Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (272)

Search Parameters:
Keywords = orthophoto map

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5068 KiB  
Article
Estimating Household Green Space in Composite Residential Community Solely Using Drone Oblique Photography
by Meiqi Kang, Kaiyi Song, Xiaohan Liao and Jiayuan Lin
Remote Sens. 2025, 17(15), 2691; https://doi.org/10.3390/rs17152691 - 3 Aug 2025
Viewed by 117
Abstract
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total [...] Read more.
Residential green space is an important component of urban green space and one of the major indicators for evaluating the quality of a residential community. Traditional indicators such as the green space ratio only consider the relationship between green space area and total area of the residential community while ignoring the difference in the amount of green space enjoyed by household residents in high-rise and low-rise buildings. Therefore, it is meaningful to estimate household green space and its spatial distribution in residential communities. However, there are frequent difficulties in obtaining specific green space area and household number through ground surveys or consulting with property management units. In this study, taking a composite residential community in Chongqing, China, as the study site, we first employed a five-lens drone to capture its oblique RGB images and generated the DOM (Digital Orthophoto Map). Subsequently, the green space area and distribution in the entire residential community were extracted from the DOM using VDVI (Visible Difference Vegetation Index). The YOLACT (You Only Look At Coefficients) instance segmentation model was used to recognize balconies from the facade images of high-rise buildings to determine their household numbers. Finally, the average green space per household in the entire residential community was calculated to be 67.82 m2, and those in the high-rise and low-rise building zones were 51.28 m2 and 300 m2, respectively. Compared with the green space ratios of 65.5% and 50%, household green space more truly reflected the actual green space occupation in high- and low-rise building zones. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

23 pages, 8942 KiB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 276
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

19 pages, 8766 KiB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Viewed by 362
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

18 pages, 2930 KiB  
Article
Eye in the Sky for Sub-Tidal Seagrass Mapping: Leveraging Unsupervised Domain Adaptation with SegFormer for Multi-Source and Multi-Resolution Aerial Imagery
by Satish Pawar, Aris Thomasberger, Stefan Hein Bengtson, Malte Pedersen and Karen Timmermann
Remote Sens. 2025, 17(14), 2518; https://doi.org/10.3390/rs17142518 - 19 Jul 2025
Viewed by 301
Abstract
The accurate and large-scale mapping of seagrass meadows is essential, as these meadows form primary habitats for marine organisms and large sinks for blue carbon. Image data available for mapping these habitats are often scarce or are acquired through multiple surveys and instruments, [...] Read more.
The accurate and large-scale mapping of seagrass meadows is essential, as these meadows form primary habitats for marine organisms and large sinks for blue carbon. Image data available for mapping these habitats are often scarce or are acquired through multiple surveys and instruments, resulting in images of varying spatial and spectral characteristics. This study presents an unsupervised domain adaptation (UDA) strategy that combines histogram-matching with the transformer-based SegFormer model to address these challenges. Unoccupied aerial vehicle (UAV)-derived imagery (3-cm resolution) was used for training, while orthophotos from airplane surveys (12.5-cm resolution) served as the target domain. The method was evaluated across three Danish estuaries (Horsens Fjord, Skive Fjord, and Lovns Broad) using one-to-one, leave-one-out, and all-to-one histogram matching strategies. The highest performance was observed at Skive Fjord, achieving an F1-score/IoU = 0.52/0.48 for the leave-one-out test, corresponding to 68% of the benchmark model that was trained on both domains. These results demonstrate the potential of this lightweight UDA approach to generalization across spatial, temporal, and resolution domains, enabling the cost-effective and scalable mapping of submerged vegetation in data-scarce environments. This study also sheds light on contrast as a significant property of target domains that impacts image segmentation. Full article
(This article belongs to the Special Issue High-Resolution Remote Sensing Image Processing and Applications)
Show Figures

Figure 1

18 pages, 8486 KiB  
Article
An Efficient Downwelling Light Sensor Data Correction Model for UAV Multi-Spectral Image DOM Generation
by Siyao Wu, Yanan Lu, Wei Fan, Shengmao Zhang, Zuli Wu and Fei Wang
Drones 2025, 9(7), 491; https://doi.org/10.3390/drones9070491 - 11 Jul 2025
Viewed by 221
Abstract
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral [...] Read more.
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral cameras, as well as external disturbances such as strong wind gusts and abrupt changes in flight attitude, DLS data often become unreliable, particularly at UAV turning points. Building upon traditional angle compensation methods, this study proposes an improved correction approach—FIM-DC (Fitting and Interpolation Model-based Data Correction)—specifically designed for data collection under clear-sky conditions and stable atmospheric illumination, with the goal of significantly enhancing the accuracy of reflectance retrieval. The method addresses three key issues: (1) field tests conducted in the Qingpu region show that FIM-DC markedly reduces the standard deviation of reflectance at tie points across multiple spectral bands and flight sessions, with the most substantial reduction from 15.07% to 0.58%; (2) it effectively mitigates inconsistencies in reflectance within image mosaics caused by anomalous DLS readings, thereby improving the uniformity of DOMs; and (3) FIM-DC accurately corrects the spectral curves of six land cover types in anomalous images, making them consistent with those from non-anomalous images. In summary, this study demonstrates that integrating FIM-DC into DLS data correction workflows for UAV-based multispectral imagery significantly enhances reflectance calculation accuracy and provides a robust solution for improving image quality under stable illumination conditions. Full article
Show Figures

Figure 1

19 pages, 3187 KiB  
Article
Development of an Automated Crack Detection System for Port Quay Walls Using a Small General-Purpose Drone and Orthophotos
by Daiki Komi, Daisuke Yoshida and Tomohito Kameyama
Sensors 2025, 25(14), 4325; https://doi.org/10.3390/s25144325 - 10 Jul 2025
Viewed by 390
Abstract
Aging port infrastructure demands frequent and reliable inspections, yet the existing automated systems often require expensive industrial drones, posing significant adoption barriers for local governments with limited resources. To address this challenge, this study develops a low-cost, automated crack detection system for port [...] Read more.
Aging port infrastructure demands frequent and reliable inspections, yet the existing automated systems often require expensive industrial drones, posing significant adoption barriers for local governments with limited resources. To address this challenge, this study develops a low-cost, automated crack detection system for port quay walls utilizing orthophotos generated from a small general-purpose drone. The system employs the YOLOR (You Only Learn One Representation) object detection algorithm, enhanced by two novel image processing techniques—overlapping tiling and pseudo-altitude slicing—to overcome the resolution limitations of low-cost cameras. While official guidelines for port facilities designate 3 mm as an inspection threshold, our system is specifically designed to achieve a higher-resolution detection capability for cracks as narrow as 1 mm. This approach ensures reliable detection with a sufficient safety margin and enables the proactive monitoring of crack progression for preventive maintenance. The effectiveness of the proposed image processing techniques was validated, with an F1 score-based analysis revealing key trade-offs between maximizing detection recall and achieving a balanced performance depending on the chosen simulated altitude. Furthermore, evaluation using real-world inspection data demonstrated that the proposed system achieves a detection performance comparable to that of a well-established commercial system, confirming its practical applicability. Crucially, by mapping the detected cracks to real-world coordinates on georeferenced orthophotos, the system provides a foundation for advanced, data-driven asset management, allowing for the quantitative tracking of deterioration over time. These results confirm that the proposed workflow is a practical and sustainable solution for infrastructure monitoring. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 5921 KiB  
Article
Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization
by Tao Yang, Xintong Du, Bo Zhang, Xu Wang, Zhenpeng Zhang and Chundu Wu
Agriculture 2025, 15(14), 1479; https://doi.org/10.3390/agriculture15141479 - 10 Jul 2025
Viewed by 311
Abstract
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. [...] Read more.
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 6293 KiB  
Article
Restoring Anomalous Water Surface in DOM Product of UAV Remote Sensing Using Local Image Replacement
by Chunjie Wang, Ti Zhang, Liang Tao and Jiayuan Lin
Sensors 2025, 25(13), 4225; https://doi.org/10.3390/s25134225 - 7 Jul 2025
Viewed by 382
Abstract
In the production of a digital orthophoto map (DOM) from unmanned aerial vehicle (UAV)-acquired overlapping images, some anomalies such as texture stretching or data holes frequently occur in water areas due to the lack of significant textural features. These anomalies seriously affect the [...] Read more.
In the production of a digital orthophoto map (DOM) from unmanned aerial vehicle (UAV)-acquired overlapping images, some anomalies such as texture stretching or data holes frequently occur in water areas due to the lack of significant textural features. These anomalies seriously affect the visual quality and data integrity of the resulting DOMs. In this study, we attempted to eliminate the water surface anomalies in an example DOM via replacing the entire water area with an intact one that was clipped out from one single UAV image. The water surface scope and boundary in the image was first precisely achieved using the multisource seed filling algorithm and contour-finding algorithm. Next, the tie points were selected from the boundaries of the normal and anomalous water surfaces, and employed to realize their spatial alignment using affine plane coordinate transformation. Finally, the normal water surface was overlaid onto the DOM to replace the corresponding anomalous water surface. The restored water area had good visual effect in terms of spectral consistency, and the texture transition with the surrounding environment was also sufficiently natural. According to the standard deviations and mean values of RGB pixels, the quality of the restored DOM was greatly improved in comparison with the original one. These demonstrated that the proposed method had a sound performance in restoring abnormal water surfaces in a DOM, especially for scenarios where the water surface area is relatively small and can be contained in a single UAV image. Full article
(This article belongs to the Special Issue Remote Sensing and UAV Technologies for Environmental Monitoring)
Show Figures

Figure 1

23 pages, 51170 KiB  
Article
Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network
by Hao Xu, Li Wang, Bao Shu, Qin Zhang and Xinrui Li
Remote Sens. 2025, 17(13), 2150; https://doi.org/10.3390/rs17132150 - 23 Jun 2025
Viewed by 523
Abstract
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in [...] Read more.
Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in detecting these cracks. Therefore, this study proposes a comprehensive automated pipeline to enhance the efficiency and accuracy of landslide surface crack detection. First, high-resolution images of landslide areas are collected using unmanned aerial vehicles (UAVs) to generate a digital orthophoto map (DOM). Subsequently, building upon the U-Net architecture, an improved encoder–decoder semantic segmentation network (IEDSSNet) was proposed to segment surface cracks from the images with complex backgrounds. The model enhances the extraction of crack features by integrating residual blocks and attention mechanisms within the encoder. Additionally, it incorporates multi-scale skip connections and channel-wise cross attention modules in the decoder to improve feature reconstruction capabilities. Finally, post-processing techniques such as morphological operations and dimension measurements were applied to crack masks to generate crack inventories. The proposed method was validated using data from the Heifangtai loess landslide in Gansu Province. Results demonstrate its superiority over current state-of-the-art semantic segmentation networks and open-source crack detection networks, achieving F1 scores and IOU of 82.11% and 69.65%, respectively—representing improvements of 3.31% and 4.63% over the baseline U-Net model. Furthermore, it maintained optimal performance with demonstrated generalization capability under varying illumination conditions. In this area, a total of 1658 surface cracks were detected and cataloged, achieving an accuracy of 85.22%. The method proposed in this study demonstrates strong performance in detecting surface cracks in landslide areas, providing essential data for landslide monitoring, early warning systems, and mitigation strategies. Full article
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 567
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

21 pages, 8280 KiB  
Article
Segmentation of Multitemporal PlanetScope Data to Improve the Land Parcel Identification System (LPIS)
by Marco Obialero and Piero Boccardo
Remote Sens. 2025, 17(12), 1962; https://doi.org/10.3390/rs17121962 - 6 Jun 2025
Viewed by 725
Abstract
The 1992 reform of the European Common Agricultural Policy (CAP) introduced the Land Parcel Identification System (LPIS), a geodatabase of land parcels used to monitor and regulate agricultural subsidies. Traditionally, the LPIS has relied on high-resolution aerial orthophotos; however, recent advancements in very-high-resolution [...] Read more.
The 1992 reform of the European Common Agricultural Policy (CAP) introduced the Land Parcel Identification System (LPIS), a geodatabase of land parcels used to monitor and regulate agricultural subsidies. Traditionally, the LPIS has relied on high-resolution aerial orthophotos; however, recent advancements in very-high-resolution (VHR) satellite imagery present new opportunities to enhance its effectiveness. This study explores the feasibility of utilizing PlanetScope, a commercial VHR optical satellite constellation, to map agricultural parcels within the LPIS. A test was conducted in Umbria, Italy, integrating existing datasets with a series of PlanetScope images from 2023. A segmentation workflow was designed, employing the Normalized difference Vegetation Index (NDVI) alongside the Edge segmentation method with varying sensitivity thresholds. An accuracy evaluation based on geometric metrics, comparing detected parcels with cadastral references, revealed that a 30% scale threshold yielded the most reliable results, achieving an accuracy rate of 83.3%. The results indicate that the short revisit time of PlanetScope compensates for its lower spatial resolution compared to traditional orthophotos, allowing accurate delineation of parcels. However, challenges remain in automating parcel matching and integrating alternative methods for accuracy assessment. Further research should focus on refining segmentation parameters and optimizing PlanetScope’s temporal and spectral resolution to strengthen LPIS performance, ultimately fostering more sustainable and data-driven agricultural management. Full article
Show Figures

Figure 1

22 pages, 6458 KiB  
Article
A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches
by Silvia Merlino, Marco Paterni, Luciano Massetti, Luca Cocchi and Marina Locritani
Sustainability 2025, 17(11), 5048; https://doi.org/10.3390/su17115048 - 30 May 2025
Cited by 1 | Viewed by 533
Abstract
Research on the dynamic mechanisms driving the accumulation of anthropogenic marine debris (AMD) in highly dynamic environments, such as extensive sandy beaches, remains limited. Unmanned aerial vehicles (UAVs) can be used to map macro-marine litter in these environments over large temporal and spatial [...] Read more.
Research on the dynamic mechanisms driving the accumulation of anthropogenic marine debris (AMD) in highly dynamic environments, such as extensive sandy beaches, remains limited. Unmanned aerial vehicles (UAVs) can be used to map macro-marine litter in these environments over large temporal and spatial scales, but several challenges remain in their interpretation. In this study, secondary school students participated in a citizen science initiative, during which they identified, marked, and classified waste items using a series of UAV orthophotos collected along an 800 m extended Italian beach in different seasons. A specific training program and a collection of working tools were developed to support these activities, which were carried out under the constraints imposed by the COVID-19 pandemic. The accuracy of the citizen science approach was evaluated by comparing its results with standard in situ visual census surveys conducted in the same area. This methodology not only enabled an analysis of the temporal dynamics of AMD accumulation but also served an important educational function. The effectiveness of the learning experience was estimated using pre- and post-activity questionnaires. The results indicate a clear improvement in the students’ knowledge, interest, and awareness regarding marine litter, highlighting the potential of citizen science to both support environmental monitoring and promote sustainability education among younger generations. Full article
Show Figures

Figure 1

21 pages, 8045 KiB  
Article
A GIS-Based Decision Support Model (DSM) for Harvesting System Selection on Steep Terrain: Integrating Operational and Silvicultural Criteria
by Benno Eberhard, Zoran Trailovic, Natascia Magagnotti and Raffaele Spinelli
Forests 2025, 16(5), 854; https://doi.org/10.3390/f16050854 - 20 May 2025
Viewed by 394
Abstract
The goal of this study was to develop a GIS-based Decision Support Model for selecting the best timber harvesting systems on steep terrain. The model combines multiple layers, each representing an important factor in mechanized logging. These layers are used to create a [...] Read more.
The goal of this study was to develop a GIS-based Decision Support Model for selecting the best timber harvesting systems on steep terrain. The model combines multiple layers, each representing an important factor in mechanized logging. These layers are used to create a final map that functions as a spatially explicit Decision Support Model that helps decide which machines are best suited for different forest areas. A key idea of this study is to consider not only operational criteria (slope, ruggedness, wetness, and road accessibility), but also a fundamental silvicultural aspect, i.e., the assessment of tree growth classes to enable the integration of silvicultural deliberations into timber harvest planning. The data used for this model come from orthophoto image and a Digital Terrain Model (DTM). The operational factors were analyzed using GIS tools, while the silvicultural aspects were assessed using the deep learning algorithm DeepForest and tree growth equations (allometric functions). The model was tested by comparing its results with field data taken in a Norway Spruce stand in South Tyrol/Italy. The findings show that the model reliably evaluates operational factors. For silvicultural aspects, it tends to underestimate the number of small trees, but provides a good representation of tree size classes within a forest stand. The innovation of this method is that it relies on low-cost, open-source tools instead of expensive 3D scanning devices. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

27 pages, 15125 KiB  
Article
Detection of Agricultural Terraces Platforms Using Machine Learning from Orthophotos and LiDAR-Based Digital Terrain Model: A Case Study in Roya Valley of Southeast France
by Michael Vincent Tubog, Karine Emsellem and Stephane Bouissou
Land 2025, 14(5), 962; https://doi.org/10.3390/land14050962 - 29 Apr 2025
Cited by 1 | Viewed by 977
Abstract
Terraces have long transformed steep slopes into gradual steps, reducing erosion and enabling agriculture on marginal land. In France’s Roya Valley, these dry stone structures, neglected for decades, demonstrated remarkable resilience during storm Alex in October 2020. This prompted civil society and researchers [...] Read more.
Terraces have long transformed steep slopes into gradual steps, reducing erosion and enabling agriculture on marginal land. In France’s Roya Valley, these dry stone structures, neglected for decades, demonstrated remarkable resilience during storm Alex in October 2020. This prompted civil society and researchers to identify terraces that could support food security and agri-tourism initiatives. This study aimed to develop a semi-automatic method for detecting and mapping terraced areas using LiDAR and orthophoto data from French repositories, processed with GIS and analyzed through a Support Vector Machine (SVM) classification algorithm. The model identified 18 terraces larger than 1 hectare in Saorge and 35 in La Brigue. Field visits confirmed evidence of abandonment in several areas. Accuracy tests showed a user accuracy (UA) of 97% in Saorge and 72% in La Brigue. This disparity reflects site-specific differences, including terrain steepness, vegetation density, and data resolution. These results highlight the value of machine learning for terrace mapping while emphasizing the need to account for local geomorphological and data-quality factors to improve model performance. Enhanced terrace detection supports sustainable land management, agricultural revitalization, and risk mitigation in mountainous regions, offering practical tools for future landscape restoration and food resilience planning. Full article
Show Figures

Figure 1

23 pages, 1082 KiB  
Article
Driving Forces of Agricultural Land Abandonment: A Lithuanian Case
by Daiva Juknelienė, Viktorija Narmontienė, Jolanta Valčiukienė and Gintautas Mozgeris
Land 2025, 14(4), 899; https://doi.org/10.3390/land14040899 - 18 Apr 2025
Cited by 1 | Viewed by 756
Abstract
The abandonment of agricultural land is now considered one of the primary land use changes driven by complex interactions between social, economic, and environmental factors. To understand and manage this process, a holistic approach that integrates multidimensional methodologies and interactions is essential. This [...] Read more.
The abandonment of agricultural land is now considered one of the primary land use changes driven by complex interactions between social, economic, and environmental factors. To understand and manage this process, a holistic approach that integrates multidimensional methodologies and interactions is essential. This study examines the key driving factors behind agricultural land abandonment in Lithuania using two methodological approaches. First, seventeen highly qualified land management experts were surveyed, and their insights were analysed using in-depth qualitative interviews, focusing on agricultural land abandonment and its underlying factors. Second, the development of agricultural land abandonment in a representative Lithuanian municipality was modelled using Markov chain models, incorporating freely available geographic data as factors influencing land use transformation. Actual areas of abandoned agricultural land were mapped using orthophotos from 2012, 2018, and 2021, for both model development and validation. The importance of predictors in the model was then assessed in relation to their significance as drivers of agricultural land abandonment. The findings indicate that natural factors, such as the proximity of forests and topographical constraints, play a significant role in explaining land abandonment processes. Additionally, agricultural land abandonment is influenced by social, economic, and legal factors, including land ownership structures, migration, and infrastructure accessibility. The importance of soil quality, productivity, and the presence of nearby arable land was found to vary depending on data accuracy and local environmental conditions, highlighting the complexity of agricultural land use patterns. The chosen mixed-method approach, combining qualitative surveys with numerical spatial modelling, demonstrates potential for identifying critical land use areas and providing insights to improve land management policies and decision making. Full article
Show Figures

Figure 1

Back to TopTop