Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (888)

Search Parameters:
Keywords = organs-on-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6405 KiB  
Article
PDMS Membranes Drilled by Proton Microbeam Writing: A Customizable Platform for the Investigation of Endothelial Cell–Substrate Interactions in Transwell-like Devices
by Vita Guarino, Giovanna Vasco, Valentina Arima, Rosella Cataldo, Alessandra Zizzari, Elisabetta Perrone, Giuseppe Gigli and Maura Cesaria
J. Funct. Biomater. 2025, 16(8), 274; https://doi.org/10.3390/jfb16080274 - 28 Jul 2025
Viewed by 728
Abstract
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering [...] Read more.
Cell migration assays provide valuable insights into pathological conditions, such as tumor metastasis and immune cell infiltration, and the regenerative capacity of tissues. In vitro tools commonly used for cell migration studies exploit commercial transwell systems, whose functionalities can be improved through engineering of the pore pattern. In this context, we propose the fabrication of a transwell-like device pursued by combining the proton beam writing (PBW) technique with wet etching onto thin layers of polydimethylsiloxane (PDMS). The resulting transwell-like device incorporates a PDMS membrane with finely controllable pore patterning that was used to study the arrangement and migration behavior of HCMEC/D3 cells, a well-established human brain microvascular endothelial cell model widely used to study vascular maturation in the brain. A comparison between commercial polycarbonate membranes and the PBW-holed membranes highlights the impact of the ordering of the pattern and porosity on cellular growth, self-organization, and transmigration by combining fluorescent microscopy and advanced digital processing. Endothelial cells were found to exhibit distinctive clustering, alignment, and migratory behavior close to the pores of the designed PBW-holed membrane. This is indicative of activation patterns associated with cytoskeletal remodeling, a critical element in the angiogenic process. This study stands up as a novel approach toward the development of more biomimetic barrier models (such as organ-on-chips). Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Viewed by 277
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 174
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

53 pages, 2035 KiB  
Systematic Review
Brain Organoid Transplantation: A Comprehensive Guide to the Latest Advances and Practical Applications—A Systematic Review
by Yu-Ping Shen and Zaal Kokaia
Cells 2025, 14(14), 1074; https://doi.org/10.3390/cells14141074 - 14 Jul 2025
Viewed by 1108
Abstract
Brain organoid technology has seen significant development in recent years. This self-organized, three-dimensional, organ-oriented brain tissue model can recapitulate the process of neurogenesis and consists of diverse cell types and cellular architecture. Transplanting brain organoids in vivo could be a potential tool from [...] Read more.
Brain organoid technology has seen significant development in recent years. This self-organized, three-dimensional, organ-oriented brain tissue model can recapitulate the process of neurogenesis and consists of diverse cell types and cellular architecture. Transplanting brain organoids in vivo could be a potential tool from bench to clinical research and has been studied for many purposes. To investigate and summarize the methodology, findings, and applications of this novel technique from current evidence, we conducted this systematic review by searching PubMed and the Embase databases for the literature ranging from 2013 to 2024. A total of 480 articles were identified, and 24 of them met the inclusion criteria. The results revealed that brain organoid transplantation had promising graft survival, neural proliferation, differentiation, and maturation, axonal growth, and functional integration into the host neuronal circuit, and has been applied to multiple applications, such as therapeutic usage, cell study platforms, and disease modeling. However, heterogeneity among studies, some significant challenges, and ethical issues remain to be considered. This comprehensive review will provide an update of what is known about this powerful, innovative method and discuss some practical aspects for future research. Full article
(This article belongs to the Special Issue 3D Cultures and Organ-on-a-Chip in Cell and Tissue Cultures)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 376
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

22 pages, 1224 KiB  
Review
Next-Generation Cancer Models for Drug Testing: Recent Advances in Immunocompetent Microphysiological Systems
by Marlene Große, Martin Burchardt and Pedro Caetano Pinto
Future Pharmacol. 2025, 5(3), 36; https://doi.org/10.3390/futurepharmacol5030036 - 7 Jul 2025
Viewed by 409
Abstract
The success of checkpoint inhibitors in improving cancer patient survival has demonstrated the therapeutic potential of immunotherapies. This advancement has reshaped oncology treatment and driven interest in harnessing immune modulation for a wider range of diseases. However, developing drugs that modulate immune activity [...] Read more.
The success of checkpoint inhibitors in improving cancer patient survival has demonstrated the therapeutic potential of immunotherapies. This advancement has reshaped oncology treatment and driven interest in harnessing immune modulation for a wider range of diseases. However, developing drugs that modulate immune activity presents unique challenges. A major limitation in preclinical research is the inefficiency of testing human-specific immune targets in animal models, which often fail to translate to clinical outcomes. Additionally, conventional in vitro systems lack immune reactivity due to their static and monocellular nature, limiting their predictive value. Advanced in vitro models can bridge this gap by offering increasingly relevant human physiology for testing drug efficacy and safety, along with absorption, distribution, metabolism, and excretion (ADME). In particular, immune-competent spheroids, organoids, and organs-on-a-chip (OoC) have emerged as promising tools. Although still in their infancy, these microphysiological systems (MPSs) have demonstrated the feasibility of replicating immune responses ex vivo, providing a new avenue for studying immune-targeting drugs with higher translational potential. In this review, we explore recent advances in immune-competent organoid and OoC models, highlighting their capabilities and limitations. We provide a perspective on their applications for cancer drug testing, discussing how these systems could refine preclinical immuno-oncology research and accelerate the development of next-generation immunotherapies. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2025)
Show Figures

Figure 1

23 pages, 4011 KiB  
Review
Current Advances and Future Perspectives of Liver-on-a-Chip Platforms Incorporating Dynamic Fluid Flow
by Jingyeong Yun, Tae-Joon Jeon and Sun Min Kim
Biomimetics 2025, 10(7), 443; https://doi.org/10.3390/biomimetics10070443 - 4 Jul 2025
Viewed by 545
Abstract
The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum [...] Read more.
The liver is a vital organ responsible for a broad range of metabolic functions, including glucose and lipid metabolism, detoxification, and protein synthesis. Its structural complexity, characterized by hexagonal hepatic lobules composed of diverse parenchymal and non-parenchymal cell types, supports its broad spectrum of physiological activities. Traditional in vitro liver models have contributed significantly to our understanding of hepatic biology and the development of therapies for liver-related diseases. However, static culture systems fail to replicate the dynamic in vivo microenvironment, particularly the continuous blood flow and shear stress that are critical for maintaining hepatocyte function and metabolic zonation. Recent advances in microphysiological systems (MPS) incorporating dynamic fluid flow have addressed these limitations by providing more physiologically relevant platforms for modeling liver function. These systems offer improved fidelity for applications in drug screening, toxicity testing, and disease modeling. Furthermore, the integration of liver MPS with other organ models in multi-organ-on-chip platforms has enabled the investigation of inter-organ crosstalk, enhancing the translational potential of in vitro systems. This review summarizes recent progress in the development of dynamic liver MPS, highlights their biomedical applications, and discusses future directions for creating more comprehensive and predictive in vitro models. Full article
(This article belongs to the Special Issue Organ-on-a-Chip Platforms for Drug Delivery and Tissue Engineering)
Show Figures

Figure 1

18 pages, 1467 KiB  
Article
Volume of Fluid (VOF) Method as a Suitable Method for Studying Droplet Formation in a Microchannel
by Felipe Santos Paes da Silva and Paulo Noronha Lisboa-Filho
Micromachines 2025, 16(7), 757; https://doi.org/10.3390/mi16070757 - 27 Jun 2025
Viewed by 452
Abstract
Microfluidics is a rapidly advancing field focused on optimizing microdevices for applications such as organ-on-a-chip systems and enhancing laboratory analyses. Understanding the physical parameters of droplet generation is crucial for these devices. Computational fluid dynamics (CFD) techniques are essential for providing insights into [...] Read more.
Microfluidics is a rapidly advancing field focused on optimizing microdevices for applications such as organ-on-a-chip systems and enhancing laboratory analyses. Understanding the physical parameters of droplet generation is crucial for these devices. Computational fluid dynamics (CFD) techniques are essential for providing insights into the limitations and efficiency of numerical methods for studying fluid dynamics and improving our understanding of various application conditions. However, the influence of different numerical methods on the analysis of physical parameters in problems involving droplet generation in microchannels remains an area of ongoing research. This study implements the Volume of Fluid (VOF) method to investigate key physical parameters, including droplet size and the effect of the capillary number on fluid regimes, in droplet generation within a microchannel featuring a T-junction geometry. We compare the VOF method with the widely used Level Set Method (LSM) to evaluate its suitability for this context. The results show that the VOF method agrees with the LSM in fundamental outcomes, such as the reduction in droplet diameter as the flow rate ratio increases and the identification of the capillary number’s influence on fluid regime classification. The VOF method provides a clearer understanding of transitions between fluid regimes by detecting stages of non-uniformity in droplet size. It identifies a transition region between regimes with variations in droplet size, proving to be effective at mapping fluid flow regimes. This study highlights the potential of the VOF method in offering more detailed insights into instabilities and transitions between fluid regimes at the microscale. Full article
Show Figures

Figure 1

24 pages, 2570 KiB  
Article
A Preliminary Model for Forestry Machinery Chain Selection and Calculation of Operating Costs for Wood Recovery
by Luca Nonini, Daniele Cavicchioli and Marco Fiala
Forests 2025, 16(7), 1069; https://doi.org/10.3390/f16071069 - 27 Jun 2025
Viewed by 347
Abstract
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery [...] Read more.
Selecting the most suitable machines to use for wood recovery is essential for computing the operating costs of the whole forestry machinery chain (FMC). Nevertheless, a generalized approach for selecting the most suitable FMC and quantifying the corresponding economic performances for wood recovery (i.e., harvesting and long-distance transport) is still missing. The primary aim of this study is to describe a decision support model, called FOREstry MAchinery chain selection (“FOREMA v1”), which is able to (i) select the most feasible FMC and (ii) calculate the costs (such as EUR∙h−1; EUR∙t−1 of dry matter, DM) of each operation (OP) comprising the FMC. The model is made up of three different modules (Ms): machinery chain selection (M1), machinery chain organization (M2), and cost calculation (M3). In M1, feasible FMCs are defined according to seven technical parameters that characterize the forest area. For each FMC, FOREMA v1 defines the sequence of OPs and the types of machines that can potentially be used. Once the characteristics of the area in which wood recovery occurs are processed, the user selects the types of machines to use according to the model’s suggestions. In M2 and M3, the user is supported in organizing the FMC (e.g., calculation of the required time, working productivity, and so on) and computing the operating costs. The secondary aim of this study is to discuss a case study focused on chips production for energy generation, providing empirical evidence on how FOREMA v1 works. The proposed model provides a systematic approach for the selection and optimization of the most suitable FMC to adopt for biomass recovery, thus supporting decision-making processes. The results showed that felling had the lowest cost per unit of time (63.7 EUR·h−1) but the highest cost per unit of mass (35.4 EUR·t DM−1) due to its longer working time and lower productivity. Loading and long-distance transport incurred the highest costs both per unit of time (223.5 EUR·h−1) and per unit of mass (29.4 EUR·t DM−1), attributed to the use of medium–small-sized trailers coupled with tractors operating at low speeds, leading to a high number of cycles. For the entire FMC the costs were equal to 147.3 EUR·h−1 and 101.1 EUR·t DM−1. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

110 pages, 4617 KiB  
Review
Exploring Experimental Models of Colorectal Cancer: A Critical Appraisal from 2D Cell Systems to Organoids, Humanized Mouse Avatars, Organ-on-Chip, CRISPR Engineering, and AI-Driven Platforms—Challenges and Opportunities for Translational Precision Oncology
by Ahad Al-Kabani, Bintul Huda, Jewel Haddad, Maryam Yousuf, Farida Bhurka, Faika Ajaz, Rajashree Patnaik, Shirin Jannati and Yajnavalka Banerjee
Cancers 2025, 17(13), 2163; https://doi.org/10.3390/cancers17132163 - 26 Jun 2025
Viewed by 2354
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a major global health burden, marked by complex tumor–microenvironment interactions, genetic heterogeneity, and varied treatment responses. Effective preclinical models are essential for dissecting CRC biology and guiding personalized therapeutic strategies. This review aims to critically evaluate current experimental [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a major global health burden, marked by complex tumor–microenvironment interactions, genetic heterogeneity, and varied treatment responses. Effective preclinical models are essential for dissecting CRC biology and guiding personalized therapeutic strategies. This review aims to critically evaluate current experimental CRC models, assessing their translational relevance, limitations, and potential for integration into precision oncology. Methods: A systematic literature search was conducted across PubMed, Scopus, and Web of Science, focusing on studies employing defined in vitro, in vivo, and emerging integrative CRC models. Studies were included based on experimental rigor and relevance to therapeutic or mechanistic investigation. Models were compared based on molecular fidelity, tumorigenic capacity, immune interactions, and predictive utility. Results: CRC models were classified into in vitro (2D cell lines, spheroids, patient-derived organoids), in vivo (murine, zebrafish, porcine, canine), and integrative platforms (tumor-on-chip systems, humanized mice, AI-augmented simulations). Traditional models offer accessibility and mechanistic insight, while advanced systems better mimic human tumor complexity, immune landscapes, and treatment response. Tumor-on-chip and AI-driven models show promise in simulating dynamic tumor behavior and predicting clinical outcomes. Cross-platform integration enhances translational validity and enables iterative model refinement. Conclusions: Strategic deployment of complementary CRC models is critical for advancing translational research. This review provides a roadmap for aligning model capabilities with specific research goals, advocating for integrated, patient-relevant systems to improve therapeutic development. Enhancing model fidelity and interoperability is key to accelerating the bench-to-bedside translation in colorectal cancer care. Full article
(This article belongs to the Special Issue Recent Advances in Basic and Clinical Colorectal Cancer Research)
Show Figures

Figure 1

14 pages, 2324 KiB  
Article
An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment
by Anastasia Kanioura, Myrto Kyriaki Filippidou, Dimitra Tsounidi, Panagiota S. Petrou, Stavros Chatzandroulis and Angeliki Tserepi
Micromachines 2025, 16(7), 740; https://doi.org/10.3390/mi16070740 (registering DOI) - 25 Jun 2025
Viewed by 508
Abstract
OoC systems employing human cells mirror the functionality of human organs and faithfully simulate their physiological microfluidic environment. Despite the potential of OoC technology in emulating tissue complexity, a significant gap persists in the continuous real-time monitoring of cellular behaviors and their responses [...] Read more.
OoC systems employing human cells mirror the functionality of human organs and faithfully simulate their physiological microfluidic environment. Despite the potential of OoC technology in emulating tissue complexity, a significant gap persists in the continuous real-time monitoring of cellular behaviors and their responses to external stimuli, arising from the lack of biosensors integrated onto OoC microfluidic platforms. Addressing this limitation constitutes the primary objective of this study. By developing and incorporating biosensors onto a modular integrated OoC platform, we aim to enable the monitoring of changes taking place in the cellular environment under various stimuli in real time. An in-series modular integration of a biosensor array into an OoC platform is demonstrated herein, along with its potential to sustain human cell proliferation and accommodate the detection of IL-6, as an example of a mediator protein secreted as part of the immune response to inflammation. The implementation of commercially fabricated PCB components also addresses the issue of cost efficiency and manufacturing scaling-up of sensor-integrated OoCs. This advancement will not only enhance the accuracy and reliability of preclinical studies, but also pave the way for improved drug development and disease treatment. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

32 pages, 5584 KiB  
Review
Recent Advancements in Metal–Organic Framework-Based Microfluidic Chips for Biomedical Applications
by Alemayehu Kidanemariam and Sungbo Cho
Micromachines 2025, 16(7), 736; https://doi.org/10.3390/mi16070736 (registering DOI) - 24 Jun 2025
Viewed by 1049
Abstract
The integration of metal–organic frameworks (MOFs) with microfluidic technologies has opened new frontiers in biomedical diagnostics and therapeutics. Microfluidic chips offer precise fluid control, low reagent use, and high-throughput capabilities features further enhanced by MOFs’ ample surface area, adjustable porosity, and catalytic activity. [...] Read more.
The integration of metal–organic frameworks (MOFs) with microfluidic technologies has opened new frontiers in biomedical diagnostics and therapeutics. Microfluidic chips offer precise fluid control, low reagent use, and high-throughput capabilities features further enhanced by MOFs’ ample surface area, adjustable porosity, and catalytic activity. Together, they form powerful lab-on-a-chip platforms for sensitive biosensing, drug delivery, tissue engineering, and microbial detection. This review highlights recent advances in MOF-based microfluidic systems, focusing on material innovations, fabrication methods, and diagnostic applications. Particular emphasis is placed on MOF nanozymes, which enhance biochemical reactions for multiplexed testing and rapid pathogen identification. Challenges such as stability, biocompatibility, and manufacturing scalability are addressed, along with emerging trends like responsive MOFs, AI-assisted design, and clinical translation strategies. By bridging MOF chemistry and microfluidic engineering, these systems hold great promise for next-generation biomedical technologies. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

22 pages, 9995 KiB  
Article
Skin-Inspired Magnetoresistive Tactile Sensor for Force Characterization in Distributed Areas
by Francisco Mêda, Fabian Näf, Tiago P. Fernandes, Alexandre Bernardino, Lorenzo Jamone, Gonçalo Tavares and Susana Cardoso
Sensors 2025, 25(12), 3724; https://doi.org/10.3390/s25123724 - 13 Jun 2025
Cited by 1 | Viewed by 723
Abstract
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with [...] Read more.
Touch is a crucial sense for advanced organisms, particularly humans, as it provides essential information about the shape, size, and texture of contacting objects. In robotics and automation, the integration of tactile sensors has become increasingly relevant, enabling devices to properly interact with their environment. This study aimed to develop a biomimetic, skin-inspired tactile sensor device capable of sensing applied force, characterizing it in three dimensions, and determining the point of application. The device was designed as a 4 × 4 matrix of tunneling magnetoresistive sensors, which provide a higher sensitivity in comparison to the ones based on the Hall effect, the current standard in tactile sensors. These detect magnetic field changes along a single axis, wire-bonded to a PCB and encapsulated in epoxy. This sensing array detects the magnetic field from an overlayed magnetorheological elastomer composed of Ecoflex and 5 µm neodymium–iron–boron ferromagnetic particles. Structural integrity tests showed that the device could withstand forces above 100 N, with an epoxy coverage of 0.12 mL per sensor chip. A 3D movement stage equipped with an indenting tip and force sensor was used to collect device data, which was then used to train neural network models to predict the contact location and 3D magnitude of the applied force. The magnitude-sensing model was trained on 31,260 data points, being able to accurately characterize force with a mean absolute error ranging between 0.07 and 0.17 N. The spatial sensitivity model was trained on 171,008 points and achieved a mean absolute error of 0.26 mm when predicting the location of applied force within a sensitive area of 25.5 mm × 25.5 mm using sensors spaced 4.5 mm apart. For points outside the testing range, the mean absolute error was 0.63 mm. Full article
(This article belongs to the Special Issue Smart Magnetic Sensors and Application)
Show Figures

Figure 1

15 pages, 3888 KiB  
Communication
Development of Low-Cost CNC-Milled PMMA Microfluidic Chips as a Prototype for Organ-on-a-Chip and Neurospheroid Applications
by Sushmita Mishra, Ginia Mondal and Murali Kumarasamy
Organoids 2025, 4(2), 13; https://doi.org/10.3390/organoids4020013 - 11 Jun 2025
Cited by 2 | Viewed by 518
Abstract
Improved in vitro models are needed to reduce costs and delays in central nervous system (CNS) drug discovery. The FDA Modernization Acts 2.0 and 3.0 require human-centered alternative testing methods to mitigate animal-based experiments and discovery delays, and to ensure human safety. Developing [...] Read more.
Improved in vitro models are needed to reduce costs and delays in central nervous system (CNS) drug discovery. The FDA Modernization Acts 2.0 and 3.0 require human-centered alternative testing methods to mitigate animal-based experiments and discovery delays, and to ensure human safety. Developing cost-efficient, flexible microfluidic chips is essential to advance organ-on-chip (OoC) technology for drug discovery and disease modeling. While CNC micromilling shows promise for fabricating microfluidic devices, it remains underutilized due to limited accessibility. We present a simple CNC-milled flexible microfluidic chip fabricated from thermoplastic poly (methyl methacrylate) (PMMA). The structure of the microplate included drilled openings for connecting the wells. The chip’s biocompatibility was evaluated with isolated primary neuronal cultures from postnatal Wistar rat pups (p1). Primary cells cultured in the device showed high viability, differentiation, and 3D neurosphere formation, similar to conventional well-plate cultures. Neuronal cultures showed neurite growth and functional markers. Although cleanroom-based methods provide higher accuracy, the chip effectively promotes cell viability, differentiation, and alignment, offering an ideal platform for tissue modeling and OoC applications. It allows cell biologists to quickly create prototypes at lower cost and in less time than required for soft lithography and is a viable alternative to the current manufacturing methods. Full article
Show Figures

Figure 1

33 pages, 1866 KiB  
Systematic Review
Using Postbiotics from Functional Foods for Managing Colorectal Cancer: Mechanisms, Sources, Therapeutic Potential, and Clinical Perspectives
by Teresa D’Amore, Cinzia Zolfanelli, Vincenzo Lauciello, Alessio Di Ciancia, Alessio Vagliasindi, Slim Smaoui and Theodoros Varzakas
Microorganisms 2025, 13(6), 1335; https://doi.org/10.3390/microorganisms13061335 - 9 Jun 2025
Viewed by 1123
Abstract
Postbiotics, defined as a preparation of inanimate microorganisms and/or their components, including metabolic byproducts, have gained recognition as promising modulators of gut health and disease, offering advantages over probiotics in terms of safety, stability, and formulation. This systematic review investigates the therapeutic potential [...] Read more.
Postbiotics, defined as a preparation of inanimate microorganisms and/or their components, including metabolic byproducts, have gained recognition as promising modulators of gut health and disease, offering advantages over probiotics in terms of safety, stability, and formulation. This systematic review investigates the therapeutic potential of postbiotics derived from functional foods in the context of colorectal cancer (CRC), a leading cause of cancer-related mortality worldwide. Despite encouraging preclinical findings, translation into clinical practice remains limited due to a paucity of robust human trials, revealing a significant gap and the need for further translational research. Key bioactive categories of postbiotics are described, alongside their anti-inflammatory, immunomodulatory, and chemopreventive mechanisms. Through comprehensive literature mapping, this review uniquely categorizes research according to the experimental models employed, i.e., in vitro, in silico, in vivo, and ex vivo, and advanced models such as organoids and organ-on-chip platforms. The latter offers greater physiological relevance by closely mimicking human tissue architecture and microenvironment. These models help demonstrate how postbiotics may influence tumorigenesis through mechanisms involving inflammation, apoptosis, epigenetic regulation, and the maintenance of gut barrier integrity. Finally, the review summarizes recent innovations in their delivery strategies and calls for comprehensive mechanistic studies and high-quality clinical trials to validate postbiotics as safe and effective adjuncts in CRC prevention, therapy, and management. Full article
(This article belongs to the Special Issue Microorganisms in Functional Foods: 2nd Edition)
Show Figures

Figure 1

Back to TopTop