Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Xue, H.; Feng, X.; Pyo, S.-H. Electrostimulation for promoted microbial community and enhanced biodegradation of refractory azo dyes. J. Environ. Chem. Eng. 2022, 10, 108626. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Xia, S.; Ding, Q.; Liu, H.; Wang, Z.; Zhang, L.; Zhang, H. Au/Boron organic frameworks for efficient removal and degradation of azo dye pollutants. Colloids Surf. A 2022, 646, 128884. [Google Scholar] [CrossRef]
- Wang, Z.; You, J.; Zhao, Y.; Yao, R.; Liu, G.; Lu, J.; Zhao, S. Research progress on high entropy alloys and high entropy derivatives as OER catalysts. J. Environ. Chem. Eng. 2023, 11, 109080. [Google Scholar] [CrossRef]
- Parida, S.; Mandal, A.K.; Behera, A.K.; Patra, S.; Nayak, R.; Behera, C.; Jena, M. A comprehensive review on phycoremediation of azo dye to combat industrial wastewater pollution. J. Water Process Eng. 2025, 70, 107088. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Zhong, Y.; Yang, Y.; Liu, F.; Guo, J.; Xu, M. Molecular mechanism of zero valent iron-enhanced microbial azo reduction. Environ. Pollut. 2021, 290, 118046. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, G.; Cheng, Q.; Yu, S.; Liu, M.; Gao, C. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 2013, 328, 42–50. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Y.; Sun, S.; Zhang, C.; Wang, H. Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide. Water Sci. Technol. 2020, 81, 2522–2532. [Google Scholar] [CrossRef]
- Selvaraj, V.; Swarna Karthika, T.; Mansiya, C.; Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 2021, 1224, 129195. [Google Scholar] [CrossRef]
- Nunez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J. Hazard Mater. 2019, 371, 705–711. [Google Scholar] [CrossRef]
- Miao, F.; Wang, Q.; Zeng, Q.; Hou, L.; Liang, T.; Cui, Z.; Shen, B. Excellent reusability of FeBC amorphous ribbons induced by progressive formation of through-pore structure during acid orange 7 degradation. J. Mater. Sci. Technol. 2020, 38, 107–118. [Google Scholar] [CrossRef]
- Ji, L.; Peng, S.Y.; Zheng, Z.G.; Zuo, J.L.; Zeng, D.C.; Qiu, Z.G.; Xiao, M.; Chen, J.W.; Yu, H.Y. The degradation performance of the Fe78Si13B9 and (FeCoNi)78Si13B9 high-entropy amorphous alloy ribbons. J. Alloys Compd. 2020, 815, 152347. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Pan, J.; Zhang, G.; Liu, S.; Sun, C.; Gao, Y.; Zhang, T.; Guan, S. Efficient degradation capability of the FePCB amorphous alloy in acid orange 7 dye solution. J. Mater. Res. Technol. 2023, 26, 6842–6856. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Liu, Y.-H.; Chen, M.-W.; Xie, G.-Q.; Louzguine-Luzgin, D.V.; Inoue, A.; Perepezko, J.H. Rapid Degradation of Azo Dye by Fe-Based Metallic Glass Powder. Adv. Funct. Mater. 2012, 22, 2567–2570. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Zhao, L.; Qiu, Z.; Zeng, D. Synergistic effect between pyrite and Fe-based metallic glass for the removal of azo dyes in wastewater. Colloids Surf. A 2023, 666, 131227. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Jia, Z.; Lyu, F.; Liang, S.-X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Miao, F.; Wang, Q.; Di, S.; Yun, L.; Zhou, J.; Shen, B. Enhanced dye degradation capability and reusability of Fe-based amorphous ribbons by surface activation. J. Mater. Sci. Technol. 2020, 53, 163–173. [Google Scholar] [CrossRef]
- Wei, B.; Li, X.; Sun, H.; Song, K.; Wang, L. Comparative study on the corrosion and self-cleaning behavior of Fe-B-C and Fe-B-P amorphous alloys in methylene blue dye solution degradation. J. Non-Cryst. Solids 2022, 575, 121212. [Google Scholar] [CrossRef]
- Zeng, D.; Dan, Z.; Qin, F.; Chang, H. Adsorption-enhanced reductive degradation of methyl orange by Fe73.3Co10Si4B8P4Cu0.7 amorphous alloys. Mater. Chem. Phys. 2020, 242, 122307. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, Z.; Zhang, H.; Zhang, L.C.; Ma, H.; Wang, W.; Wang, W. High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels. Materials 2020, 13, 3694. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, Z.; Yan, L.; Zhang, Z.; Zhang, Y.; Yin, Y. Pd nanoparticles immobilized on aniline-functionalized MXene as an effective catalyst for hydrogen production from formic acid. Int. J. Hydrogen Energy 2021, 46, 33098–33106. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, X.; Liu, H.; Yang, W.; Xiong, X.; Chen, C.; Xie, Y. Ultrafast degradation of azo dye using surface-activated Fe-based metallic glass. Surf. Interfaces 2025, 59, 105938. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Huang, L.; Qiu, Z.; Xia, Q.; Zhou, S.; Tong, X.; Zeng, D. Effective removal of Orange II dye by porous Fe-base amorphous/Cu bimetallic composite. Colloids Surf. A 2023, 656, 130388. [Google Scholar] [CrossRef]
- Liu, W.-J.; Qian, T.-T.; Jiang, H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem. Eng. J. 2014, 236, 448–463. [Google Scholar] [CrossRef]
- Shen, Q.; Jiang, Y.; Xia, F.; Wang, B.; Lv, X.; Ye, W.; Yang, G. Hydrogen production by Co-based bimetallic nano-catalysts and their performance in methane steam reforming. Pet. Sci. Technol. 2020, 38, 618–625. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Hui, K.-Z.; Dong, L.-Z.; Li, Z.; Zhang, Q.-h.; Gu, L.; Zhao, W.; Lan, S.; Ke, Y.; Shao, Y.; et al. Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Sci. China Mater. 2019, 63, 453–466. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, Z.; Zhao, L.; Qiu, Z.; Zeng, D. Oxalic acid modification enables high efficiency and proton conductive of Fe-base amorphous toward acid orange II in wastewater removal. Sep. Purif. Technol. 2024, 332, 125768. [Google Scholar] [CrossRef]
- Ji, L.; Chen, J.W.; Zheng, Z.G.; Qiu, Z.G.; Peng, S.Y.; Zhou, S.H.; Zeng, D.C. Excellent degradation performance of the Fe78Si11B9P2 metallic glass in azo dye treatment. J. Phys. Chem. Solids 2020, 145, 109546. [Google Scholar] [CrossRef]
- Wu, X.; Liang, S.X.; Jia, L.; Liu, Y.; Huang, Y.; Liu, Y.; Tao, P. Breaking the pH limitation by Mo modulated amorphous medium-entropy alloys as efficient advanced oxidation catalysts. J. Environ. Chem. Eng. 2025, 13, 116151. [Google Scholar] [CrossRef]
- Shi, L.; Wang, K.; Yao, K. Maintaining high saturation magnetic flux density and reducing coercivity of Fe-based amorphous alloys by addition of Sn. J. Non-Cryst. Solids 2020, 528, 119710. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Chen, Y.B.; Wei, J.; Wang, X.; Qiu, Z.G.; Zeng, D.C. Enhanced Ms of Fe-rich Fe-B-Cu amorphous/nanocrystalline alloys achieved by annealing treatments. J. Alloys Compd. 2023, 939, 168621. [Google Scholar] [CrossRef]
- Chen, S.; Li, M.; Ji, Q.; Feng, T.; Lan, S.; Yao, K. Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment. J. Mater. Sci. Technol. 2022, 117, 49–58. [Google Scholar] [CrossRef]
- Zuo, M.; Yi, S.; Choi, J. Excellent dye degradation performance of FeSiBP amorphous alloys by Fenton-like process. J. Environ. Sci. 2021, 105, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Q.; Xie, L.; Zhang, G.; Mu, B.; Chang, C.; Ma, X. Development of novel Fe-based bulk metallic glasses with excellent wear and corrosion resistance by adjusting the Cr and Mo contents. Intermetallics 2023, 153, 107801. [Google Scholar] [CrossRef]
- Chen, S.; Yang, G.; Luo, S.; Yin, S.; Jia, J.; Li, Z.; Gao, S.; Shao, Y.; Yao, K. Unexpected high performance of Fe-based nanocrystallized ribbons for azo dye decomposition. J. Mater. Chem. A 2017, 5, 14230–14240. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, W.C.; Wang, W.M.; Habibi, D.; Zhang, L.C. Amorphous Fe78Si9B13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV–vis light. Appl. Catal. B 2016, 192, 46–56. [Google Scholar] [CrossRef]
- Chen, S.; Chen, N.; Cheng, M.; Luo, S.; Shao, Y.; Yao, K. Multi-phase nanocrystallization induced fast degradation of methyl orange by annealing Fe-based amorphous ribbons. Intermetallics 2017, 90, 30–35. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, Z.; Zhang, H.; Hu, Z. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys. Chin. Sci. Bull. 2011, 56, 3988–3992. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Lv, M.; Hu, Z. Decolorization of azo dye solution by Fe–Mo–Si–B amorphous alloy. J. Non-Cryst. Solids 2010, 356, 1703–1706. [Google Scholar] [CrossRef]
- Park, H.; Choi, W. Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. J. Photochem. Photobiol. A 2003, 159, 241–247. [Google Scholar] [CrossRef]
- Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 2003, 40, 271–286. [Google Scholar] [CrossRef]
Sample | Fe | Si | Cu | Sn |
---|---|---|---|---|
Fe77Si13B9Cu1 | 86.8 | 11.6 | 1.6 | - |
Fe79Si11B9Cu1 | 89.0 | 9.7 | 1.3 | - |
Fe81Si9B9Cu1 | 90.8 | 7.9 | 1.3 | - |
Fe77Si13B9Sn1 | 87.3 | 11.5 | - | 1.2 |
Fe79Si11B9Sn1 | 89.3 | 9.4 | - | 1.3 |
Fe81Si9B9Sn1 | 91.5 | 7.3 | - | 1.2 |
Composition | Dye | C0 (mg/L) | pH | Mass Dosage (g/L) | Temp. (°C) | Kobs (min−1) | Ref. |
---|---|---|---|---|---|---|---|
Fe78(Si,B)22 | Orange II | 100 | 6 | 9-12 | Room | 0.125 | [37] |
(Fe0.99Mo0.01)78Si9B13 | Direct blue 2B | 200 | 7 | 13.3 | 60 | 0.136 | [38] |
Fe78Si13B9 | Orange II | 40 | 7 | 2 | 35 | 0.071 | [11] |
Fe80B13C7 | acid orange 7 | 20 | 3 | 2 | 25 | 0.08 | [10] |
Fe85P11C2B2 | acid orange 7 | 20 | 3 | 2 | 35 | 0.0118 | [12] |
Fe78Si11B9P2 | Orange II | 40 | 7 | 2 | 35 | 0.082 | [27] |
Fe81Si9B9Sn1 | Orange II | 40 | 7 | 2 | 35 | 0.094 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zheng, Z.; Qiu, Z.; Xu, W.; Xiao, M.; Zeng, D. Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes. Materials 2025, 18, 2240. https://doi.org/10.3390/ma18102240
Wei J, Zheng Z, Qiu Z, Xu W, Xiao M, Zeng D. Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes. Materials. 2025; 18(10):2240. https://doi.org/10.3390/ma18102240
Chicago/Turabian StyleWei, Jing, Zhigang Zheng, Zhaoguo Qiu, Wanghui Xu, Meng Xiao, and Dechang Zeng. 2025. "Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes" Materials 18, no. 10: 2240. https://doi.org/10.3390/ma18102240
APA StyleWei, J., Zheng, Z., Qiu, Z., Xu, W., Xiao, M., & Zeng, D. (2025). Effects of Sn Addition and Fe Content Adjustment on the Decolorization Performance of Fe-Si-B Amorphous Alloys for Azo Dyes. Materials, 18(10), 2240. https://doi.org/10.3390/ma18102240