Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = oscillatory problems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7136 KB  
Article
Extended Kalman Filter-Enhanced LQR for Balance Control of Wheeled Bipedal Robots
by Renyi Zhou, Yisheng Guan, Tie Zhang, Shouyan Chen, Jingfu Zheng and Xingyu Zhou
Machines 2026, 14(1), 77; https://doi.org/10.3390/machines14010077 - 8 Jan 2026
Viewed by 182
Abstract
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing [...] Read more.
With the rapid development of mobile robotics, wheeled bipedal robots, which combine the terrain adaptability of legged robots with the high mobility of wheeled systems, have attracted increasing research attention. To address the balance control problem during both standing and locomotion while reducing the influence of noise on control performance, this paper proposes a balance control framework based on a Linear Quadratic Regulator integrated with an Extended Kalman Filter (KLQR). Specifically, a baseline LQR controller is designed using the robot’s dynamic model, where the control input is generated in the form of wheel-hub motor torques. To mitigate measurement noise and suppress oscillatory behavior, an Extended Kalman Filter is applied to smooth the LQR torque output, which is then used as the final control command. Filtering experiments demonstrate that, compared with median filtering and other baseline methods, the proposed EKF-based approach significantly reduces high-frequency torque fluctuations. In particular, the peak-to-peak torque variation is reduced by more than 60%, and large-amplitude torque spikes observed in the baseline LQR controller are effectively eliminated, resulting in continuous and smooth torque output. Static balance experiments show that the proposed KLQR algorithm reduces the pitch-angle oscillation amplitude from approximately ±0.03 rad to ±0.01 rad, corresponding to an oscillation reduction of about threefold. The estimated RMS value of the pitch angle is reduced from approximately 0.010 rad to 0.003 rad, indicating improved convergence and steady-state stability. Furthermore, experiments involving constant-speed straight-line locomotion and turning indicate that the KLQR algorithm maintains stable motion with velocity fluctuations limited to within ±0.05 m/s. The lateral displacement deviation during locomotion remains below 0.02 m, and no abrupt acceleration or deceleration is observed throughout the experiments. Overall, the results demonstrate that applying Extended Kalman filtering to smooth the control torque effectively improves the smoothness and stability of LQR-based balance control for wheeled bipedal robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

22 pages, 10798 KB  
Article
Analysis of Flow Field Structure Characteristics of Dual Impinging Jets at Different Velocities
by Yifan Zhao, Yuxiang Liang, Xunnian Wang, Pengfei Yan, Jiaxi Zhao and Rongping Zhang
Aerospace 2026, 13(1), 31; https://doi.org/10.3390/aerospace13010031 - 28 Dec 2025
Viewed by 196
Abstract
The flow structure and unsteady evolution characteristics of dual impinging jets represent a flow problem of significant engineering importance in the aerospace field. Currently, there is a lack of systematic research on the unsteady characteristics and the underlying mechanisms of flow structure evolution [...] Read more.
The flow structure and unsteady evolution characteristics of dual impinging jets represent a flow problem of significant engineering importance in the aerospace field. Currently, there is a lack of systematic research on the unsteady characteristics and the underlying mechanisms of flow structure evolution in dual impinging jets across different velocity regimes. This study investigates a dual impinging jet configuration with a nozzle pressure ratio ranging from 1.52 to 2.77, an impingement spacing of 5d (where d is the nozzle exit diameter), and an inter-nozzle spacing of 10.42d. By employing Particle Image Velocimetry and Proper Orthogonal Decomposition, the evolution of the flow field structure from subsonic to supersonic conditions is systematically analyzed. The results demonstrate that the fountain motion is composed of an anti-symmetric oscillatory mode, a symmetric breathing mode, and an intermittent transport mode. The upper confinement plate obstructs the fountain motion to some extent, inducing unsteady oscillation modes. An increase in jet velocity enhances the upwash momentum of the fountain and raises the characteristic frequencies of its dynamic structures. This research elucidates the influence of jet velocity variation on the flow field structure, providing a theoretical basis for formulating flow control strategies in related engineering applications. Full article
(This article belongs to the Special Issue Aerodynamics and Aeroacoustics of Unsteady Flow)
Show Figures

Figure 1

19 pages, 1281 KB  
Article
The Optimal Frequency Control Problem of a Nonlinear Oscillator
by Victor Ilyutko, Dmitrii Kamzolkin and Vladimir Ternovski
Mathematics 2026, 14(1), 37; https://doi.org/10.3390/math14010037 - 22 Dec 2025
Viewed by 193
Abstract
We study a minimum-time (time-optimal) control problem for a nonlinear pendulum-type oscillator, in which the control input is the system’s natural frequency constrained to a prescribed interval. The objective is to transfer the oscillator from a given initial state to a prescribed terminal [...] Read more.
We study a minimum-time (time-optimal) control problem for a nonlinear pendulum-type oscillator, in which the control input is the system’s natural frequency constrained to a prescribed interval. The objective is to transfer the oscillator from a given initial state to a prescribed terminal state in the shortest possible time. Our approach combines Pontryagin’s maximum principle with Bellman’s principle of optimality. First, we decompose the original problem into a sequence of auxiliary problems, each corresponding to a single semi-oscillation. For every such subproblem, we obtain a complete analytical solution by applying Pontryagin’s maximum principle. These results allow us to reduce the global problem of minimizing the transfer time between the prescribed states to a finite-dimensional optimization problem over a sequence of intermediate amplitudes, which is then solved numerically by dynamic programming. Numerical experiments reveal characteristic features of optimal trajectories in the nonlinear regime, including a non-periodic switching structure, non-uniform semi-oscillation durations, and significant deviations from the behavior of the corresponding linearized system. The proposed framework provides a basis for the synthesis of fast oscillatory regimes in systems with controllable frequency, such as pendulum and crane systems and robotic manipulators. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

16 pages, 4723 KB  
Article
AI-Based Model Estimation for a Precision Positioning Stage Employing Multiple Control Switching
by Fu-Cheng Wang, Bo-Xuan Zhong, Chi-Wei Wen, I-Haur Tsai and Jia-Yush Yen
Micromachines 2025, 16(12), 1305; https://doi.org/10.3390/mi16121305 - 21 Nov 2025
Viewed by 454
Abstract
In this paper, we propose a real-time model estimation framework using artificial intelligence techniques and apply it to a piezoelectric transducer (PZT) stage equipped with multiple switching controllers. Conventional fixed controllers often fail to satisfy diverse performance requirements: some achieve smooth but slow [...] Read more.
In this paper, we propose a real-time model estimation framework using artificial intelligence techniques and apply it to a piezoelectric transducer (PZT) stage equipped with multiple switching controllers. Conventional fixed controllers often fail to satisfy diverse performance requirements: some achieve smooth but slow responses, while others deliver fast yet oscillatory behavior. To address this limitation, we developed a multi-controller switching mechanism that can select optimal control sequences based on predicted system responses, thereby enhancing overall performance. However, the existing mechanism relies on a nominal plant and neglects variations during operation. To address this problem, we employ the eXtreme Gradient Boosting (XGBoost) algorithm to construct a real-time model estimator, which continuously updates the system model during response prediction, thereby improving prediction accuracy. The corresponding controllers are then adjusted according to the updated models and integrated into the switching mechanism to further enhance performance. Finally, we validate the proposed approach through simulations and experiments. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

13 pages, 1327 KB  
Article
Application of the Krylov–Bogolyubov–Mitropolsky Method to Study the Effect of Compressive (Tensile) Force on Transverse Oscillations of a Moving Nonlinear Elastic Beam
by Andrii Slipchuk, Petro Pukach and Myroslava Vovk
Dynamics 2025, 5(4), 45; https://doi.org/10.3390/dynamics5040045 - 1 Nov 2025
Viewed by 483
Abstract
The problem of nonlinear elastic transverse oscillations of a beam moving along its axis and subjected to an axial compressive or tensile force is considered. A theoretical study is carried out using the asymptotic method of nonlinear mechanics KBM (Krylov–Bogolyubov–Mitropolsky). Using this methods, [...] Read more.
The problem of nonlinear elastic transverse oscillations of a beam moving along its axis and subjected to an axial compressive or tensile force is considered. A theoretical study is carried out using the asymptotic method of nonlinear mechanics KBM (Krylov–Bogolyubov–Mitropolsky). Using this methods, differential equations were obtained in a standard form, determining the law of variation in amplitude and frequency as functions of kinematic, force, and physico-mechanical parameters in both resonant and non-resonant regimes. The fourth-order Runge–Kutta method was applied for the oscillatory system numerical analysis. The computation of complex mathematical expressions and graphical representation of the results were implemented in the mathematical software Maple 15. The results obtained can be applied for engineering calculations of structures containing moving beams subjected to compressive or tensile forces. Full article
(This article belongs to the Special Issue Theory and Applications in Nonlinear Oscillators: 2nd Edition)
Show Figures

Figure 1

44 pages, 753 KB  
Article
The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems
by Nadiyah Hussain Alharthi, Anurag Kaur, Theodore E. Simos and Rubayyi T. Alqahtani
Mathematics 2025, 13(19), 3151; https://doi.org/10.3390/math13193151 - 2 Oct 2025
Viewed by 511
Abstract
This study introduces a family of implicit four-point block methods for solving first-order initial value problems (IVPs) with oscillatory solutions. In addition to an eighth-order block method, amplification-fitted and phase-fitted implicit block methods are also derived. The methods are implemented in a predictor–corrector [...] Read more.
This study introduces a family of implicit four-point block methods for solving first-order initial value problems (IVPs) with oscillatory solutions. In addition to an eighth-order block method, amplification-fitted and phase-fitted implicit block methods are also derived. The methods are implemented in a predictor–corrector framework, where the predictor is a four-point explicit block method constructed with the corresponding properties. A comprehensive stability analysis is carried out to assess the robustness of the proposed approaches. Comparative evaluations with existing methods demonstrate the superior efficiency of the new algorithms. Numerical experiments further confirm that the proposed techniques provide significant improvements over traditional methods, particularly for oscillatory IVPs. Full article
Show Figures

Figure 1

12 pages, 259 KB  
Article
Two-Derivative Runge–Kutta Methods with Frequency Dependent Coefficients for Solving Orbital or Oscillatory Problems
by Theodoros Monovasilis and Zacharoula Kalogiratou
Algorithms 2025, 18(10), 603; https://doi.org/10.3390/a18100603 - 26 Sep 2025
Viewed by 327
Abstract
In this work, explicit Two-Derivative Runge–Kutta methods of the general case (that use several evaluations of the right-hand side function and its derivative per step) are considered. In order to address problems of orbital or oscillatory character, we develop methods with frequency-dependent coefficients. [...] Read more.
In this work, explicit Two-Derivative Runge–Kutta methods of the general case (that use several evaluations of the right-hand side function and its derivative per step) are considered. In order to address problems of orbital or oscillatory character, we develop methods with frequency-dependent coefficients. We construct three exponentially/trigonometrically fitted methods following two approaches suggested by Vanden Berghe and Simos. Also, we construct a phase-fitted and amplification-fitted method. The efficiency of the new modified methods is demonstrated by numerical examples. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

52 pages, 6335 KB  
Article
On Sampling-Times-Independent Identification of Relaxation Time and Frequency Spectra Models of Viscoelastic Materials Using Stress Relaxation Experiment Data
by Anna Stankiewicz, Sławomir Juściński and Marzena Błażewicz-Woźniak
Materials 2025, 18(18), 4403; https://doi.org/10.3390/ma18184403 - 21 Sep 2025
Viewed by 556
Abstract
Viscoelastic relaxation time and frequency spectra are useful for describing, analyzing, comparing, and improving the mechanical properties of materials. The spectra are typically obtained using the stress or oscillatory shear measurements. Over the last 80 years, dozens of mathematical models and algorithms were [...] Read more.
Viscoelastic relaxation time and frequency spectra are useful for describing, analyzing, comparing, and improving the mechanical properties of materials. The spectra are typically obtained using the stress or oscillatory shear measurements. Over the last 80 years, dozens of mathematical models and algorithms were proposed to identify relaxation spectra models using different analytical and numerical tools. Some models and identification algorithms are intended for specific materials, while others are general and can be applied for an arbitrary rheological material. The identified relaxation spectrum model always depends on the identification method applied and on the specific measurements used in the identification process. The stress relaxation experiment data consist of the sampling times used in the experiment and the noise-corrupted relaxation modulus measurements. The aim of this paper is to build a model of the spectrum that asymptotically does not depend on the sampling times used in the experiment as the number of measurements tends to infinity. Broad model classes, determined by a finite series of various basis functions, are assumed for the relaxation spectra approximation. Both orthogonal series expansions based on the Legendre, Laguerre, and Chebyshev functions and non-orthogonal basis functions, like power exponential and modified Bessel functions of the second kind, are considered. It is proved that, even when the true spectrum description is entirely unfamiliar, the approximate sampling-times-independent spectra optimal models can be determined using modulus measurements for appropriately randomly selected sampling times. The recovered spectra models are strongly consistent estimates of the desirable models corresponding to the relaxation modulus models, being optimal for the deterministic integral weighted square error. A complete identification algorithm leading to the relaxation spectra models is presented that requires solving a sequence of weighted least-squares relaxation modulus approximation problems and a random selection of the sampling times. The problems of relaxation spectra identification are ill-posed; solution stability is ensured by applying Tikhonov regularization. Stochastic convergence analysis is conducted and the convergence with an exponential rate is demonstrated. Simulation studies are presented for the Kohlrausch–Williams–Watts spectrum with short relaxation times, the uni- and double-mode Gauss-like spectra with intermediate relaxation times, and the Baumgaertel–Schausberger–Winter spectrum with long relaxation times. Models using spectrum expansions on different basis series are applied. These studies have shown that sampling times randomization provides the sequence of the optimal spectra models that asymptotically converge to sampling-times-independent models. The noise robustness of the identified model was shown both by analytical analysis and numerical studies. Full article
Show Figures

Figure 1

18 pages, 601 KB  
Article
Back-Reaction of Super-Hubble Fluctuations, Late Time Tracking, and Recent Observational Results
by Marco A. Alvarez, Leila L. Graef and Robert Brandenberger
Symmetry 2025, 17(9), 1507; https://doi.org/10.3390/sym17091507 - 10 Sep 2025
Cited by 1 | Viewed by 790
Abstract
Previous studies have suggested that the back-reaction of super-Hubble cosmological fluctuations on a symmetric background space-time, with respect to being homogeneous and isotropic, could behave like a dynamical relaxation of the cosmological constant. Moreover, this mechanism appears to be self-regulatory, potentially leading to [...] Read more.
Previous studies have suggested that the back-reaction of super-Hubble cosmological fluctuations on a symmetric background space-time, with respect to being homogeneous and isotropic, could behave like a dynamical relaxation of the cosmological constant. Moreover, this mechanism appears to be self-regulatory, potentially leading to oscillatory behavior in the effective DE. Such an effect would occur in any cosmological model with super-Hubble matter fluctuations, including the standard ΛCDM model. Apart from that, recent DESI data, which indicate that DE may be dynamical, have renewed interest in exploring scenarios leading to such an oscillatory behavior. In this study, we propose a parameterization to account for the impact of super-Hubble fluctuations on the background energy density of the Universe. We model the total effective cosmological constant as the sum of a constant and an oscillating contribution. We performed a preliminary comparison of the background dynamics of this model with recent radial BAO data from DESI. We also discuss the status of the H0 tension problem in this model. Full article
(This article belongs to the Special Issue Symmetry and Cosmology)
Show Figures

Figure 1

37 pages, 5162 KB  
Article
Fourier–Gegenbauer Integral Galerkin Method for Solving the Advection–Diffusion Equation with Periodic Boundary Conditions
by Kareem T. Elgindy
Computation 2025, 13(9), 219; https://doi.org/10.3390/computation13090219 - 9 Sep 2025
Viewed by 949
Abstract
This study presents the Fourier–Gegenbauer integral Galerkin (FGIG) method, a new numerical framework that uniquely integrates Fourier series and Gegenbauer polynomials to solve the one-dimensional advection–diffusion (AD) equation with spatially symmetric periodic boundary conditions, achieving exponential convergence and reduced computational cost compared to [...] Read more.
This study presents the Fourier–Gegenbauer integral Galerkin (FGIG) method, a new numerical framework that uniquely integrates Fourier series and Gegenbauer polynomials to solve the one-dimensional advection–diffusion (AD) equation with spatially symmetric periodic boundary conditions, achieving exponential convergence and reduced computational cost compared to traditional methods. The FGIG method uniquely combines Fourier series for spatial periodicity and Gegenbauer polynomials for temporal integration within a Galerkin framework, resulting in highly accurate numerical and semi-analytical solutions. Unlike traditional approaches, this method eliminates the need for time-stepping procedures by reformulating the problem as a system of integral equations, reducing error accumulation over long-time simulations and improving computational efficiency. Key contributions include exponential convergence rates for smooth solutions, robustness under oscillatory conditions, and an inherently parallelizable structure, enabling scalable computation for large-scale problems. Additionally, the method introduces a barycentric formulation of the shifted Gegenbauer–Gauss (SGG) quadrature to ensure high accuracy and stability for relatively low Péclet numbers. This approach simplifies calculations of integrals, making the method faster and more reliable for diverse problems. Numerical experiments presented validate the method’s superior performance over traditional techniques, such as finite difference, finite element, and spline-based methods, achieving near-machine precision with significantly fewer mesh points. These results demonstrate its potential for extending to higher-dimensional problems and diverse applications in computational mathematics and engineering. The method’s fusion of spectral precision and integral reformulation marks a significant advancement in numerical PDE solvers, offering a scalable, high-fidelity alternative to conventional time-stepping techniques. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

23 pages, 699 KB  
Article
Evolutionary Optimisation of Runge–Kutta Methods for Oscillatory Problems
by Zacharias A. Anastassi
Mathematics 2025, 13(17), 2796; https://doi.org/10.3390/math13172796 - 31 Aug 2025
Cited by 1 | Viewed by 1114
Abstract
We propose a new strategy for constructing Runge–Kutta (RK) methods using evolutionary computation techniques, with the goal of directly minimising global error rather than relying on traditional local properties. This approach is general and applicable to a wide range of differential equations. To [...] Read more.
We propose a new strategy for constructing Runge–Kutta (RK) methods using evolutionary computation techniques, with the goal of directly minimising global error rather than relying on traditional local properties. This approach is general and applicable to a wide range of differential equations. To highlight its effectiveness, we apply it to two benchmark problems with oscillatory behaviour: the (2+1)-dimensional nonlinear Schrödinger equation and the N-Body problem (the latter over a long interval), which are central in quantum physics and astronomy, respectively. The method optimises four free coefficients of a sixth-order, eight-stage parametric RK scheme using a novel objective function that compares global error against a benchmark method over a range of step lengths. It overcomes challenges such as local minima in the free coefficient search space and the absence of derivative information of the objective function. Notably, the optimisation relaxes standard RK node bounds (ci[0,1]), leading to improved local stability, lower truncation error, and superior global accuracy. The results also reveal structural patterns in coefficient values when targeting high eccentricity and non-sinusoidal problems, offering insight for future RK method design. Full article
Show Figures

Figure 1

19 pages, 1200 KB  
Article
Wave Load Reduction and Tranquility Zone Formation Using an Elastic Plate and Double Porous Structures for Seawall Protection
by Gagan Sahoo, Harekrushna Behera and Tai-Wen Hsu
Mathematics 2025, 13(17), 2733; https://doi.org/10.3390/math13172733 - 25 Aug 2025
Viewed by 781
Abstract
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described [...] Read more.
This study presents an analytical model to reduce the impact of wave-induced forces on a vertical seawall by introducing a floating elastic plate (EP) located at a specific distance from two bottom-standing porous structures (BSPs). The hydrodynamic interaction with the EP is described using thin plate theory, while the fluid flow through the porous medium is described by the model developed by Sollit and Cross. The resulting boundary value problem is addressed through linear potential theory combined with the eigenfunction expansion method (EEM), and model validation is achieved through consistency checks with recognized results from the literature. A comprehensive parametric analysis is performed to evaluate the influence of key system parameters such as the porosity and frictional coefficient of the BSPs, their height and width, the flexural rigidity of the EP, and the spacing between the EP and BSPs on vital hydrodynamic coefficients, including the wave force on the seawall, free surface elevation, wave reflection coefficient, and energy dissipation coefficient. The results indicate that higher frictional coefficients and higher BSP heights significantly enhance wave energy dissipation and reduce reflection, in accordance with the principle of energy conservation. Oscillatory trends observed with respect to wavenumbers in the reflection and dissipation coefficients highlight resonant interactions between the structures. Moreover, compared with a single BSP, the double BSP arrangement is more effective in minimizing the wave force on the seawall and free surface elevation in the region between the EP and the wall, even when the total volume of porous material remains unchanged. The inter-structural gap is found to play a crucial role in optimizing resonance conditions and supporting the formation of a tranquility zone. Overall, the proposed configuration demonstrates significant potential for coastal protection, offering a practical and effective solution for reducing wave loads on marine infrastructure. Full article
Show Figures

Figure 1

45 pages, 11380 KB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 1033
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

18 pages, 1709 KB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 672
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

17 pages, 2533 KB  
Article
Oscillator-Based Processing Unit for Formant Recognition
by Tamás Rudner-Halász, Wolfgang Porod and Gyorgy Csaba
Information 2025, 16(7), 611; https://doi.org/10.3390/info16070611 - 16 Jul 2025
Viewed by 722
Abstract
Oscillatory neural networks have so far been successfully applied to a number of computing problems, such as associative memories, or to handle computationally hard tasks. In this paper, we show how to use oscillators to process time-dependent waveforms with minimal or no preprocessing. [...] Read more.
Oscillatory neural networks have so far been successfully applied to a number of computing problems, such as associative memories, or to handle computationally hard tasks. In this paper, we show how to use oscillators to process time-dependent waveforms with minimal or no preprocessing. Since preprocessing and first-layer processing are often the most power-hungry steps in neural networks, our findings may open new doors to simple and power-efficient edge-AI devices. Full article
(This article belongs to the Special Issue Neuromorphic Engineering and Machine Learning)
Show Figures

Figure 1

Back to TopTop