Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = orange II

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2143 KiB  
Article
Bioadsorption of Manganese with Modified Orange Peel in Aqueous Solution: Box–Behnken Design Optimization and Adsorption Isotherm
by Liz Marzano-Vasquez, Giselle Torres-López, Máximo Baca-Neglia, Wilmer Chávez-Sánchez, Roberto Solís-Farfán, José Curay-Tribeño, César Rodríguez-Aburto, Alex Vallejos-Zuta, Jesús Vara-Sanchez, César Madueño-Sulca, Cecilia Rios-Varillas de Oscanoa and Alex Pilco-Nuñez
Water 2025, 17(14), 2152; https://doi.org/10.3390/w17142152 - 19 Jul 2025
Viewed by 431
Abstract
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, [...] Read more.
Chemically demethoxylated and Ca-cross-linked orange-peel waste was engineered as a biosorbent for Mn(II) removal from water. A three-factor Box–Behnken design (biosorbent dose 3–10 g L−1, initial Mn2+ 100–300 mg L−1, contact time 3–8 h; pH 5.5 ± 0.1, 25 °C) required only 16 runs to locate the optimum (10 g L−1, 100 mg L−1, 8 h), at which the material removed 94.8% ± 0.3% manganese removal under the optimized conditions (10 g L−1, 100 mg L−1, 8 h, pH 5.5) of dissolved manganese and reached a Langmuir capacity of 29.7 mg g−1. Equilibrium data fitted the Freundlich (R2 = 0.968) and Sips (R2 = 0.969) models best, indicating a heterogeneous surface, whereas kinetic screening confirmed equilibrium within 6 h. FTIR and SEM–EDX verified abundant surface –COO/–OH groups and showed Mn deposits that partially replaced residual Ca, supporting an ion-exchange component in the uptake mechanism. A preliminary cost analysis (<USD 10 kg−1) and > 90% regeneration efficiency over three cycles highlight the economic and environmental promise of this modified agro-waste for polishing Mn-laden effluents. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
by Taiane L. Dlugoviet, Andressa dos Santos, Julia de Oliveira Primo and Fauze Jacó Anaissi
Colorants 2025, 4(3), 23; https://doi.org/10.3390/colorants4030023 - 14 Jul 2025
Viewed by 217
Abstract
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments [...] Read more.
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments using ZnO as support obtained through starch combustion. ZnO was obtained by starch (sago) combustion and characterized by XRD, SEM and the BET method. It was then used for the adsorption of orange and green textile dyes, evaluating the adsorbent dosage, initial dye concentration, contact time, and selectivity with copper ions. The removal studies indicated up to 100% removal of both dyes at low concentrations. The co-adsorption system showed excellent performance, with removal percentages exceeding 90% for both textile dyes and Cu (II) ions. Hybrid pigments were assessed for solvent resistance and durability under extended white light exposure. ZnO immobilized the dyes, showing resistance to organic solvents and good stability under prolonged white light exposure. Full article
Show Figures

Figure 1

20 pages, 3533 KiB  
Article
Creation of Crystalline Orientation of Tin(II) Oxide Polycrystals with High Photocatalytic Activity
by Svetlana A. Kuznetsova, Olga S. Khalipova and Yu-Wen Chen
Molecules 2025, 30(13), 2870; https://doi.org/10.3390/molecules30132870 - 6 Jul 2025
Viewed by 358
Abstract
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its [...] Read more.
Tin(II) oxide is a promising material for photocatalytic wastewater treatment. However, the established relationships between particle size, shape, and photocatalytic activity of SnO are contradictory, indicating the influence of other factors. In this work, the effect of the SnO crystallographic texture on its band gap and photocatalytic activity was shown for the first time. The relationship between the methods (microwave and hydrothermal microwave) and synthesis conditions (time, pressure, and chemical composition of the suspension) of polycrystalline tin oxide(II) and the crystallographic texture was studied. The crystallographic texture was estimated by the Harris method using the repeatability factor and the Lotgering coefficient. The formation of crystallites oriented in the growth plane (00l) was facilitated by the carbonate medium of the suspension. In the ammonia medium, crystallites were preferably formed in the plane (h0l). Increasing the time and pressure leads to the recrystallization of SnO. The band gap energy of the SnO increases from 3.0 to 3.6 eV, and the rate of photodestruction of methyl orange decreases with the growth of crystallites in the (00l) plane from 17 to 40%. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

31 pages, 9591 KiB  
Article
Deformable Fricke-XO-Gelatin Radiochromic Dosimeter of Ionizing Radiation and Its Applications in Quality Assurance Tests for Radiation Therapy
by Michał Piotrowski, Piotr Maras, Zbigniew Stempień, Radosław Wach and Marek Kozicki
Materials 2025, 18(13), 3135; https://doi.org/10.3390/ma18133135 - 2 Jul 2025
Viewed by 349
Abstract
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The [...] Read more.
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The dosimeter reacts to ionizing radiation by changing color as a result of the formation of complexes of Fe3+ and XO molecules. It was characterized in terms of thermal and chemical stability and mechanical properties. The presence of sorbitol improved the mechanical and thermal properties of the dosimeter. The dosimeter maintains chemical stability, enabling its use in dosimetric applications, for at least six weeks. The dose–response characteristics of the dosimeter are discussed and indicate a dynamic dose–response of the dosimeter (up to saturation) of about 20 Gy and a linear dose–response of about 12.5 Gy. The following applications of the dosimeter are discussed: (i) as a 2D dosimeter in a plastic container for performing a coincidence test of radiation and mechanical isocenters of a medical accelerator, and (ii) for in vivo dosimetry as a 2D dosimeter alone and simultaneously as a bolus and a 2D dosimeter. Research has shown that the dosimeter has promise in many applications. Full article
Show Figures

Figure 1

21 pages, 2421 KiB  
Article
Biosorption and Regeneration Studies for Cu (II) and Cd (II) Removal from Industrial Effluents Using Orange Peel and Composite Adsorbents
by Ahmed A. Bhran, Srinivas Tadepalli, Kasibatla S. R. Murthy and AbdulAziz A. AlGhamdi
Processes 2025, 13(7), 1972; https://doi.org/10.3390/pr13071972 - 22 Jun 2025
Viewed by 807
Abstract
This study investigates the adsorption and desorption efficiencies of Cu (II) and Cd (II) from industrial effluents using orange peel powder and a newly developed mixed adsorbent composed of equal parts of activated charcoal (AC) and bone charcoal (BC). The mixed adsorbent (AC [...] Read more.
This study investigates the adsorption and desorption efficiencies of Cu (II) and Cd (II) from industrial effluents using orange peel powder and a newly developed mixed adsorbent composed of equal parts of activated charcoal (AC) and bone charcoal (BC). The mixed adsorbent (AC + BC) exhibited significantly higher removal efficiencies for both copper and cadmium metal ions compared to orange peel powder. This can be attributed to the high surface area of AC and the negative surface charge of BC, resulting in a synergistic adsorption effect. Batch adsorption experiments were conducted in an orbital shaker at 150–180 rpm for 60 min, followed by thorough rinsing to remove any residual metal ions. The optimal pH for maximum adsorption of Cu (II) and Cd (II) was found to be 6. The effects of adsorbent dosage (ranging from 0.5 to 5 g/L) and contact time (ranging from 15 min to 4 h) on adsorption performance were systematically studied. Regeneration experiments using 0.2 M HCl demonstrated that the adsorption of Cu (II) and Cd (II) on the mixed adsorbent was highly reversible, achieving desorption efficiencies of 90% and 94%, respectively. Notably, Cd (II) consistently exhibited higher desorption rates across all tested dosages. These results confirm the potential of the proposed adsorbent and regeneration strategy for efficient and economical removal of heavy metals from industrial wastewater. Full article
(This article belongs to the Special Issue New Research on Adsorbent Materials in Environmental Protection)
Show Figures

Figure 1

15 pages, 1834 KiB  
Article
Metal-Free Graphene/Conjugated Microporous Polymer Mott–Schottky Heterojunctions: A Design Strategy for High-Efficiency, Durable Photocatalysts
by Selsabil Chikhi, Sander Dekyvere, Shuai Li, Chih-Ming Kao and Francis Verpoort
Catalysts 2025, 15(7), 609; https://doi.org/10.3390/catal15070609 - 20 Jun 2025
Viewed by 436
Abstract
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a [...] Read more.
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a Mott–Schottky heterojunction and integrating graphene sheets with a near-zero bandgap into the CMP-1 framework, resulting in a non-covalent graphene/CMP (GCMP) heterojunction composite. GCMP serves two main functions: physical adsorption and photocatalytic absorption that uses visible light energy to trigger and degrade the organic dye. GCMP effectively degraded four dyes with both anionic and cationic properties (Rhodamine B; Nile Blue; Congo Red; and Orange II), demonstrating stable recyclability without losing its effectiveness. When exposed to visible light, GCMP generates reactive oxygen species (ROS), primarily singlet oxygen (1O2), and superoxide radicals (O2), degrading the dye molecules. These findings highlight GCMP’s potential for real-world applications, offering a metal-free, cost-effective, and environmentally friendly solution for wastewater treatment. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

17 pages, 4894 KiB  
Article
Investigation of Mechanochromic and Solvatochromic Luminescence of Cyclometalated Heteroleptic Platinum(II) Complexes with Benzoylthiourea Derivatives
by Monica Iliş, Marilena Ferbinteanu, Cristina Tablet and Viorel Cîrcu
Molecules 2025, 30(11), 2415; https://doi.org/10.3390/molecules30112415 - 31 May 2025
Viewed by 542
Abstract
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through [...] Read more.
Two novel cyclometalated platinum(II) complexes based on 2-phenylpyridine (ppy) and 2,4-difluorophenylpyridine (dfppy) ligands in combination with a benzoylthiourea (4-(decyloxy)-N-((4-(decyloxy)phenyl)carbamothioyl)benzamide, BTU) functionalized with decyloxy alkyl chains as auxiliary ligands were synthesized and characterized for their mechanochromic and photophysical properties. Structural characterization was achieved through IR and NMR spectroscopy, single-crystal X-ray diffraction, and TD-DFT calculations. Both complexes exhibit significant photoluminescence with quantum yields up to 28.3% in a 1% PMMA film. The transitions in solution-phase spectra were assigned to mixed metal-to-ligand (MLCT) and intraligand (ILCT) charge–transfer characteristics. Temperature-dependent studies and thermal analyses confirm reversible phase transitions without mesomorphic behavior despite the presence of the two long alkyl chains. Both complexes displayed reversible mechanochromic and solvatochromic luminescence, with a change in emission color from green to red-orange emissions upon grinding and solvent treatment or heating at 80 °C. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Amorphous Fe-Doped Manganese Carbonate for Efficient Activation of Peroxymonosulfate: Mechanism and Performance Toward Orange II Degradation
by Peng Cheng, Yuqing Li, Yunlong Ma, Cui Qiu, Tengfei Fu, Yajie Wang and Feng Wu
Molecules 2025, 30(11), 2325; https://doi.org/10.3390/molecules30112325 - 26 May 2025
Viewed by 399
Abstract
A novel amorphous Fe-doped manganese carbonate (a-FeMn-1) was synthesized via a facile co-precipitation method and evaluated as an efficient heterogeneous catalyst for the activation of peroxymonosulfate (PMS) in the degradation of Orange II. Among various Fe/Mn molar ratios, the 1:1 composition (a-FeMn-1) showed [...] Read more.
A novel amorphous Fe-doped manganese carbonate (a-FeMn-1) was synthesized via a facile co-precipitation method and evaluated as an efficient heterogeneous catalyst for the activation of peroxymonosulfate (PMS) in the degradation of Orange II. Among various Fe/Mn molar ratios, the 1:1 composition (a-FeMn-1) showed optimal catalytic activity, achieving 98% removal efficiency within 60 min under near-neutral pH conditions. Characterization results indicated that Fe doping effectively induced an amorphous structure and increased surface area and oxygen defects, promoting PMS activation. The system displayed broad pH applicability and resistance to Cl and natural organic matter, while degradation was inhibited by HCO3 and PO43−. EPR and quenching experiments confirmed that surface-bound sulfate radicals (SO4•−), hydroxyl radicals (OH), and singlet oxygen (1O2) were the primary reactive species. XPS analysis further revealed the redox cycling of Fe and Mn and the involvement of defect oxygen in the PMS activation process. The catalyst also demonstrated excellent reusability over five cycles without significant loss in efficiency. This work provides insights into the rational design of amorphous bimetallic materials for sulfate radical-based advanced oxidation processes. Full article
Show Figures

Figure 1

24 pages, 8298 KiB  
Article
Native Grasses Enhance Topsoil Organic Carbon and Nitrogen by Improving Soil Aggregates and Microbial Communities in Navel Orange Orchards in China
by Wenqian Wang, Zhaoyan Ren, Jianjun Wang, Ying Dai, Jingwen Huang, Yang Yang, Xia Zhuang, Mujun Ye, Zhonglan Yang, Fengxian Yao and Chen Cheng
Horticulturae 2025, 11(5), 560; https://doi.org/10.3390/horticulturae11050560 - 21 May 2025
Viewed by 497
Abstract
In Gannan navel orange (Citrus sinensis) orchards—a typical sloped farmland ecosystem—selected native grasses outperform conventional green manure due to their stronger ecological adaptability and lower management requirements. However, few studies have investigated how native grasses enhance soil organic carbon and nitrogen [...] Read more.
In Gannan navel orange (Citrus sinensis) orchards—a typical sloped farmland ecosystem—selected native grasses outperform conventional green manure due to their stronger ecological adaptability and lower management requirements. However, few studies have investigated how native grasses enhance soil organic carbon and nitrogen contents at the soil aggregate level. A 5-year field study was carried out to analyze the impacts of the native grasses practice on the accumulation of soil organic carbon and nitrogen and the physicochemical properties and microbial communities of soil aggregates in navel orange orchards. Three treatments were tested: (i) clean tillage (CK); (ii) intercropping Centella asiatica (L.) Urban (CA); (iii) intercropping Stellaria media (L.) Cvr. (SM). Our work found that, compared to CK, the soil physical properties improved under the long-term management of native grasses, and the content of nutrients in the soil increased. The contents of SOC (+118.3–184.2%) and total nitrogen (TN) (+73.3–81.5%) changed significantly. The proportion of soil macro-aggregates and the stability of soil aggregates increased, and the contents of SOC and TN in the soil aggregates increased. In addition, under the long-term management of native grasses, the community diversity of beneficial microbes and the abundance of functional genes related to nitrogen cycling increased significantly in the soil aggregates. Native grasses increased the content of nutrients in the soil aggregates by increasing aggregate stability and the abundance of related microorganisms, altering the microbial community structure, and increasing the abundance of related genes for nutrient cycling, thereby enhancing the sequestration of SOC and TN in topsoil. Our results will provide a theoretical basis for the carbon enhancement and fertilization of native grasses as green manure in navel orange orchards and their popularization and application. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

22 pages, 4032 KiB  
Article
Research on the Impact of Lighting Illuminance and Color on Creative Performance and Mood
by Bo Zhou, Yangxiaoxiao Zhou, Qixuan Ren, Li Peng, Yang Guan and Haiyin He
Buildings 2025, 15(10), 1738; https://doi.org/10.3390/buildings15101738 - 20 May 2025
Viewed by 866
Abstract
With the development of the knowledge economy, the significance of the creative industry has become increasingly prominent. Individual creativity can be stimulated by optimal lighting. This research consists of two parts: Part I examines the effects of illuminance and color temperature on creativity [...] Read more.
With the development of the knowledge economy, the significance of the creative industry has become increasingly prominent. Individual creativity can be stimulated by optimal lighting. This research consists of two parts: Part I examines the effects of illuminance and color temperature on creativity through three experiments, while Part II employs a two-factor repeated-measures design to investigate their interaction effects. The participants completed creativity tests during light exposure, including TTCT tasks in Part I of the experiment, and AUT and RAT tasks in Part II. They also completed questionnaires to assess their mood, and HRV data were collected for physiological analysis. The results showed that the subjects performed worse on a creativity test at an extremely low illuminance of 150 lx. Within a comfortable neutral lighting range, the participants’ creativity at 300 lx was superior to that at 1500 lx. In exploring light color, the conventional correlated color temperature (CCT) variable was replaced with colored lighting. The results indicated that both blue and orange light enhanced creative performance compared to white light. Additionally, an interactive effect of illuminance and colored lighting was observed. Fluency on the Alternative Uses Task (AUT) test was greater under 5000 K and 300 lx lighting, while originality on the AUT test was enhanced under 1500 lx, colored lighting. Emotional experience was found to be significantly correlated with creative performance. These findings contribute to the development of a design guideline that utilizes lighting intensity, color, and other elements to foster a relaxing indoor atmosphere that enhances positive mood and creativity. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
A Pt(II) Complex with a PNN Type Ligand Dppmaphen Exhibits Selective, Reversible Vapor-Chromic Photoluminescence
by Yuanyuan Hu, Jiangyue Wang, David James Young, Hong-Xi Li, Yuxin Lu and Zhi-Gang Ren
Inorganics 2025, 13(5), 170; https://doi.org/10.3390/inorganics13050170 - 16 May 2025
Viewed by 485
Abstract
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of [...] Read more.
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of compound 1 to MeOH vapor induces a shift in its emission to 645 nm, which can be attributed to the substitution of MeOH molecules for H2O, resulting in the disruption and reorganization of weak interactions in 1. This response is selective for MeOH and, to a lesser extent, EtOH, the orange photoluminescence recovered in air. The emission change of 1 was reversible and visible to the naked eye. Full article
Show Figures

Graphical abstract

22 pages, 5233 KiB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 1035
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

40 pages, 7391 KiB  
Review
Preparation Methods and Photocatalytic Performance of Kaolin-Based Ceramic Composites with Selected Metal Oxides (ZnO, CuO, MgO): A Comparative Review
by Dikra Bouras, Lotfi Khezami, Regis Barille, Neçar Merah, Billel Salhi, Gamal A. El-Hiti, Ahlem Guesmi and Mamoun Fellah
Inorganics 2025, 13(5), 162; https://doi.org/10.3390/inorganics13050162 - 13 May 2025
Cited by 2 | Viewed by 1119
Abstract
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics [...] Read more.
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics (DD3 and DD3 with 38% ZrO2) from Guelma, Algeria, were used as substrates. This review highlights the effects of different preparation methods on the structural, morphological, and compositional properties of the resulting photocatalysts. Additionally, the potential of these materials for the photocatalytic degradation of organic dyes, specifically Orange II, was evaluated. Results indicated that ceramic/ZnO/CuO and ceramic/MgO powders prepared via traditional mixing and co-precipitation techniques exhibited significantly faster degradation rates under visible light than Cu layers deposited on ceramic substrates using solution gradient processes. This enhancement was attributed to the increased effective surface area and the size of the spherical nanoparticles obtained through these methods, which facilitated accelerated pollutant absorption. This study highlights the ease and cost-effectiveness of preparing robust layers on ceramic substrates, which are advantageous for photocatalytic applications due to their straightforward removal after filtration. Notably, DD3Z/MgO powders demonstrated superior catalytic activity, achieving complete degradation of the organic dye in just 10 min, whereas DD3Z/ZnO-CuO powders achieved 93.6% degradation after 15 min. Additionally, experiments using kaolin-based ceramics as substrates instead of powders yielded a maximum dye decomposition rate of 77.76% over 6 h using ZnO thin layers prepared via the autoclave method. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 5402 KiB  
Article
Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes
by Jing Wei, Zhigang Zheng, Zhaoguo Qiu, Wanghui Xu, Meng Xiao and Dechang Zeng
Materials 2025, 18(10), 2240; https://doi.org/10.3390/ma18102240 - 12 May 2025
Viewed by 275
Abstract
This study compares the effects of adding Mo, Cu, and Sn elements on the decolorization performance of Fe77Si13B9M1 (M = Mo, Cu, or Sn) amorphous alloys. After the addition of Cu and Sn elements, the Fe-Si-B [...] Read more.
This study compares the effects of adding Mo, Cu, and Sn elements on the decolorization performance of Fe77Si13B9M1 (M = Mo, Cu, or Sn) amorphous alloys. After the addition of Cu and Sn elements, the Fe-Si-B amorphous alloys generate three-dimensional (3D) petal-like nanostructured corrosion products during the decolorization process. These petal-like nanostructures possess a high specific surface area and excellent adsorption capacity, thereby effectively promoting the decolorization of dyes. Furthermore, the influence of Fe content variation on the decolorization performance of Fe77+xSi13−xB9Cu1 (x = 0, 2, or 4) and Fe77+xSi13−xB9Sn1 (x = 0, 2, or 4) alloys was investigated. The glass-forming ability of Fe77+xSi13−xB9Cu1 alloys decreases with increasing Fe content, leading to the precipitation of α-Fe crystalline phases starting from Fe79Si11B9Cu1. As the crystallinity increases, the decolorization performance of the alloys gradually deteriorates. In contrast, the Fe77+xSi13−xB9Sn1 alloys maintain their amorphous structure even with increasing Fe content, and their decolorization performance for Orange II improves accordingly. The high decolorization efficiency of FeSiBSn amorphous alloys for Orange II can be attributed to their unique self-refreshing properties. Full article
(This article belongs to the Special Issue Smart Coatings for the Corrosion Protection of Alloys)
Show Figures

Figure 1

16 pages, 4992 KiB  
Article
Degradation of Acid Orange II by FeOCl/Biochar-Catalyzed Heterogeneous Fenton Oxidation
by Jiren Yuan, Dongao Xie, Dan Li and Feigao Xu
Separations 2025, 12(4), 101; https://doi.org/10.3390/separations12040101 - 21 Apr 2025
Viewed by 482
Abstract
In recent years, the rapid development of industry has led to the discharge of large quantities of pollutants, including harmful dyes, into water sources, thereby posing potential threats to human health and the environment. FeOCl and biochar have their own shortcomings as a [...] Read more.
In recent years, the rapid development of industry has led to the discharge of large quantities of pollutants, including harmful dyes, into water sources, thereby posing potential threats to human health and the environment. FeOCl and biochar have their own shortcomings as a mediator in the heterogeneous Fenton process. To make both materials useful, FeOCl supported on bamboo biochar (FeOCl/BC) was prepared by calcination using FeCl3·6H2O and bamboo powder as raw materials, and the composite’s catalytic activities were explored with acid orange II (AO-II) as the target pollutant. The degradation efficiency of FeOCl/BC composites on AO-II was determined by testing the mass ratio of FeOCl and BC, initial pH, temperature, H2O2 concentration, catalyst addition, addition of coexisting inorganic anions, and natural organic matter. The addition of biochar to FeOCl increased the activation of H2O2 to generate •OH for the removal of AO-II and accelerated the cycle of Fe3+/Fe2+. The removal rate of AO-II by the Fe1C0.2 composite was 97.1% when the mass ratio of FeOCl and BC was 1:0.2 (Fe1C0.2), which was higher than that of the pure components (FeOCl or BC) at pH = 6.1. Moreover, after five reuses, the Fe1C0.2 composite still showed high degradation activity for AO-II, with 83.3% degradation and low activity loss. The capture experiments on the active material showed that the removal of AO-II by the Fe1C0.2 composite was mainly dominated by •OH; however, •O2 and h+ played minor roles. The synthesized Fe1C0.2 composite could be applied for organic contaminants such as AO-II with high removal efficiency. Full article
(This article belongs to the Special Issue Advances in Photocatalysis for Environmental Pollutant Removal)
Show Figures

Figure 1

Back to TopTop