Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = oven dry density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16170 KB  
Article
Image-Based Interpolation of Soil Surface Imagery for Estimating Soil Water Content
by Eunji Jung, Dongseok Kim, Jisu Song and Jaesung Park
Agriculture 2025, 15(17), 1812; https://doi.org/10.3390/agriculture15171812 (registering DOI) - 25 Aug 2025
Abstract
Soil water content (SWC) critically governs the physical and mechanical behavior of soils. However, conventional methods such as oven drying are laborious, time-consuming, and difficult to replicate in the field. To overcome these limitations, we developed an image-based interpolation framework that leverages histogram [...] Read more.
Soil water content (SWC) critically governs the physical and mechanical behavior of soils. However, conventional methods such as oven drying are laborious, time-consuming, and difficult to replicate in the field. To overcome these limitations, we developed an image-based interpolation framework that leverages histogram statistics from 12 soil surface photographs spanning 3.83% to 19.75% SWC under controlled lighting. For each image, pixel-level values of red, green, blue (RGB) channels and hue, saturation, value (HSV) channels were extracted to compute per-channel histograms, whose empirical means and standard deviations were used to parameterize Gaussian probability density functions. Linear interpolation of these parameters yielded synthetic histograms and corresponding images at 1% SWC increments across the 4–19% range. Validation against the original dataset, using dice score (DS), Bhattacharyya distance (BD), and Earth Mover’s Distance (EMD) metrics, demonstrated that the interpolated images closely matched observed color distributions. Average BD was below 0.014, DS above 0.885, and EMD below 0.015 for RGB channels. For HSV channels, average BD was below 0.074, DS above 0.746, and EMD below 0.022. These results indicate that the proposed method reliably generates intermediate SWC data without additional direct measurements, especially with RGB. By reducing reliance on exhaustive sampling and offering a cost-effective dataset augmentation, this approach facilitates large-scale, noninvasive soil moisture estimation and supports machine learning applications where field data are scarce. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
22 pages, 780 KB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 603
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

17 pages, 7583 KB  
Article
The Effect of Drying Methods on the Pore Structure of Balsa Wood Aerogels
by Min Yin, Zongying Fu, Xia Yu, Ximing Wang and Yun Lu
Polymers 2025, 17(12), 1686; https://doi.org/10.3390/polym17121686 - 17 Jun 2025
Viewed by 444
Abstract
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. [...] Read more.
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. The results demonstrate that different drying methods regulate aerogels through distinct pore structure modifications. Supercritical CO2 drying optimally preserves the native wood microstructure, yielding aerogels with superior thermal insulation performance. Freeze-drying induces the formation of ice crystals, which reconstructs the microstructure, resulting in aerogels with minimal density, significantly enhanced permeability, and exceptional cyclic water absorption capacity. Vacuum drying, oven drying, and natural drying all lead to significant deformation of the aerogel pore structure. Among them, oven drying increases the pore quantity of aerogels through volumetric contraction, thereby achieving the highest specific surface area. However, aerogels prepared by air drying have the highest density and the poorest thermal insulation performance. This study demonstrates that precise control of liquid surface tension during drying can effectively regulate both the pore architecture and functional performance of wood-derived aerogels. The findings offer fundamental insights into tailoring aerogel properties through optimized drying processes, providing valuable guidance for material design and application development. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 2590 KB  
Article
Improving the Physical and Mechanical Properties of Cornstarch-Based Materials Using Polymer Admixtures
by Shibli Sadik Tulip, Ewumbua Monono, Ademola Hammed and Niloy Chandra Sarker
Constr. Mater. 2025, 5(1), 12; https://doi.org/10.3390/constrmater5010012 - 1 Mar 2025
Viewed by 1336
Abstract
Cement is widely used as an efficient binding agent in concrete; however, the production of cement is the second-largest source of carbon emissions. Therefore, there is an urgent need to explore alternative materials with similar properties. CoRncrete, a corn-based material, shows potential as [...] Read more.
Cement is widely used as an efficient binding agent in concrete; however, the production of cement is the second-largest source of carbon emissions. Therefore, there is an urgent need to explore alternative materials with similar properties. CoRncrete, a corn-based material, shows potential as an eco-friendly substitute. Our previous study showed that oven-dried CoRncrete achieved a maximum compressive strength of 18.9 MPa, which is 37% lower than traditional concrete. Nonetheless, in light of this limitation, CoRncrete still stands as a feasible choice for internal structural applications. This study aims to enhance CoRncrete’s strength by modifying drying conditions and incorporating lightweight thermoplastic polymers as admixtures. Air-drying for 7, 14, 21, and 28 days was tested, with durations of 21 days and greater showing improved internal curing, reduced porosity, and enhanced strength (23.9 MPa). Various high-strength, low-density polymers, including carboxy methyl cellulose (CMC), chitosan (CS), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP), were utilized. PVA demonstrated favorable interactions with cornstarch, also showing improved performance in water durability properties. Air-dried CoRncrete with PVA admixture had maximal water durability properties (up to 20 days) compared to the other samples. Micro-structural analysis revealed reduced porosity in air-dried and polymer-bound samples. Future investigations should extend to an in-depth study on air-drying duration for polymer-bound CoRn-crete and explore novel admixtures to further improve strength and water durability. Full article
Show Figures

Figure 1

30 pages, 17875 KB  
Article
Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
by Fazilla Oktaviani Tarigan, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, Petar Antov, Seng Hua Lee, Rangabhashiyam Selvasembian, Mohd Hazwan Hussin, Manggar Arum Aristri and Apri Heri Iswanto
Polymers 2025, 17(4), 512; https://doi.org/10.3390/polym17040512 - 16 Feb 2025
Cited by 3 | Viewed by 1269
Abstract
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite [...] Read more.
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite products as alternatives to non-wood lignocellulosic raw materials. As a result, the purpose of this study is to examine and assess the physical, mechanical, and acoustic properties of particleboard manufactured from non-wood lignocellulosic biomass. The core layer was composed of non-wood lignocelluloses (banana stem, rice straw, coconut fiber, sugarcane bagasse, and fibrous vascular bundles (FVB) from snakefruit fronds), whereas the surface was made of belangke bamboo (Gigantochloa pruriens) and wood. The chemical characteristics, fiber dimensions and derivatives, and contact angles of non-wood lignocellulosic materials were investigated. The contact angle, which ranged from 44.57 to 62.37 degrees, was measured to determine the wettability of these materials toward adhesives. Hybrid particleboard (HPb) or sandwich particleboard (SPb) samples of 25 cm × 25 cm with a target density of 0.75 g/cm3 and a thickness of 1 cm were manufactured using 7% isocyanate adhesive (based on raw material oven dry weight). The physical parameters of the particleboard, including density, water content, water absorption (WA), and thickness swelling (TS), ranged from 0.47 to 0.79 g/cm3, 6.57 to 13.78%, 16.46 to 103.51%, and 3.38 to 39.91%, respectively. Furthermore, the mechanical properties of the particleboard, including the modulus of elasticity (MOE), bending strength (MOR), and internal bond strength (IB), varied from 0.39 to 7.34 GPa, 6.52 to 87.79 MPa, and 0.03 to 0.69 MPa, respectively. On the basis of these findings, the use of non-wood lignocellulosic raw materials represents a viable alternative for the production of high-performance particleboard. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

14 pages, 17007 KB  
Article
Study of the Influence of Bamboo Suspension Water-Removal Processes on the Properties of Bamboo-Based Molding Materials
by Xiaowei Zhuang, Weichen Li, Xin Pan, Hui Qiao, Baoyong Liu, Weiming Yang and Yongshun Feng
Polymers 2024, 16(23), 3337; https://doi.org/10.3390/polym16233337 - 28 Nov 2024
Viewed by 1010
Abstract
Bamboo is a fast-growing lignocellulosic plant in nature. It is an abundant and renewable resource with wide applications. The processing of bamboo results in a large amount of residue. In this paper, we developed a method to utilize bamboo residue to prepare a [...] Read more.
Bamboo is a fast-growing lignocellulosic plant in nature. It is an abundant and renewable resource with wide applications. The processing of bamboo results in a large amount of residue. In this paper, we developed a method to utilize bamboo residue to prepare a novel lightweight porous molding material. A hydrated thermochemical grinding process was proposed to disintegrate bamboo fibers and activate bamboo’s own binding components. The influence of the water removal by pressure from bamboo suspension and subsequent different drying methods on the product’s properties was evaluated. The two-step drying ensured a low production cost and high product quality. The bamboo molding material was characterized based on thermal stability, morphology, functional groups, particle size distribution, crystallinity, and mechanical strength. A lightweight porous material was obtained with a density of 0.23–0.35 g/cm3 by freeze-drying. A high mechanical strength was obtained with a tensile strength of 0.62 MPa and a compressive strength of 10.31 MPa by oven drying. The auto-adhesive mechanisms, including fiber anchorage, polymerization, water plasticization, and heat plasticization, were discussed. The bamboo molding material is a reconstruction of bamboo cell wall components and is easy to recycle. It has potential applications in construction and buildings, packaging, and indoor furnishings. Full article
Show Figures

Graphical abstract

19 pages, 6771 KB  
Article
Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications
by Mara Paulette Alonso, Rakibul Hossain, Maryam El Hajam and Mehdi Tajvidi
Nanomaterials 2024, 14(22), 1837; https://doi.org/10.3390/nano14221837 - 17 Nov 2024
Cited by 4 | Viewed by 2112
Abstract
Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal [...] Read more.
Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal conductivity as low as 0.036 W/(m·K) at a 34.4 kg/m3 density. Acrodur®, iron chloride (FeCl3), and cationic polyacrylamide (CPAM) were used to improve the foam properties. Acrodur® did not have any significant effect on the foamability and density of the foams. Mechanical, thermal, cushioning, and water absorption properties of the foams were dependent on the density and interactions of the additives with the fibers. Due to their high density, foams with CPAM and FeCl3 at a 1% additive dosage had significantly higher compressive properties at the expense of slightly higher thermal conductivity. There was slight increase in compressive properties with the addition of Acrodur®. All additives improved the water stability of the foams, rendering them stable even after 24 h of water absorption. Full article
Show Figures

Figure 1

12 pages, 2036 KB  
Article
Variations in Physical and Mechanical Properties Between Clear and Knotty Wood of Chinese Fir
by Yingchao Ruan, Zongming He, Shaohui Fan, Zhiyun Chen, Ming Li, Xiangqing Ma and Shuaichao Sun
Forests 2024, 15(11), 2007; https://doi.org/10.3390/f15112007 - 14 Nov 2024
Viewed by 1200
Abstract
Significant market value discrepancies exist between clear and knotty Chinese fir (Cunninghamia lanceolata) wood, distinguished not only by their aesthetic variations but also by their distinct material properties. This study aimed to explore the differences in physical and mechanical properties between [...] Read more.
Significant market value discrepancies exist between clear and knotty Chinese fir (Cunninghamia lanceolata) wood, distinguished not only by their aesthetic variations but also by their distinct material properties. This study aimed to explore the differences in physical and mechanical properties between clear and knotty Chinese fir wood. Nine standard trees were chosen from a 26-year-old Chinese fir plantation for the experiment. Subsequent to felling, trunk segments below 7 m in length were transported to the laboratory. For each tree, detailed preparations were made to obtain clear and knotty wood specimens, and these distinct wood specimens were subjected to thorough physical and mechanical assessments. The results revealed significant variations in properties between clear and knotty Chinese fir wood. The shrinkage and swelling coefficients of knotty wood were generally lower than those of clear wood, except for higher radial and tangential air-dry shrinkage. Specifically, the swelling ratio of knotty wood was at least 0.40% lower, and the oven-dry shrinkage was at least 0.58% lower than that of clear wood. Knotty wood exhibited higher air-dry and oven-dry densities, with its density being at least 0.15 g cm−3 higher than that of clear wood. However, its mechanical properties, including tensile strength, compression strength, impact bending strength, bending strength, and modulus of elasticity, were lower than those of clear wood. For instance, the tensile strength parallel to the grain of clear wood was 40.63 MPa higher, the modulus of elasticity was 1595 MPa higher, and the impact bending strength was 27.12 kJ m−2 greater than that of knotty wood. Although the tangential and radial surface hardness of knotty wood increased significantly compared to clear wood, the end hardness remained relatively lower. Overall, knotty Chinese fir wood displayed enhanced physical properties, whereas clear wood showcased superior mechanical properties. Careful selection between clear and knotty wood is recommended based on the specific requirements of wooden structural elements to optimize timber resource utilization. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 6522 KB  
Article
Experiment and Analysis of Physical Properties of Sweet Potato Varieties at Different Harvesting Periods
by Jiwen Peng, Haiyang Shen, Gongpu Wang, Zhilong Zhang, Baoliang Peng, Guangyu Xue, Sen Huang, Wenhao Zheng and Lianglong Hu
Agriculture 2024, 14(9), 1641; https://doi.org/10.3390/agriculture14091641 - 19 Sep 2024
Cited by 5 | Viewed by 2190
Abstract
To fill the research gap in the mechanical and physical properties of different varieties of sweet potatoes at different points in the harvest period and to provide a theoretical basis for the design of key components of the sweet potato harvester, the physical [...] Read more.
To fill the research gap in the mechanical and physical properties of different varieties of sweet potatoes at different points in the harvest period and to provide a theoretical basis for the design of key components of the sweet potato harvester, the physical properties of Su-Shu 16, Su-Shu 36, and Ning-Zi 4 during the harvest period were studied at three time points: 15 October, 25 October, and 4 November 2023. The moisture content of sweet potatoes was determined using the DGF30/7-IA electric hot air-drying oven. The results showed that the moisture content of sweet potatoes decreased with increasing growth time at three different time points during the harvest period. The moisture content of Su-Shu 16 was, on average, 12.74% higher than that of Su-Shu 36, while the moisture content of Ning-Zi 4 was, on average, 8.07% higher than that of Su-Shu 36. The density of Su-Shu 36 measured by the drainage method is greater than that of Su-Shu 16 and Ning-Zi 4, but the difference is relatively small, and the density tends to decrease slowly with the increase of growth time. Using an electronic universal testing machine, compression tests were conducted on Su-Shu 16, Su-Shu 36, and Ning-Zi 4 at loading speeds of 5 mm/min and 10 mm/min, respectively. The results showed that the compressive strength limit range of Su-Shu 36 was slightly higher than that of Su-Shu 16 and significantly higher than that of Ning-Zi 4. The Poisson’s ratio, elastic modulus, and shear modulus values of Su-Shu 16 and Su-Shu 36 were similar and much higher than those of Ning-Zi 4. Studying sweet potatoes’ growth and physical characteristics for different purposes can provide data references for the design of digging depth, working width, and conveyor chain gap of sweet potato harvesters, as well as data references for sweet potato simulation experiments. Full article
Show Figures

Figure 1

16 pages, 2170 KB  
Article
Physical and Mechanical Properties of Lightweight Expanded Clay Aggregate Concrete
by Orkun Uysal, İlbüke Uslu, Can B. Aktaş, Byungik Chang and İsmail Özgür Yaman
Buildings 2024, 14(6), 1871; https://doi.org/10.3390/buildings14061871 - 20 Jun 2024
Cited by 5 | Viewed by 3907
Abstract
The porous nature of lightweight expanded clay aggregate (LECA) is decisive in the physical and mechanical properties of concrete. A comprehensive experimental study consisting of 13 different mixtures and 234 specimens was carried out on density, absorption capacity, porosity, compressive strength, splitting tensile [...] Read more.
The porous nature of lightweight expanded clay aggregate (LECA) is decisive in the physical and mechanical properties of concrete. A comprehensive experimental study consisting of 13 different mixtures and 234 specimens was carried out on density, absorption capacity, porosity, compressive strength, splitting tensile strength, modulus of elasticity, and the effect of moisture state of LECA concrete. Dry compressive strengths of mixtures were found to be between 18–38 MPa, and 9% higher on average than moist compressive strength. Modulus of elasticity values decreased significantly when specimens were oven-dried, where the decrease was 26% on average. The study also includes an evaluation of modulus of elasticity prediction models. All prediction models consistently overestimated dry modulus of elasticity, which is problematic for structural applications of LECA concrete. A unique model for modulus of elasticity prediction was developed as part of the study and verified using independent data from literature for its accuracy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 19186 KB  
Article
Impact of Water Level Variation on Mechanical Properties of Porous Concrete
by Rabin Lamichhane, Gokarna Bahadur Motra, Thaman Bahadur Khadka, Y. X. Zhang, Prabin Pathak and Shikhar Pandit
Sustainability 2024, 16(9), 3546; https://doi.org/10.3390/su16093546 - 24 Apr 2024
Cited by 2 | Viewed by 2639
Abstract
This paper investigates porous concrete and the influence of water level variations and porosity on the mechanical, physical, and hydraulic properties of porous concrete. The effect of different void percentages and various water levels on the properties of porous concrete was studied. Fabricated [...] Read more.
This paper investigates porous concrete and the influence of water level variations and porosity on the mechanical, physical, and hydraulic properties of porous concrete. The effect of different void percentages and various water levels on the properties of porous concrete was studied. Fabricated specimens with targeted porosities of 20% and 25% were subjected to a series of tests to evaluate their compressive strength, hydraulic conductivity (permeability), and porosity. The permeability of the specimens was assessed using a falling head permeameter to ensure effective water percolation. Porosity was quantified through a volumetric method, providing insights into void content. Both cubical and cylindrical specimens were used for all tests, along with compression tests under both air-dried and oven-dried conditions. The results showed that the maximum compressive strength occurred under oven-dried conditions for both cubical (7.05 MPa, 5.58 MPa) and cylindrical (8.36 MPa, 4.81 MPa) specimens, with 20% and 25% porosities, respectively. The compressive strength was found to be low in air-dried samples and increased with higher water levels, peaking at the 40% water level. Furthermore, the porosity exhibited a significant correlation with the reduction in density, affecting the mechanical properties. For the cylindrical and cubical samples, the dry density decreased by 16.03 kg/m3 and 20.85 kg/m3 and the permeability increased by 0.41 mm/s and 0.84 mm/s, respectively, for every 1% increase in porosity. The results showcased the effect of water level variation on porous concrete properties as well as its promising ability to infiltrate water. This promotes the development of sustainable pavement systems by minimizing surface runoff and aiding groundwater recharge. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

18 pages, 6380 KB  
Article
Wood Basic Density in Large Trees: Impacts on Biomass Estimates in the Southwestern Brazilian Amazon
by Flora Magdaline Benitez Romero, Thais de Nazaré Oliveira Novais, Laércio Antônio Gonçalves Jacovine, Eronildo Braga Bezerra, Rosana Barbosa de Castro Lopes, Juliana Sousa de Holanda, Edi Flores Reyna and Philip Martin Fearnside
Forests 2024, 15(5), 734; https://doi.org/10.3390/f15050734 - 23 Apr 2024
Cited by 9 | Viewed by 3400
Abstract
Wood basic density (WD) plays a crucial role in estimating forest biomass; moreover, improving wood-density estimates is needed to reduce uncertainties in the estimates of tropical forest biomass and carbon stocks. Understanding variations in this density along the tree trunk and its impact [...] Read more.
Wood basic density (WD) plays a crucial role in estimating forest biomass; moreover, improving wood-density estimates is needed to reduce uncertainties in the estimates of tropical forest biomass and carbon stocks. Understanding variations in this density along the tree trunk and its impact on biomass estimates is underexplored in the literature. In this study, the vertical variability of WD was assessed along the stems of large trees that had a diameter at breast height (DBH) ≥ 50 cm from a dense ombrophilous forest on terra firme (unflooded uplands) in Acre, Brazil. A total of 224 trees were sampled, including 20 species, classified by wood type. The average WD along the stem was determined by the ratio of oven-dry mass to saturated volume. Five models were tested, including linear and nonlinear ones, to fit equations for WD, selecting the best model. The variation among species was notable, ranging from 0.288 g cm−3 (Ceiba pentandra, L., Gaertn) to 0.825 g cm−3 (Handroanthus serratifolius, Vahl., S. Grose), with an average of 0.560 g cm−3 (±0.164, standard deviation). Significant variation was observed among individuals, such as in Schizolobium parahyba var. amazonicum (H. ex D.), which ranged from 0.305 to 0.655 g cm−3. WD was classified as low (≤0.40 g cm−3), medium (0.41–0.60 g cm−3), and high (≥0.61 g cm−3). The variability in WD along the stem differs by wood type. In trees with low-density wood, density shows irregular variation but tends to increase along the stem, whereas it decreases in species with medium- and high-density wood. The variation in WD along the stem can lead to underestimations or overestimations, not only in individual trees and species but also in total stocks when estimating forest biomass. Not considering this systematic bias results in significant errors, especially in extrapolations to vast areas, such as the Amazon. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Graphical abstract

16 pages, 2976 KB  
Article
Selected Physical and Mechanical Properties of Subfossil Oak (Quercus spp.) Compared to Aged Oak and Recent Oak
by Ruxandra Nedelcu, Maria Cristina Timar, Mihaela Porojan and Emanuela Carmen Beldean
Appl. Sci. 2024, 14(8), 3294; https://doi.org/10.3390/app14083294 - 13 Apr 2024
Viewed by 1554
Abstract
Subfossil oak (SO) wood material, originating from three different buried trunks discovered in recent years by excavations in riverbanks on Romanian territory, was analysed in this research. Aged oak recovered from constructions (AO_C) and recent/new oak wood material (NO) were also investigated to [...] Read more.
Subfossil oak (SO) wood material, originating from three different buried trunks discovered in recent years by excavations in riverbanks on Romanian territory, was analysed in this research. Aged oak recovered from constructions (AO_C) and recent/new oak wood material (NO) were also investigated to provide comparative data for the SO. The oven-dry density and the basic density, the total volumetric and linear swelling and shrinkage coefficients and the compression strength parallel to the grain were the selected physical and mechanical properties considered. The experimental results showed a lower density of SO compared to NO and AO_C tested by up to about 19–20%, alongside a trend of increased dimensional instability, with variability among the tested assortments. The compression strength parallel to the grain was reduced by 19–31% compared to NO. The properties of AO-C were closer to those of NO, but differences between wood materials from different sources and of different ages were registered. A positive linear correlation was found between compression strength parallel to grain and the basic density for all types of material and assortments tested. These comparative results have to be considered by designers and engineers in the valorisation of SO in furniture design and other applications. Full article
Show Figures

Figure 1

17 pages, 3671 KB  
Review
Influence of Recycling Processes on Properties of Fine Recycled Concrete Aggregates (FRCA): An Overview
by Eduardo Kloeckner Sbardelotto, Karyne Ferreira dos Santos, Isabel Milagre Martins, Berenice Martins Toralles, Manuel Gomes Vieira and Catarina Brazão Farinha
Waste 2024, 2(2), 136-152; https://doi.org/10.3390/waste2020008 - 9 Apr 2024
Viewed by 1710
Abstract
Concrete waste recycling processes involve multiple stages, equipment, and procedures which produce Fine Recycled Concrete Aggregates (FRCA) for use in construction. This research aims at performing a comprehensive overview of the recycling technologies, recycling processes, and normative requirements to produce high-quality FRCA and [...] Read more.
Concrete waste recycling processes involve multiple stages, equipment, and procedures which produce Fine Recycled Concrete Aggregates (FRCA) for use in construction. This research aims at performing a comprehensive overview of the recycling technologies, recycling processes, and normative requirements to produce high-quality FRCA and to investigate the influence of these processes on their physical properties. The properties investigated were the particle size distribution (PSD), water absorption, oven-dry density, and adhered paste. The correlations between these properties were also investigated. The results indicate that the recycling processes with the highest potential for producing high-quality aggregates demand jaw crusher and impact crusher combinations. These processes are better suited for achieving FRCA with the desired particle size distribution and oven-dry density. However, water absorption and adhered paste, which are critical factors for obtaining high-quality FRCA, seem to be more dependent on the original material than on the recycling process. Full article
Show Figures

Figure 1

25 pages, 11671 KB  
Article
Free-Flowing Polymer-Bonded Powder Composition of Hexahydro-1,3,5-trinitro-1,3,5-triazine Using Solvent–Slurry Coating
by Muhammad Soulaman Khan, Muhammad Ahsan, Sarah Farrukh, Erum Pervaiz and Abdul Qadeer Malik
Polymers 2024, 16(6), 841; https://doi.org/10.3390/polym16060841 - 19 Mar 2024
Cited by 1 | Viewed by 1613
Abstract
A number of coating techniques have been used to improve the processability of high explosives. These techniques are typically used for developing compositions, such as boosters and fillers. The most typically used technique is the “solvent–slurry coating”. Several compositions of polymer-bonded explosives have [...] Read more.
A number of coating techniques have been used to improve the processability of high explosives. These techniques are typically used for developing compositions, such as boosters and fillers. The most typically used technique is the “solvent–slurry coating”. Several compositions of polymer-bonded explosives have been industrialized using this technique. The NUPC-6 polymer-bonded powder composition of hexahydro-1,3,5-trinitro-1,3,5-triazine is optimized using the solvent–slurry coating. It involved multiple processes, i.e., preparing a slurry of high explosives in an aqueous phase, dissolving the modified polymer binder in an organic solvent, maintaining both the solvent and slurry at controlled temperatures, introducing polymer binder solution and ingredients in the slurry, distilling the solvent, mixing contents homogeneously, filtering the polymer-coated hexahydro-1,3,5-trinitro-1,3,5-triazine composition, and drying in a vacuum oven. The phlegmatizing and hydrophobic agents enhance flowability and hydrophobicity. The mass flow rate, bulk density, tapped density, compressibility index, and Hausner ratio are determined to evaluate its flowability during filling operations. The results show that the composition is flowable using a filling funnel, with a 150 mm upper diameter, 25 mm flow diameter, and 136 mm total funnel height. The raw polymer binder was modified using diisooctylsebacate and SAE-10 oil. The additives in the composition enhance its flowability, and it might be used in underwater applications. Full article
Show Figures

Figure 1

Back to TopTop