Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = orthogonal circular polarizations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 (registering DOI) - 31 Jul 2025
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 3371 KiB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 163
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

12 pages, 11398 KiB  
Article
Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields
by Shushan Zhou, Hao Wang, Yue Qiao, Nan Xu, Fuming Guo, Yujun Yang and Muhong Hu
Symmetry 2025, 17(6), 967; https://doi.org/10.3390/sym17060967 - 18 Jun 2025
Viewed by 333
Abstract
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized [...] Read more.
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized two-color laser pulses with a 1:3 frequency ratio. The polarization properties of the harmonics are governed by the interplay between the spatial symmetry of the driving field and the atomic potential. By numerically solving the time-dependent Schrödinger equation, we show that fine-tuning the relative phase and amplitude ratio between the fundamental and third-harmonic components enables selective symmetry breaking, resulting in the emission of elliptically and circularly polarized harmonics. Remarkably, we achieve near-perfect circular polarization (ellipticity ≈ 0.995) for the 5th harmonic, as well as highly circularly polarized 17th (0.945), 21st (0.96), and 23rd (0.935) harmonics, demonstrating a level of polarization control and efficiency that exceeds previous schemes. Our results highlight the advantage of using a 1:3 frequency ratio orthogonally polarized two-color laser field over the conventional 1:2 configuration, offering a promising route toward tunable attosecond light sources with tailored polarization characteristics. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

20 pages, 9378 KiB  
Article
Ultra-Wideband Passive Polarization Conversion Metasurface for Radar Cross-Section Reduction Across C-, X-, Ku-, and K-Bands
by Xiaole Ren, Yunqing Liu, Zhonghang Ji, Qiong Zhang and Wei Cao
Micromachines 2025, 16(3), 292; https://doi.org/10.3390/mi16030292 - 28 Feb 2025
Viewed by 1133
Abstract
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical [...] Read more.
In this study, we present a novel ultra-wideband passive polarization conversion metasurface (PCM) that integrates double V-shaped patterns with circular split-ring resonators. Operating without any external power supply or active components, this design effectively manipulates the polarization state of incident electromagnetic waves. Numerical and experimental results demonstrate that the proposed PCM can convert incident linear polarization into orthogonal states across a wide frequency range of 7.1–22.3 GHz, encompassing the C-, X-, Ku-, and K-bands. A fabricated prototype confirms that the polarization conversion ratio (PCR) exceeds 90% throughout the specified band. Furthermore, we explore an additional application of this passive metasurface for electromagnetic stealth, wherein it achieves over 10 dB of monostatic radar cross-section (RCS) reduction from 7.6 to 21.5 GHz. This broad effectiveness is attributed to strong electromagnetic resonances between the top and bottom layers, as well as the Fabry–Pérot cavity effect, as evidenced by detailed analyses of the underlying physical mechanisms and induced surface currents. These findings confirm the effectiveness of the proposed design and highlight its potential for future technological applications, including 6G communications, radar imaging, anti-interference measures, and electromagnetic stealth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

12 pages, 3533 KiB  
Article
Bessel Beams in Gyroanisotropic Crystals with Optical Activity
by Yuriy Egorov, Bogdan Sokolenko, Aziz Aliev, Ruslan Dzhemalyadinov, Ervin Umerov and Alexander Rubass
Physics 2025, 7(1), 6; https://doi.org/10.3390/physics7010006 - 10 Feb 2025
Viewed by 1166
Abstract
Using a Bessel beam as an example, it is shown that such a beam with the initial circular polarization, propagating through an optically active medium devoid of linear birefringence, generates an optical vortex in the orthogonally polarized component. It is shown that a [...] Read more.
Using a Bessel beam as an example, it is shown that such a beam with the initial circular polarization, propagating through an optically active medium devoid of linear birefringence, generates an optical vortex in the orthogonally polarized component. It is shown that a medium with genuine optical activity allows the mutual conversion of beams with radial and azimuthal polarization distributions. It is also shown that a considerably weak perturbation of a medium with genuine optical activity by linear birefringence leads to the destruction of an isotropic point. In the vicinity of this point, the optical activity is suppressed by linear birefringence, so that a medium with a combined type of anisotropy responds as a medium with genuine linear birefringence. The structure of the fields of the eigenmodes of Bessel beams in a birefringent uniaxial crystal with optical activity is similar to the structure of the modes of a medium with genuine optical activity. The findings of the current study are believed to expand the understanding of physical processes in the developing field of polarization and the phase profilometry of materials. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

12 pages, 2891 KiB  
Article
Dual-Band Multi-Layer Antenna Array with Circular Polarization and Gain Enhancement for WLAN and X-Band Applications
by Bal S. Virdee, Tohid Aribi and Tohid Sedghi
Micromachines 2025, 16(2), 203; https://doi.org/10.3390/mi16020203 - 10 Feb 2025
Viewed by 972
Abstract
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes [...] Read more.
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes radiation distortion and cross-polarization while introducing orthogonal phase shifts to achieve circular polarization (CP) at the X-band. A Fabry–Pérot structure, strategically placed above the array, enhances gain in the WLAN band. The antenna demonstrates an impedance bandwidth of 1.8 GHz (S11 < −10 dB) at the WLAN band, with 36% fractional bandwidth, and 4.3 GHz at the X-band, with 43% fractional bandwidth. Measured peak gains are 7 dBi for the WLAN band and 6.8 dBi for the X-band, with favourable S11 levels, omni-directional radiation patterns, and consistent gain across both bands. Circular polarization is achieved within 8.5–10.4 GHz. Experimental results confirm the array’s significant advancements in multi-band performance, making it highly suitable for diverse wireless communication applications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

11 pages, 9562 KiB  
Article
Enhanced Radiation in a Millimeter-Wave Circularly Polarized On-Chip Bowtie Antenna Using a Low-Cost PCB Package
by Yanjun Wang, Jiasheng Liang, Aguan Hong, Xiang Yi, Pei Qin, Haoshen Zhu, Wenquan Che and Quan Xue
Electronics 2025, 14(4), 642; https://doi.org/10.3390/electronics14040642 - 7 Feb 2025
Viewed by 865
Abstract
This paper presents a circularly polarized on-chip antenna (OCA) operating in the D-band for a fully integrated bidirectional transceiver in TSMC 40 nm bulk CMOS process. Circular polarization is achieved by arranging two pairs of antennas in an orthogonal configuration. The target [...] Read more.
This paper presents a circularly polarized on-chip antenna (OCA) operating in the D-band for a fully integrated bidirectional transceiver in TSMC 40 nm bulk CMOS process. Circular polarization is achieved by arranging two pairs of antennas in an orthogonal configuration. The target design at 145 GHz features a compact hybrid structure that integrates a bowtie antenna with a PCB package. This configuration not only shields the antenna from environmental interference but also improves its radiation efficiency. The proposed OCA demonstrates a simulated gain of −1.4 dBi and a radiation efficiency of 32% at 145 GHz, along with a compact footprint of 0.4 × 0.4 mm2. To further enhance radiation efficiency and gain, the antenna elements are integrated into chip arrays. The OCA design presented in this work addresses key objectives in system design, including compactness, cost-effectiveness, and compatibility with existing technologies. Full article
Show Figures

Figure 1

36 pages, 55356 KiB  
Article
High-Gain Miniaturized Multi-Band MIMO SSPP LWA for Vehicular Communications
by Tale Saeidi, Sahar Saleh, Nick Timmons, Christopher McDaid, Ahmed Jamal Abdullah Al-Gburi, Faroq Razzaz and Saeid Karamzadeh
Technologies 2025, 13(2), 66; https://doi.org/10.3390/technologies13020066 - 4 Feb 2025
Cited by 1 | Viewed by 1650
Abstract
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a [...] Read more.
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a periodic Spoof Surface Plasmon Polariton Transmission Line (SSPP-TL) and logarithmic-spiral-like semi-circular strip patches parasitically fed via orthogonal ports. These design elements facilitate stable impedance matching and wide impedance bandwidths across operating bands, which is essential for vehicular networks. The hybrid combination of leaky wave and SSPP structures, along with a defected wide-slot ground structure and backside meander lines, enhances radiation characteristics by reducing back and bidirectional radiation. Additionally, a naturalization network incorporating chamfered-edge meander lines minimizes mutual coupling and introduces a fourth radiation mode at 80 GHz. Compact in size (14 × 12 × 0.25 mm3), the antenna achieves high-performance metrics, including S11 < −18.34 dB, dual-polarization, peak directive gains of 11.6 dBi (free space) and 14.6 dBi (on vehicles), isolation > 27 dB, Channel Capacity Loss (CCL) < 3, Envelope Correlation Coefficient (ECC) < 0.001, axial ratio < 2.25, and diversity gain (DG) > 9.85 dB. Extensive testing across various vehicular scenarios confirms the antenna’s robustness for Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication. Its exceptional performance ensures seamless connectivity with mobile networks and enhances safety through Specific Absorption Rate (SAR) compliance. This compact, high-performance antenna is a transformative solution for connected and autonomous vehicles, addressing critical challenges in modern automotive communication networks and paving the way for reliable and efficient vehicular communication systems. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

16 pages, 8249 KiB  
Technical Note
Impact Analysis of Orthogonal Circular-Polarized Interference on GNSS Spatial Anti-Jamming Array
by Ke Zhang, Xiangjun Li, Lei Chen, Zengjun Liu and Yuchen Xie
Remote Sens. 2024, 16(23), 4506; https://doi.org/10.3390/rs16234506 - 1 Dec 2024
Cited by 4 | Viewed by 1092
Abstract
With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circularly polarized (RHCP) anti-jamming array. This paper proposes [...] Read more.
With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circularly polarized (RHCP) anti-jamming array. This paper proposes a receiving signal model for orthogonal circularly polarized (OCP) interference signals based on conventional arrays, following an analysis of the non-ideal characteristics of actual arrays. Furthermore, the mechanism by which OCP interference signals affect anti-jamming performance is examined. Power inversion (PI) and linear constrained minimum variance (LCMV) techniques, applied to both uniform linear arrays and central circular arrays, are utilized to verify the impact of these interference signals. Simulation and physical testing demonstrate that OCP interference significantly affects the interference subspace of the conventional RHCP array, potentially leading to a reduction in the anti-jamming performance of the receiver. To effectively suppress multi-polarization interference, anti-jamming GNSS receivers must either ensure the consistency of cross-polarization among the elements of the array or adopt polarization-sensitive arrays. Full article
Show Figures

Figure 1

8 pages, 2697 KiB  
Communication
Generation of Polarization Independent Ring-Airy Beam Based on Metasurface
by Zhenhua Li, Sen Wang, Xing Li, Lei Xu, Wenhui Dong, Hanping Liu, Huilan Liu and Kang Xu
Photonics 2024, 11(9), 858; https://doi.org/10.3390/photonics11090858 - 12 Sep 2024
Cited by 1 | Viewed by 1189
Abstract
In this paper, we generated polarization-independent ring-Airy beams by designing metasurfaces that can realize modulations of both phase and amplitude. In numerical simulation, such metasurfaces are designed by placing subwavelength rectangular slits in Au film uniformly. Two orthogonal types of slits, with orientation [...] Read more.
In this paper, we generated polarization-independent ring-Airy beams by designing metasurfaces that can realize modulations of both phase and amplitude. In numerical simulation, such metasurfaces are designed by placing subwavelength rectangular slits in Au film uniformly. Two orthogonal types of slits, with orientation angles of 45 and −45 degrees, are used to obtain the binary phase profile in the light transmitted from the metasurface under illumination with either right circular polarization (RCP) or left circular polarization (LCP). This satisfies the phase required for Airy beam generation. Meanwhile, the difference between the phase profile under RCP illumination and that under LCP illumination is right 2π, which can be regarded as the same. This makes the metasurface available to generate Airy beams regardless of incident polarization. We also analyzed the auto-focusing, self-healing, and frequency-response properties of the generated Airy beams with different parameters. This work opens up more opportunities for applications of Airy beams. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

10 pages, 7497 KiB  
Communication
Dual-Band Antenna with Pattern and Polarization Diversity
by Jungmin Mo and Youngje Sung
Sensors 2024, 24(15), 5008; https://doi.org/10.3390/s24155008 - 2 Aug 2024
Cited by 1 | Viewed by 1324
Abstract
This study proposes a pattern–diversity antenna with different radiation patterns at two different frequency bands (f1 and f2; f1: broadside radiation pattern, f2: conical radiation pattern). The proposed structure consists of a central circular antenna [...] Read more.
This study proposes a pattern–diversity antenna with different radiation patterns at two different frequency bands (f1 and f2; f1: broadside radiation pattern, f2: conical radiation pattern). The proposed structure consists of a central circular antenna and two annular ring antennas, with each of the antennas having individual ports. Two of the ports (port 1 and port 3) exhibit orthogonal broadside radiation patterns at low bands, and the other two ports (port 1 and port 2) exhibit orthogonal conical radiation patterns at high bands. Thus, they have polarization diversity characteristics. To improve isolation between the ports, the inner part of the annular ring antennas is shorted by an array, and the outermost port is positioned orthogonal to the other ports. Using this configuration, the isolation values between the ports are −26.7 and −30.1 dB at the two frequency bands, respectively. Using the fabricated prototype, experimental results show that the proposed antenna achieves −10 dB bandwidths of 240 MHz (5.71–5.95 GHz) and 210 MHz (7.69–7.9 GHz) at f1 and f2, respectively. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

11 pages, 5628 KiB  
Communication
Circularly Polarized Vivaldi Antennas Integrated with Septum-like Polarizer
by Ilkyu Kim, Sun-Gyu Lee, Yong-Hyun Nam and Jeong-Hae Lee
Sensors 2024, 24(13), 4346; https://doi.org/10.3390/s24134346 - 4 Jul 2024
Cited by 1 | Viewed by 1879
Abstract
In this paper, two orthogonally placed Vivaldi antennas with a septum-like polarizer to generate circular polarized (CP) waves are presented. Septum polarizers have garnered attention due to their simple structure and high quality of CP waves. While a typical septum polarizer has been [...] Read more.
In this paper, two orthogonally placed Vivaldi antennas with a septum-like polarizer to generate circular polarized (CP) waves are presented. Septum polarizers have garnered attention due to their simple structure and high quality of CP waves. While a typical septum polarizer has been applied to various types of waveguides, its applicability to the substrate integrated Vivaldi antenna is demonstrated here for the first time. A pulse train-shaped polarizer is used, which is placed on one of the two Vivaldi antennas. The contours of the polarizer are optimized using a genetic algorithm to provide an equal amplitude and 90° phase difference between the two orthogonal electric fields. In contrast to typical feed networks with a 90° phase shifter, any unwanted loss caused by an electronic circuit can be greatly mitigated. The antenna prototype was fabricated, and its radiation pattern and impedance matching were measured and compared to the simulated results. Full article
(This article belongs to the Special Issue Novel Antennas for Wireless Communication and Intelligent Sensing)
Show Figures

Figure 1

29 pages, 1891 KiB  
Review
Decoding the Nature of Coherent Radio Emission in Pulsars I: Observational Constraints
by Dipanjan Mitra, Rahul Basu and George I. Melikidze
Universe 2024, 10(6), 248; https://doi.org/10.3390/universe10060248 - 3 Jun 2024
Cited by 5 | Viewed by 2103
Abstract
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of [...] Read more.
Radio observations from normal pulsars indicate that the coherent radio emission is excited by curvature radiation from charge bunches. In this review, we provide a systematic description of the various observational constraints on the radio emission mechanism. We have discussed the presence of highly polarized time samples where the polarization position angle follow two orthogonal well-defined tracks across the profile that closely match the rotating vector model in an identical manner. The observations also show the presence of circular polarization, with both the right and left handed circular polarization seen across the profile. Other constraints on the emission mechanism are provided by the detailed measurements of the spectral index variation across the profile window, where the central part of the profile, corresponding to the core component, has a steeper spectrum than the surrounding cones. Finally, the detailed measurements of the subpulse drifting behaviour can be explained by considering the presence of non-dipolar field on the stellar surface and the formation of the partially screened gap (PSG) above the polar cap region. The PSG gives rise to a non-stationary plasma flow that has a multi-component nature, consisting of highly energetic primary particles, secondary pair plasma, and iron ions discharged from the surface, with large fragmentation resulting in dense plasma clouds and lower-density inter-cloud regions. The physical properties of the outflowing plasma and the observational constraints lead us to consider coherent curvature radiation as the most viable explanation for the emission mechanism in normal pulsars, where propagation effects due to adiabatic walking and refraction are largely inconsequential. Full article
(This article belongs to the Special Issue A New Horizon of Pulsar and Neutron Star: The 55-Year Anniversary)
Show Figures

Figure 1

15 pages, 10765 KiB  
Article
Dual-Polarization Conversion and Coding Metasurface for Wideband Radar Cross-Section Reduction
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Yibo Huang, Wang Yun and Muhammad Ishfaq
Photonics 2024, 11(5), 454; https://doi.org/10.3390/photonics11050454 - 11 May 2024
Cited by 5 | Viewed by 2077
Abstract
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into [...] Read more.
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into their orthogonal counterpart within frequency bands of 12.37–13.03 GHz and 18.96–32.37 GHz, achieving a polarization conversion ratio exceeding 99%. Furthermore, it enables linear-to-circular polarization conversion from 11.80 to 12.29, 13.17 to 18.44, and 33.33 to 40.35 GHz. A second element is produced by rotating a fundamental component by 90°, introducing a phase difference of π (pi) between them. Both elements are arranged in an array using a random aperiodic coding sequence to create a 1-bit CM for reducing the radar cross-section (RCS). The planar structure achieved over 10 dB RCS reduction for polarized waves in the frequency bands of 13.1–13.8 GHz and 20.4–30.9 GHz. A prototype was fabricated and tested, with the experimental results showing a good agreement with the simulated outcomes. The proposed design holds potential applications in radar systems, reflector antennas, stealth technologies, and satellite communication. Full article
Show Figures

Figure 1

15 pages, 3488 KiB  
Article
A Two-Port Dual-Band Dual-Circularly-Polarized Dielectric Resonator Antenna
by Thai Van Trinh, Son Trinh-Van, Kang-Yoon Lee, Younggoo Yang and Keum Cheol Hwang
Appl. Sci. 2024, 14(10), 4062; https://doi.org/10.3390/app14104062 - 10 May 2024
Cited by 3 | Viewed by 1564
Abstract
This paper presents the design of a two-port dual-band dual-circularly-polarized dielectric resonator antenna (DRA). The proposed DRA is formed by stacking two dielectric resonators (DRs) of different shapes, including a hexagonal DR on top and a cross-shaped DR on the bottom. It is [...] Read more.
This paper presents the design of a two-port dual-band dual-circularly-polarized dielectric resonator antenna (DRA). The proposed DRA is formed by stacking two dielectric resonators (DRs) of different shapes, including a hexagonal DR on top and a cross-shaped DR on the bottom. It is designed to resonate at two near-degenerate orthogonal modes of TE111 and TE113, and an aperture-coupled feeding through a cross-like slot is used to achieve dual-band impedance matching simultaneously for right- and left-handed circular polarizations. Tests were conducted on a prototype working in C-band to verify the design concept. The experiment results demonstrate that the proposed DRA has exceptional performance with measured −10 dB reflection bandwidths of 24.4% and 17.4%, 3 dB axial ratio bandwidths of 21.2% and 16.3%, and maximum gains of 5.64 and 8.13 dBic for the lower and upper bands, respectively. Moreover, the measured channel isolation is more than 15.8 dB. The results obtained from the experiments show good agreement with the simulation, and hence, it can be concluded that the proposed DRA is a promising solution that can be used for various wireless communication applications. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop