), 3127; https://doi.org/10.3390/plants14203127 - 10 Oct 2025
Abstract
Larix olgensis is a valuable timber species in northern China, typically propagated through somatic embryogenesis (SE). However, long-term subculture can lead to a loss of embryogenic potential. This study aimed to establish a simple and stable protocol for the cryopreservation and regeneration of [...] Read more.
Larix olgensis is a valuable timber species in northern China, typically propagated through somatic embryogenesis (SE). However, long-term subculture can lead to a loss of embryogenic potential. This study aimed to establish a simple and stable protocol for the cryopreservation and regeneration of L. olgensis embryogenic callus (EC) that preserves its SE potential and regenerative capacity. The slow-freezing method was employed for cryopreservation. A cryopreservation protocol for L. olgensis EC was developed by optimizing the preculture duration and conditions, cryoprotectant composition and thawing temperature. The results showed that optimal outcomes were achieved using a 24 h stepwise preculture on medium containing 0.2 and 0.4 mol∙L−1 sucrose, followed by cryoprotectant treatment with 0.4 mol∙L−1 sucrose, 2.5% (v/v) dimethyl sulfoxide (DMSO) and 10% polyethylene glycol 6000 (PEG6000), and thawing at 37 °C. EC cryopreserved using this protocol achieved a 100% recovery rate. Moreover, the cryopreserved recoverable EC successfully underwent SE, progressing through germination and rooting. Cryopreservation duration (storage duration in liquid nitrogen) did not affect cell viability and proliferation rate, confirming the protocol’s suitability for long-term cryopreservation of L. olgensis EC. This study provides a valuable reference for the cryopreservation and regeneration of L. olgensis EC, with potential applications for other coniferous species. It establishes a robust foundation for the large-scale propagation of conifers. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants—2nd Edition)
20 pages, 3280 KB  
Article
Impact of Yuanjiang Miscanthus lutarioriparius Aqueous Extract on Texture, Flavor Profile, and Antioxidant Activity of Yogurt During Storage
by Siyi He, Jianglin Wang, Xia Tang, Xiankang Fan, Jie Luo, Tong He and Hui Zhou
Molecules 2025, 30(20), 4042; https://doi.org/10.3390/molecules30204042 - 10 Oct 2025
Abstract
Yuanjiang Miscanthus lutarioriparius, which is rich in various bioactive components, exhibits significant potential in the development of functional foods. However, research on its application in dairy products remains relatively limited. This study fermented yogurt using different concentrations of Yuanjiang Miscanthus lutarioriparius water [...] Read more.
Yuanjiang Miscanthus lutarioriparius, which is rich in various bioactive components, exhibits significant potential in the development of functional foods. However, research on its application in dairy products remains relatively limited. This study fermented yogurt using different concentrations of Yuanjiang Miscanthus lutarioriparius water extract (0%, 0.1%, 0.2%, and 0.4%) as a functional additive, investigating its effects on the rheological properties, oxidative capacity, sensory quality, and volatile components of yogurt during storage. The results showed that during storage, the rheological properties (such as moisture content, apparent viscosity, storage modulus, etc.), the viable counts of Streptococcus thermophilus and Lactobacillus bulgaricus, and the DPPH/ABTS/FRAP radical scavenging rates of asparagus yogurt were significantly superior to those of the control group (p < 0.05), indicating that the lactic yogurt exhibited better texture, stability, and overall sensory acceptance. The 0.2% addition group exhibited the best inhibitory effect on lactic acid bacteria after acidification and the most stable acidity changes. The 0.4% addition group achieved an ABTS radical scavenging rate of 58.4% on the 7th day of storage, significantly higher than other groups (p < 0.05). The asparagus yogurt contained 64 volatile flavor compounds (20.31% alcohols and 21.88% ketones), which was higher than the control group (45 compounds), and introduced new aldehydes (tridecanal) and esters (methyl salicylate, ethyl palmitate), imparting a mild sourness and spicy flavor. Sensory evaluation results indicated that the 0.2% addition group scored the highest in texture, flavor, and taste, aligning with its rheological properties and color. This provides a theoretical basis for the development of highly stable and active functional asparagus yogurt. Full article
Show Figures

Figure 1

21 pages, 2777 KB  
Article
Protective Effects of Cuscuta australis Against CCl4-Induced Hepatic Injury in Rats: Antioxidant, Anti-Inflammatory, and In Silico Insights
by Hanen Baccari, Arij Bedoui, Anouar Feriani, Amal Bouallegue, Nihad Sahri, Sohaib Khatib, Mohamed Kharrat, Nizar Tlili, Mansour Sobeh, Moez Amri and Zouhaier Abbes
Pharmaceuticals 2025, 18(10), 1524; https://doi.org/10.3390/ph18101524 - 10 Oct 2025
Abstract
Background/Objectives: The search for new bioactive molecules increasingly extends beyond conventional medicinal plants, highlighting the importance of exploring alternative botanical sources. Parasitic plants represent a promising but underexploited reservoir of pharmacologically relevant compounds. Cuscuta australis (CA), a parasitic species with a history of [...] Read more.
Background/Objectives: The search for new bioactive molecules increasingly extends beyond conventional medicinal plants, highlighting the importance of exploring alternative botanical sources. Parasitic plants represent a promising but underexploited reservoir of pharmacologically relevant compounds. Cuscuta australis (CA), a parasitic species with a history of traditional use, remains poorly characterized. This study aimed to investigate its phytochemical composition and evaluate its antioxidant, anti-inflammatory, and hepatoprotective properties. Methods: The phytochemical profile of CA extract was characterized by LC-MS. Antioxidant capacity was assessed using DPPH and ABTS assays. In vivo hepatoprotection was evaluated in male rats subjected to CCl4-induced hepatotoxicity and treated orally with CA (30 or 60 mg/kg body weight). Biochemical, lipid, oxidative stress, and histological parameters were determined. Molecular docking was conducted to predict the binding of major identified compounds against selected protein targets. Results: CA significantly and dose-dependently improved biochemical and histological markers. At 60 mg/kg, ALT, AST, ALP, and bilirubin were reduced by 32%, 33%, 63%, and 51%, respectively. Lipid metabolism was improved by decreased TC, TG, and LDL-C with increased HDL-C. Antioxidant defense was enhanced through elevated CAT, SOD, and GPx activities, accompanied by reduced MDA levels. TNF-α and IL-6 decreased by 48% and 53%, respectively. Histopathology confirmed hepatoprotection and reduced fibrosis. Docking studies revealed strong binding affinities (−7.07 to −19.20 kcal/mol) for several metabolites, notably quercetin glucoside, diosmetin glucoside, caffeic acid glucoside, feruloylquinic acid, and isorhamnetin glucoside, against CYP450, IL-2, TNF-α, and IL-6. Conclusions: These findings demonstrate that C. australis is a promising source of bioactive compounds with hepatoprotective, antioxidant, antihyperlipidemic, and anti-inflammatory effects, supporting its potential as a natural therapeutic agent. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

24 pages, 538 KB  
Article
Maximizing Shareholder Wealth Through Strategic M&A: The Impact of Target Firm Listing Status and Acquirer Size on Sustainable Business Models in Korean SMEs
by Sung-woo Cho and Jin-young Jung
Systems 2025, 13(10), 896; https://doi.org/10.3390/systems13100896 - 10 Oct 2025
Abstract
Strategic mergers and acquisitions (M&A) can support sustainable business models by enabling firms to adapt their capabilities and competitive positions as conditions change. This study examines how target listing status (public vs. private) and acquirer size shape short-term shareholder wealth in Korean SMEs [...] Read more.
Strategic mergers and acquisitions (M&A) can support sustainable business models by enabling firms to adapt their capabilities and competitive positions as conditions change. This study examines how target listing status (public vs. private) and acquirer size shape short-term shareholder wealth in Korean SMEs (Small- and medium-sized enterprise), and links announcement reactions to subsequent operating outcomes. Using an event study and multivariate regressions on 155 M&A announcements by KOSDAQ-listed SMEs (Korean Securities Dealers Automated Quotations) (2016–2020), we find that smaller acquirers earn significantly higher announcement-period cumulative abnormal returns (CAR)—i.e., smaller firm size is positively associated with superior market-adjusted performance around M&A events. Although acquisitions of privately held targets and diversifying deals show higher unadjusted means, their effects become statistically insignificant once firm fundamentals and size are controlled for. To connect M&A strategy with business-model sustainability, we operationalize sustainability as the alignment between short-term market expectations (CAR) and realized operating performance over 1–2 years, measured by return on operating cash flow (ROCF); medium-term checks indicate that the short-run “size effect” attenuates, underscoring the role of execution and scale in longer-run outcomes. Overall, the evidence highlights the primacy of firm-specific fundamentals, strategic fit, and integration capacity in guiding M&A decisions that advance both near-term performance and longer-term resilience. The Korean SME setting—marked by concentrated ownership, resource constraints, and a chaebol-influenced market and policy environment—provides a stringent context for these tests. Full article
18 pages, 4082 KB  
Article
Electrochemical and Gravimetric Assessment of Steel Rebar Corrosion in Chloride- and Carbonation-Induced Environments
by Sejong Kim and Jong Kwon Choi
Buildings 2025, 15(20), 3647; https://doi.org/10.3390/buildings15203647 - 10 Oct 2025
Abstract
This study investigates the corrosion performance of reinforced steel in concrete subjected to carbonation and chloride ingress. Four systems were examined: normal concrete (NC15), chloride-exposed (ClC15), carbonated (COC15), and chloride-exposed carbonated concrete (COClC15). A comprehensive assessment was carried out using electrochemical testing, gravimetric [...] Read more.
This study investigates the corrosion performance of reinforced steel in concrete subjected to carbonation and chloride ingress. Four systems were examined: normal concrete (NC15), chloride-exposed (ClC15), carbonated (COC15), and chloride-exposed carbonated concrete (COClC15). A comprehensive assessment was carried out using electrochemical testing, gravimetric weight loss, chloride profiling, Temkin adsorption isotherm modeling, and SEM analysis. Electrochemical results showed a marked increase in corrosion activity under combined chloride–carbonation exposure. The highest corrosion current density (icorr) was obtained in COClC15 (0.4779 µA/cm2), compared with only 0.0106 µA/cm2 for NC15. Gravimetric analysis confirmed these findings, with COClC15 exhibiting a corrosion rate nearly 1.5 times greater than ClC15 and 52 times higher than NC15 after 120 days. Chloride profiling revealed reduced binding efficiency in carbonated concrete; at 5 mm depth, COClC15 bound only 0.06% chloride, while ClC15 retained 0.43%. The Temkin adsorption isotherm further quantified the weakened binding capacity. The binding coefficient (β) of COClC15 was considerably lower than ClC15 and NC15, reflecting the impact of C–S–H decalcification and aluminate phase transformation into carboaluminates, which restrict Friedel’s salt formation. SEM micrographs corroborated these observations, showing extensive microstructural degradation in COClC15. This study revealed that the synergy of carbonation and chloride ingress reduces chloride-binding capacity, accelerates depassivation, and severely compromises the durability of reinforced concrete in aggressive environments. Full article
(This article belongs to the Special Issue Research on Corrosion Resistance of Reinforced Concrete)
Show Figures

Figure 1

Back to TopTop