Oscillator-Based Processing Unit for Formant Recognition
Abstract
1. Introduction
2. Materials and Methods
2.1. Simulation of Coupled Ring Oscillators
2.2. Frequency-Based Computing
2.3. Vowel Database and Preprocessing
2.4. Vowel Recognition by Frequency-Based Computing
2.5. Optimization of Parameters
Gradient-Free Optimization
2.6. Time-Domain Vowel’s Effect on Oscillators
2.7. Integrating the ONN Layer with Traditional Neural Networks
3. Results
3.1. Vowel Recognition by Multi-Layered Oscillatory Neural Network
3.1.1. Choosing the Network Parameters for High-Accuracy Classification
3.1.2. Gradient-Free Optimization of Network Parameters
3.2. Recognition of Raw Vowel Waveforms Without Preprocessing
- If two oscillators do not have synchronized frequencies, then the output of their XOR’s duty signal will be constantly changing.
- If two oscillators are synchronized in frequency, then the output of their XOR’s duty signal will be constant over time
Performance on the Dataset
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Csaba, G.; Porod, W. Coupled oscillators for computing: A review and perspective. Appl. Phys. Rev. 2020, 7, 011302. [Google Scholar] [CrossRef]
- Todri-Sanial, A.; Delacour, C.; Abernot, M.; Sabo, F. Computing with oscillators from theoretical underpinnings to applications and demonstrators. npj Unconv. Comput. 2024, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Vadlamani, S.K.; Xiao, T.P.; Yablonovitch, E. Combinatorial optimization using the Lagrange primal-dual dynamics of parametric oscillator networks. Phys. Rev. Appl. 2024, 21, 044042. [Google Scholar] [CrossRef]
- Chou, J.; Bramhavar, S.; Ghosh, S.; Herzog, W. Analog coupled oscillator based weighted Ising machine. Sci. Rep. 2019, 9, 14786. [Google Scholar] [CrossRef] [PubMed]
- Hoppensteadt, F.C.; Izhikevich, E.M. Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans. Neural Netw. 2000, 11, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Velichko, A.A.; Ryabokon, D.V.; Khanin, S.D.; Sidorenko, A.V.; Rikkiev, A.G. Reservoir computing using high order synchronization of coupled oscillators. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 862, p. 052062. [Google Scholar]
- Shamsi, J.; Avedillo, M.J.; Linares-Barranco, B.; Serrano-Gotarredona, T. Oscillatory Hebbian Rule (OHR): An adaption of the Hebbian rule to Oscillatory Neural Networks. In Proceedings of the 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia, Spain, 18–20 November 2020; pp. 1–6. [Google Scholar]
- Rudner-Halász, T.; Porod, W.; Csaba, G. Design of oscillatory neural networks by machine learning. Front. Neurosci. 2024, 18, 1307525. [Google Scholar] [CrossRef] [PubMed]
- Scellier, B.; Bengio, Y. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Front. Comput. Neurosci. 2017, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Laydevant, J.; Marković, D.; Grollier, J. Training an ising machine with equilibrium propagation. Nat. Commun. 2024, 15, 3671. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wanjura, C.C.; Marquardt, F. Training coupled phase oscillators as a neuromorphic platform using equilibrium propagation. Neuromorph. Comput. Eng. 2024, 4, 034014. [Google Scholar] [CrossRef]
- Cetin, O. Accent recognition using a spectrogram image feature-based convolutional neural network. Arab. J. Sci. Eng. 2023, 48, 1973–1990. [Google Scholar] [CrossRef]
- Romera, M.; Talatchian, P.; Tsunegi, S.; Abreu Araujo, F.; Cros, V.; Bortolotti, P.; Trastoy, J.; Yakushiji, K.; Fukushima, A.; Kubota, H.; et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 2018, 563, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Nikonov, D.E.; Csaba, G.; Porod, W.; Shibata, T.; Voils, D.; Hammerstrom, D.; Young, I.A.; Bourianoff, G.I. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid-State Comput. Devices Circ. 2015, 1, 85–93. [Google Scholar] [CrossRef]
- Vassilieva, E.; Pinto, G.; de Barros, J.; Suppes, P. Learning Pattern Recognition Through Quasi-Synchronization of Phase Oscillators. IEEE Trans. Neural Netw. 2011, 22, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Crook, S.M.; Ermentrout, G.B.; Bower, J.M. Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators. Neural Comput. 1998, 10, 837–854. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Ott, E.; Restrepo, J.G. Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Phys. Rev. E 2010, 81, 046214. [Google Scholar] [CrossRef] [PubMed]
- Csaba, G.; Ytterdal, T.; Porod, W. Neural network based on parametrically-pumped oscillators. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 45–48. [Google Scholar]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hughes, T.W.; Williamson, I.A.; Minkov, M.; Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 2019, 5, eaay6946. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.T.Q. torchdiffeq GitHub Repository. 2018. Available online: https://github.com/rtqichen/torchdiffeq (accessed on 1 May 2025).
- Rapin, J.; Teytaud, O. Nevergrad-A Gradient-Free Optimization Platform. GitHub Repository. 2018. Available online: https://GitHub.com/FacebookResearch/Nevergrad (accessed on 1 May 2025).
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Ballo, A.; Pennisi, S.; Scotti, G.; Venezia, C. A 0.5 V sub-threshold CMOS current-controlled ring oscillator for IoT and implantable devices. J. Low Power Electron. Appl. 2022, 12, 16. [Google Scholar] [CrossRef]
- Tunheim, S.A.; Zheng, Y.; Jiao, L.; Shafik, R.; Yakovlev, A.; Granmo, O.C. An All-digital 65-nm Tsetlin Machine Image Classification Accelerator with 8.6 nJ per MNIST Frame at 60.3 k Frames per Second. arXiv 2025, arXiv:2501.19347. [Google Scholar]
Input | Layer #1 | Layer #2 | All | |
---|---|---|---|---|
# of neurons | 2 | 24 | 8 | 34 |
# of parameters | 0 | 24 | 8 | 32 |
# of couplings to next layer | 2 | 48 | 0 | 50 |
Circuit Element | Physical Parameter |
---|---|
C | 1.0 × F |
R | 2.0 × –2.7 × |
1.0 × | |
1.2 × – 2.2 × | |
(amplitude) | 1 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudner-Halász, T.; Porod, W.; Csaba, G. Oscillator-Based Processing Unit for Formant Recognition. Information 2025, 16, 611. https://doi.org/10.3390/info16070611
Rudner-Halász T, Porod W, Csaba G. Oscillator-Based Processing Unit for Formant Recognition. Information. 2025; 16(7):611. https://doi.org/10.3390/info16070611
Chicago/Turabian StyleRudner-Halász, Tamás, Wolfgang Porod, and Gyorgy Csaba. 2025. "Oscillator-Based Processing Unit for Formant Recognition" Information 16, no. 7: 611. https://doi.org/10.3390/info16070611
APA StyleRudner-Halász, T., Porod, W., & Csaba, G. (2025). Oscillator-Based Processing Unit for Formant Recognition. Information, 16(7), 611. https://doi.org/10.3390/info16070611