An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of a Microfluidic Perfusion Chamber (MPC)
2.3. Cell Culture
2.4. Sensor Preparation and Interleukin-6 Detection Protocol
3. Results and Discussion
3.1. Integrated OoC Platform
3.2. In Vitro Cell Culture in the MPC
3.3. IL-6 Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.; Takayama, S. Organ-on-a-chip and the kidney. Kidney Res. Clin. Pract. 2015, 34, 165–169. [Google Scholar] [CrossRef]
- Ferrari, E.; Palma, C.; Vesentini, S.; Occhetta, P.; Rasponi, M. Integrating biosensors in organs-on-chip devices: A perspective on current strategies to monitor microphysiological systems. Biosensors 2020, 10, 110. [Google Scholar] [CrossRef]
- Fuchs, S.; Johansson, S.; Tjell, A.Ø.; Werr, G.; Mayr, T.; Tenje, M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 2021, 7, 2926–2948. [Google Scholar] [CrossRef]
- Clarke, G.A.; Hartse, B.X.; Asli, A.E.N.; Taghavimehr, M.; Hashemi, N.; Shirsavar, M.A.; Montazami, R.; Alimoradi, N.; Nasirian, V.; Ouedraogo, L.J.; et al. Advancement of Sensor Integrated Organ-on-Chip Devices. Sensors 2021, 21, 1367. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, T.; Huang, Q.; Wang, Y. From Organ-on-a-chip to Human-on-a-Chip: A Review of Research Progress and Latest Applications. ACS Sens. 2024, 9, 3466–3488. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Aleman, J.; Shin, S.R.; Kilic, T.; Kim, D.; Mousavi Shaegh, S.A.; Massa, S.; Riahi, R.; Chae, S.; Hu, N.; et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl. Acad. Sci. USA 2017, 114, E2293–E2302. [Google Scholar] [CrossRef]
- Park, S.E.; Georgescu, A.; Huh, D. Organoids-on-a-chip. Science 2019, 364, 960–965. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fernández-Garibay, X.; Castaño, A.G.; De Chiara, F.; Hernández-Albors, A.; Balaguer-Trias, J.; Ramón-Azcón, J. Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Lab A Chip 2019, 19, 2568–2580. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, P.; Zhang, F.; Yan, S.; Dong, R.; Wu, C.; Deng, J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2025, 28, 111663. [Google Scholar] [CrossRef]
- Lu, Y.; Xue, Q.; Eisele, M.R.; Sulistijo, E.S.; Brower, K.; Han, L.; Amir, E.A.D.; Pe’er, D.; Miller-Jensen, K.; Fan, R. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc. Natl. Acad. Sci. USA 2015, 112, E607–E615. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, K.; Chen, Y.; Liu, Q.; Chen, H.; Hu, S.; Wang, Y.; Pan, Z.; Feng, F.; Shi, M.; et al. AM-DMF-SCP: Integrated Single-Cell Proteomics Analysis on an Active Matrix Digital Microfluidic Chip. JACS Au 2024, 4, 1811–1823. [Google Scholar] [CrossRef]
- Van Snick, J. Interleukin-6: An overview. Annu. Rev. Immunol. 1990, 8, 253–278. [Google Scholar] [CrossRef]
- Hua, S.; Lei, C.-T.; Zhang, C. Interleukin-6 signaling pathway and its role in kidney disease: An update. Front. Immunol. 2017, 8, 405. [Google Scholar]
- Song, M.; Kellum, J.A. Interleukin-6. Crit. Care Med. 2005, 33, S463–S465. [Google Scholar] [CrossRef]
- Verboogen, D.R.J.; Revelo, N.H.; Ter Beest, M.; van den Bogaart, G. Interleukin-6 secretion is limited by self-signaling in endosomes. J. Mol. Cell Biol. 2019, 11, 144–157. [Google Scholar] [CrossRef]
- Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016, 37, 11553–11572. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.; Valera, E.; Jankelow, A.; Garcia, C.; Akhand, M.; Heredia, J.; Ghonge, T.; Liu, C.; Font-Bartumeus, V.; Oshana, G.; et al. Simultaneous electrical detection of IL-6 and PCT using a microfluidic biochip platform. Biomed. Microdevices 2020, 22, 36. [Google Scholar] [CrossRef]
- Alexandre, L.; Bendali, A.; Pereiro, I.; Azimani, M.; Dumas, S.; Malaquin, L.; Mai, T.D.; Descroix, S. Modular microfluidic system for on-chip extraction, preconcentration and detection of the cytokine biomarker IL-6 in biofluid. Sci. Rep. 2022, 12, 9468. [Google Scholar] [CrossRef]
- Beaurivage, C.; Kanapeckaite, A.; Loomans, C.; Erdmann, K.S.; Jan Stallen, J.; Janssen, R.A.J. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci. Rep. 2020, 10, 21475. [Google Scholar] [CrossRef]
- Tataru, C.; Livni, M.; Marean-Reardon, C.; Franco, M.C.; David, M. Cytokine induced inflammatory bowel disease model using organ-on-a-chip technology. PLoS ONE 2023, 18, e0289314. [Google Scholar] [CrossRef]
- He, H.; Wang, X.; Tan, H.; Xiang, S.; Xu, Y. The culture of A549 cells and its secreted cytokine IL-6 monitoring on the designed multifunctional microfluidic chip. Talanta 2025, 285, 127395. [Google Scholar] [CrossRef]
- da Ponte, R.M.; Gaio, N.; van Zeijl, H.; Vollebregt, S.; Dijkstra, P.; Dekker, R.; Wouter, A.; Serdijn, W.A.; Giagka, V. Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device. Sens. Actuator A Phys. 2021, 317, 112439. [Google Scholar] [CrossRef]
- Masjedi, A.; Hashemi, V.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Azizi, G.; Yousefi, M.; Jadidi-Niaragh, F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother. 2018, 108, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Kefallinou, D.; Grigoriou, M.; Boumpas, D.T.; Tserepi, A. Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche. Bioengineering 2024, 11, 748. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.J.; Mehr, A.P.; Hamilton, G.A.; McPartlin, L.A.; Chung, S.; Suh, K.Y.; Ingber, D.E. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 2013, 5, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.J.; Suh Jang, K.Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab A Chip 2010, 10, 36–42. [Google Scholar] [CrossRef]
- Filippidou, M.K.; Loukas, C.M.; Kaprou, G.; Tegou, E.; Petrou, P.; Kakabakos, S.; Tserepi, A.; Chatzandroulis, S. Detection of BRCA1 gene on partially reduced graphene oxide biosensors. Microelectron. Eng. 2019, 216, 111093. [Google Scholar] [CrossRef]
- It4ip. Available online: https://www.it4ip.be/key-features/ (accessed on 18 May 2025).
- Purwidyantri, A.; Domingues, T.; Borme, J.; Guerreiro, J.R.; Ipatov, A.; Abreu, C.M.; Martins, M.; Alpuim, P.; Prado, M. Influence of the electrolyte salt concentration on DNA detection with graphene transistors. Biosensors 2021, 11, 24. [Google Scholar] [CrossRef]
- Lee, J.; Shin, M.; Ahn, C.G.; Ah, C.S.; Park, C.W.; Sung, G.Y. Effects of pH and Ion Concentration in Phosphate Buffer Solution on the Sensitivity of the Silicon Nanowire BioFETs. J. Korean Phys. Soc. 2009, 55, 1621–1625. [Google Scholar] [CrossRef]
- Ashton, R.; Silver, C.D.; Bird, T.W.; Coulson, B.; Pratt, A.; Johnson, S. Enhancing the repeatability and sensitivity of low-cost PCB, pH-sensitive field-effect transistors. Biosens. Bioelectron. 2023, 227, 115150. [Google Scholar] [CrossRef]
- Niazi, A.; Anthony, C.J. Development of Oxygen Sensor by Integrating the Low Cost Printed Circuit Board Technology and Solid Electrolyte Membrane. In Proceedings of the International Conference on Biomedical Engineering and Systems, Prague, Czech Republic, 14–15 August 2014. [Google Scholar]
- Skotadis, E.; Aslanidis, E.; Kokkoris, G.; Vargkas-Kousoulas, E.A.; Tserepi, A.; Tsoukalas, D. Flow determination via nanoparticle strain sensors for easy Lab on Chip integration. Sens. Actuator A Phys. 2022, 344, 113765. [Google Scholar] [CrossRef]
- Moschou, D.; Vourdas, N.; Kokkoris, G.; Papadakis, G.; Parthenios, J.; Chatzandroulis, S.; Tserepi, A. All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens. Actuator B Chem. 2014, 199, 470–478. [Google Scholar] [CrossRef]
- Skaltsounis, P.; Kokkoris, G.; Papaioannou, T.; Tserepi, A. Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation. Micromachines 2023, 14, 172. [Google Scholar] [CrossRef]
- Evans, D.; Papadimitriou, K.I.; Vasilakis, N.; Pantelidis, P.; Kelleher, P.; Morgan, H.; Prodromakis, T. A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection. Sensors 2018, 18, 4011. [Google Scholar] [CrossRef]
- Papamatthaiou, S.; Menelaou, P.; Oussallam, B.E.A.; Moschou, D. Recent advances in bio-microsystem integration and Lab-on-PCB technology. Microsyst. Nanoeng. 2025, 11, 78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanioura, A.; Filippidou, M.K.; Tsounidi, D.; Petrou, P.S.; Chatzandroulis, S.; Tserepi, A. An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment. Micromachines 2025, 16, 740. https://doi.org/10.3390/mi16070740
Kanioura A, Filippidou MK, Tsounidi D, Petrou PS, Chatzandroulis S, Tserepi A. An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment. Micromachines. 2025; 16(7):740. https://doi.org/10.3390/mi16070740
Chicago/Turabian StyleKanioura, Anastasia, Myrto Kyriaki Filippidou, Dimitra Tsounidi, Panagiota S. Petrou, Stavros Chatzandroulis, and Angeliki Tserepi. 2025. "An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment" Micromachines 16, no. 7: 740. https://doi.org/10.3390/mi16070740
APA StyleKanioura, A., Filippidou, M. K., Tsounidi, D., Petrou, P. S., Chatzandroulis, S., & Tserepi, A. (2025). An Organ-on-a-Chip Modular Platform with Integrated Immunobiosensors for Monitoring the Extracellular Environment. Micromachines, 16(7), 740. https://doi.org/10.3390/mi16070740