Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,125)

Search Parameters:
Keywords = optimal decision-making

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 422 KiB  
Article
Total Thyroidectomy vs. Lobectomy in Papillary Thyroid Microcarcinoma: A Contested Gold Standard
by Enrico Battistella, Luca Pomba, Riccardo Toniato, Andrea Piotto and Antonio Toniato
J. Pers. Med. 2025, 15(7), 324; https://doi.org/10.3390/jpm15070324 - 18 Jul 2025
Abstract
Background: Papillary thyroid microcarcinoma (PTMC), a subtype of papillary thyroid carcinoma ≤ 1 cm in diameter, has shown a marked increase in incidence in recent decades, largely due to the widespread use of neck ultrasonography and fine needle aspiration cytology. Despite its generally [...] Read more.
Background: Papillary thyroid microcarcinoma (PTMC), a subtype of papillary thyroid carcinoma ≤ 1 cm in diameter, has shown a marked increase in incidence in recent decades, largely due to the widespread use of neck ultrasonography and fine needle aspiration cytology. Despite its generally indolent course, optimal management of PTMC remains controversial, with treatment strategies ranging from active surveillance to total thyroidectomy. Methods: This retrospective study analyzes five years of experience at a single tertiary care center, including 130 patients diagnosed with PTMC following thyroid surgery between July 2018 and December 2023. Clinical, cytological, and pathological data were collected and analyzed to identify factors influencing surgical decision-making and postoperative outcomes. Patients underwent either total thyroidectomy or hemithyroidectomy, with central and lateral lymph node dissection performed as indicated. Follow-up included clinical and biochemical surveillance for a mean duration of 3 years. Results: Total thyroidectomy was performed in 89.3% of patients, while hemithyroidectomy was limited to 10.7%. Multifocality was observed in 26.1% of cases, with bilateral involvement in 17.7%. Occult lymph node metastases were found in 14.6% (central compartment) and 3.8% (lateral neck). Postoperative radioactive iodine therapy was administered in 23.8% of patients. At final follow-up, 90.7% were disease-free. No significant predictors of recurrence or adverse outcomes were identified, though multifocality and lymph node involvement influenced surgical planning. Conclusions: Our findings support a risk-adapted surgical approach to PTMC, favoring total thyroidectomy in patients with suspicious or multifocal disease to avoid reoperation. While active surveillance and minimally invasive techniques are emerging, total thyroidectomy remains a safe and effective strategy in selected cases. Prospective, multicenter studies are needed to further refine management guidelines for this increasingly common thyroid malignancy. Full article
(This article belongs to the Section Evidence Based Medicine)
29 pages, 3930 KiB  
Article
KAN-Based Tool Wear Modeling with Adaptive Complexity and Symbolic Interpretability in CNC Turning Processes
by Zhongyuan Che, Chong Peng, Jikun Wang, Rui Zhang, Chi Wang and Xinyu Sun
Appl. Sci. 2025, 15(14), 8035; https://doi.org/10.3390/app15148035 - 18 Jul 2025
Abstract
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the [...] Read more.
Tool wear modeling in CNC turning processes is critical for proactive maintenance and process optimization in intelligent manufacturing. However, traditional physics-based models lack adaptability, while machine learning approaches are often limited by poor interpretability. This study develops Kolmogorov–Arnold Networks (KANs) to address the trade-off between accuracy and interpretability in lathe tool wear modeling. Three KAN variants (KAN-A, KAN-B, and KAN-C) with varying complexities are proposed, using feed rate, depth of cut, and cutting speed as input variables to model flank wear. The proposed KAN-based framework generates interpretable mathematical expressions for tool wear, enabling transparent decision-making. To evaluate the performance of KANs, this research systematically compares prediction errors, topological evolutions, and mathematical interpretations of derived symbolic formulas. For benchmarking purposes, MLP-A, MLP-B, and MLP-C models are developed based on the architectures of their KAN counterparts. A comparative analysis between KAN and MLP frameworks is conducted to assess differences in modeling performance, with particular focus on the impact of network depth, width, and parameter configurations. Theoretical analyses, grounded in the Kolmogorov–Arnold representation theorem and Cybenko’s theorem, explain KANs’ ability to approximate complex functions with fewer nodes. The experimental results demonstrate that KANs exhibit two key advantages: (1) superior accuracy with fewer parameters compared to traditional MLPs, and (2) the ability to generate white-box mathematical expressions. Thus, this work bridges the gap between empirical models and black-box machine learning in manufacturing applications. KANs uniquely combine the adaptability of data-driven methods with the interpretability of physics-based models, offering actionable insights for researchers and practitioners. Full article
Show Figures

Figure 1

22 pages, 3599 KiB  
Article
A Framework for Synergy Measurement Between Transportation and Production–Living–Ecological Space Using Volume-to-Capacity Ratio, Accessibility, and Coordination
by Xiaoyi Ma, Mingmin Liu, Jingru Huang, Ruihua Hu and Hongjie He
Land 2025, 14(7), 1495; https://doi.org/10.3390/land14071495 - 18 Jul 2025
Abstract
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing [...] Read more.
In the stage of high-quality development, the functional coordination between transportation systems and territorial space is a key issue for improving urban spatial efficiency. This paper breaks through the traditional volume-to-capacity ratio analysis paradigm and innovatively integrates the “production-living-ecological space” theory. By introducing an improved accessibility evaluation model and developing a coordination measurement algorithm, a three-dimensional evaluation mechanism covering development potential assessment, service efficiency diagnosis, and resource allocation optimization is established. Empirical research indicates that the improved accessibility indicators can precisely identify the transportation location value of regional functional cores, while the composite coordination indicators can deconstruct the spatiotemporal matching characteristics of “transportation facilities—spatial functions,” providing a dual decision-making basis for the redevelopment of existing space. This measurement system innovatively realizes the integration of planning transmission mechanisms with multi-scale application scenarios, guiding both overall spatial planning and urban renewal area re-optimization. The methodology, applied to the urban villages of Guangzhou, can significantly increase land utilization intensity and value. The research results offer a technical tool for cross-scale collaboration in land space planning reforms and provide theoretical innovations and practical guidance for the value reconstruction of existing spaces under the context of new urbanization. Full article
Show Figures

Figure 1

33 pages, 2217 KiB  
Review
A Comprehensive Review of Artificial Intelligence-Based Algorithms for Predicting the Remaining Useful Life of Equipment
by Weihao Li, Jianhua Chen, Sijuan Chen, Peilin Li, Bing Zhang, Ming Wang, Ming Yang, Jipu Wang, Dejian Zhou and Junsen Yun
Sensors 2025, 25(14), 4481; https://doi.org/10.3390/s25144481 - 18 Jul 2025
Abstract
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which [...] Read more.
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which serves as a pivotal cornerstone for effective maintenance and operational decision-making. While significant advancements in computer hardware and artificial intelligence (AI) algorithms have catalyzed substantial progress in AI-based RUL prediction, extant research frequently exhibits a narrow focus on specific algorithms, neglecting a comprehensive and comparative analysis of AI techniques across diverse equipment types and operational scenarios. This study endeavors to bridge this gap through the following contributions: (1) A rigorous analysis and systematic categorization of application scenarios for equipment RUL prediction, elucidating their distinct characteristics and requirements. (2) A comprehensive summary and comparative evaluation of several AI algorithms deemed suitable for RUL prediction, delineating their respective strengths and limitations. (3) An in-depth comparative analysis of the applicability of AI algorithms across varying application contexts, informed by a nuanced understanding of different application scenarios and AI algorithm research. (4) An insightful discussion on the current challenges confronting AI-based RUL prediction technology, coupled with a forward-looking examination of its future prospects. By furnishing a meticulous and holistic understanding of the traits of various AI algorithms and their contextual applicability, this study aspires to facilitate the attainment of optimal application outcomes in the realm of equipment RUL prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Spatiotemporal Deformation Prediction Model for Retaining Structures Integrating ConvGRU and Cross-Attention Mechanism
by Yanyong Gao, Zhaoyun Xiao, Zhiqun Gong, Shanjing Huang and Haojie Zhu
Buildings 2025, 15(14), 2537; https://doi.org/10.3390/buildings15142537 - 18 Jul 2025
Abstract
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep [...] Read more.
With the exponential growth of engineering monitoring data, data-driven neural networks have gained widespread application in predicting retaining structure deformation in foundation pit engineering. However, existing models often overlook the spatial deflection correlations among monitoring points. Therefore, this study proposes a novel deep learning framework, CGCA (Convolutional Gated Recurrent Unit with Cross-Attention), which integrates ConvGRU and cross-attention mechanisms. The model achieves spatio-temporal feature extraction and deformation prediction via an encoder–decoder architecture. Specifically, the convolutional structure captures spatial dependencies between monitoring points, while the recurrent unit extracts time-series characteristics of deformation. A cross-attention mechanism is introduced to dynamically weight the interactions between spatial and temporal data. Additionally, the model incorporates multi-dimensional inputs, including full-depth inclinometer measurements, construction parameters, and tube burial depths. The optimization strategy combines AdamW and Lookahead to enhance training stability and generalization capability in geotechnical engineering scenarios. Case studies of foundation pit engineering demonstrate that the CGCA model exhibits superior performance and robust generalization capabilities. When validated against standard section (CX1) and complex working condition (CX2) datasets involving adjacent bridge structures, the model achieves determination coefficients (R2) of 0.996 and 0.994, respectively. The root mean square error (RMSE) remains below 0.44 mm, while the mean absolute error (MAE) is less than 0.36 mm. Comparative experiments confirm the effectiveness of the proposed model architecture and the optimization strategy. This framework offers an efficient and reliable technical solution for deformation early warning and dynamic decision-making in foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

26 pages, 2624 KiB  
Article
A Transparent House Price Prediction Framework Using Ensemble Learning, Genetic Algorithm-Based Tuning, and ANOVA-Based Feature Analysis
by Mohammed Ibrahim Hussain, Arslan Munir, Mohammad Mamun, Safiul Haque Chowdhury, Nazim Uddin and Muhammad Minoar Hossain
FinTech 2025, 4(3), 33; https://doi.org/10.3390/fintech4030033 - 18 Jul 2025
Abstract
House price prediction is crucial in real estate for informed decision-making. This paper presents an automated prediction system that combines genetic algorithms (GA) for feature optimization and Analysis of Variance (ANOVA) for statistical analysis. We apply and compare five ensemble machine learning (ML) [...] Read more.
House price prediction is crucial in real estate for informed decision-making. This paper presents an automated prediction system that combines genetic algorithms (GA) for feature optimization and Analysis of Variance (ANOVA) for statistical analysis. We apply and compare five ensemble machine learning (ML) models, namely Extreme Gradient Boosting Regression (XGBR), random forest regression (RFR), Categorical Boosting Regression (CBR), Adaptive Boosting Regression (ADBR), and Gradient Boosted Decision Trees Regression (GBDTR), on a comprehensive dataset. We used a dataset with 1000 samples with eight features and a secondary dataset for external validation with 3865 samples. Our integrated approach identifies Categorical Boosting with GA (CBRGA) as the best performer, achieving an R2 of 0.9973 and outperforming existing state-of-the-art methods. ANOVA-based analysis further enhances model interpretability and performance by isolating key factors such as square footage and lot size. To ensure robustness and transparency, we conduct 10-fold cross-validation and employ explainable AI techniques such as Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), providing insights into model decision-making and feature importance. Full article
Show Figures

Figure 1

28 pages, 1080 KiB  
Systematic Review
A Literature Review on Strategic, Tactical, and Operational Perspectives in EV Charging Station Planning and Scheduling
by Marzieh Sadat Aarabi, Mohammad Khanahmadi and Anjali Awasthi
World Electr. Veh. J. 2025, 16(7), 404; https://doi.org/10.3390/wevj16070404 - 18 Jul 2025
Abstract
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil [...] Read more.
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil fuel vehicles. Additionally, electric vehicles are highly efficient, with an efficiency of around 90%, in contrast to fossil fuel vehicles, which have an efficiency of about 30% to 35%. The higher energy efficiency of electric vehicles contributes to lower operational costs, which, alongside regulatory incentives and shifting consumer preferences, has increased their strategic importance for many vehicle manufacturers. In this paper, we present a thematic literature review on electric vehicles charging station location planning and scheduling. A systematic literature review across various data sources in the area yielded ninety five research papers for the final review. The research results were analyzed thematically, and three key directions were identified, namely charging station deployment and placement, optimal allocation and scheduling of EV parking lots, and V2G and smart charging systems as the top three themes. Each theme was further investigated to identify key topics, ongoing works, and future trends. It has been found that optimization methods followed by simulation and multi-criteria decision-making are most commonly used for EV infrastructure planning. A multistakeholder perspective is often adopted in these decisions to minimize costs and address the range anxiety of users. The future trend is towards the integration of renewable energy in smart grids, uncertainty modeling of user demand, and use of artificial intelligence for service quality improvement. Full article
Show Figures

Figure 1

18 pages, 1814 KiB  
Article
AI-Based Damage Risk Prediction Model Development Using Urban Heat Transport Pipeline Attribute Information
by Sungyeol Lee, Jaemo Kang, Jinyoung Kim and Myeongsik Kong
Appl. Sci. 2025, 15(14), 8003; https://doi.org/10.3390/app15148003 - 18 Jul 2025
Abstract
This study analyzed the probability of damage in heat transport pipelines buried in urban areas using pipeline attribute information and damage history data and developed an AI-based predictive model. A dataset was constructed by collecting spatial and attribute data of pipelines and defining [...] Read more.
This study analyzed the probability of damage in heat transport pipelines buried in urban areas using pipeline attribute information and damage history data and developed an AI-based predictive model. A dataset was constructed by collecting spatial and attribute data of pipelines and defining basic units according to specific standards. Damage trends were analyzed based on pipeline attributes, and correlation analysis was performed to identify influential factors. These factors were applied to three machine learning algorithms: Random Forest, eXtreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM). The model with optimal performance was selected by comparing evaluation indicators including the F2-score, accuracy, and area under the curve (AUC). The LightGBM model trained on data from pipelines in use for over 20 years showed the best performance (F2-score = 0.804, AUC = 0.837). This model was used to generate a risk map visualizing the probability of pipeline damage. The map can aid in the efficient management of urban heat transport systems by enabling preemptive maintenance in high-risk areas. Incorporating external environmental data and auxiliary facility information in future models could further enhance reliability and support the development of a more effective maintenance decision-making system. Full article
Show Figures

Figure 1

26 pages, 2215 KiB  
Article
Smart Routing for Sustainable Supply Chain Networks: An AI and Knowledge Graph Driven Approach
by Manuel Felder, Matteo De Marchi, Patrick Dallasega and Erwin Rauch
Appl. Sci. 2025, 15(14), 8001; https://doi.org/10.3390/app15148001 - 18 Jul 2025
Abstract
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and [...] Read more.
Small and medium-sized enterprises (SMEs) face growing challenges in optimizing their sustainable supply chains because of fragmented logistics data and changing regulatory requirements. In particular, globally operating manufacturing SMEs often lack suitable tools, resulting in manual data collection and making reliable accounting and benchmarking of transport emissions in lifecycle assessments (LCAs) time-consuming and difficult to scale. This paper introduces a novel hybrid AI-supported knowledge graph (KG) which combines large language models (LLMs) with graph-based optimization to automate industrial supply chain route enrichment, completion, and emissions analysis. The proposed solution automatically resolves transportation gaps through generative AI and programming interfaces to create optimal routes for cost, time, and emission determination. The application merges separate routes into a single multi-modal network which allows users to evaluate sustainability against operational performance. A case study shows the capabilities in simplifying data collection for emissions reporting, therefore reducing manual effort and empowering SMEs to align logistics decisions with Industry 5.0 sustainability goals. Full article
Show Figures

Figure 1

22 pages, 524 KiB  
Review
Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization
by Gines Molina-Abril, Laura Calvet, Angel A. Juan and Daniel Riera
Computation 2025, 13(7), 173; https://doi.org/10.3390/computation13070173 - 18 Jul 2025
Abstract
Small- and medium-sized enterprises (SMEs) face dynamic and competitive environments where resilience and data-driven decision-making are critical. Despite the potential benefits of artificial intelligence (AI), machine learning (ML), and optimization techniques, SMEs often struggle to adopt these tools due to high costs, limited [...] Read more.
Small- and medium-sized enterprises (SMEs) face dynamic and competitive environments where resilience and data-driven decision-making are critical. Despite the potential benefits of artificial intelligence (AI), machine learning (ML), and optimization techniques, SMEs often struggle to adopt these tools due to high costs, limited training, and restricted hardware access. This study reviews how SMEs can employ heuristics, metaheuristics, ML, and hybrid approaches to support strategic decisions under uncertainty and resource constraints. Using bibliometric mapping with UMAP and BERTopic, 82 key works are identified and clustered into 11 thematic areas. From this, the study develops a practical framework for implementing and evaluating optimization strategies tailored to SMEs’ limitations. The results highlight critical application areas, adoption barriers, and success factors, showing that heuristics and hybrid methods are especially effective for multi-objective optimization with lower computational demands. The study also outlines research gaps and proposes future directions to foster digital transformation in SMEs. Unlike prior reviews focused on specific industries or methods, this work offers a cross-sectoral perspective, emphasizing how these technologies can strengthen SME resilience and strategic planning. Full article
(This article belongs to the Section Computational Social Science)
Show Figures

Figure 1

21 pages, 4935 KiB  
Article
Optimization of the Loess Plateau of the China Ecological Network Pattern Based on a PLUS Model
by Xiaoyan Luo, Xun Luo, Xianhua Yang, Jian Wang, Jialing Liao, Yu He, Ye Du and Ye Yang
Land 2025, 14(7), 1488; https://doi.org/10.3390/land14071488 - 18 Jul 2025
Abstract
Optimizing the ecological network is an urgent need to enhance the stability of the ecosystem and maintain regional ecological security. We utilized the PLUS (Patch-generating Land Use Simulation) model to simulate the land use patterns of the Loess Plateau of China under four [...] Read more.
Optimizing the ecological network is an urgent need to enhance the stability of the ecosystem and maintain regional ecological security. We utilized the PLUS (Patch-generating Land Use Simulation) model to simulate the land use patterns of the Loess Plateau of China under four different development scenarios in 2030, constructed the corresponding ecological network, and evaluated the network structure. The results indicate the following: (1) By 2030, the spatial pattern of ecological network under the four scenarios will be concentrated in the east and west, in the north and south, and the middle of the Loess Plateau. (2) The change of land use pattern driven by a single policy has a trade-off effect on the ecological network and is prone to form the phenomenon of “ecological increase–functional lag”. (3) The regional ecological network layout of “four cores, multiple corridors and multiple sources” was proposed. The results reveal the development trends of land-use change and ecological protection construction under different future development scenarios in the Loess Plateau, which is helpful for decision-makers to balance the relationship between ecological protection and economic development and realize regional sustainable development. Full article
Show Figures

Figure 1

22 pages, 487 KiB  
Article
Fuzzy Hypothesis Testing for Radar Detection: A Statistical Approach for Reducing False Alarm and Miss Probabilities
by Ahmed K. Elsherif, Hanan Haj Ahmad, Mohamed Aboshady and Basma Mostafa
Mathematics 2025, 13(14), 2299; https://doi.org/10.3390/math13142299 - 17 Jul 2025
Abstract
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and [...] Read more.
This paper addresses a fundamental challenge in statistical radar detection systems: optimizing the trade-off between the probability of a false alarm (PFA) and the probability of a miss (PM). These two metrics are inversely related and critical for performance evaluation. Traditional detection approaches often enhance one aspect at the expense of the other, limiting their practical applicability. To overcome this limitation, a fuzzy hypothesis testing framework is introduced that improves decision making under uncertainty by incorporating both crisp and fuzzy data representations. The methodology is divided into three phases. In the first phase, we reduce the probability of false alarm PFA while maintaining a constant probability of miss PM using crisp data characterized by deterministic values and classical statistical thresholds. In the second phase, the inverse scenario is considered: minimizing PM while keeping PFA fixed. This is achieved through parameter tuning and refined threshold calibration. In the third phase, a strategy is developed to simultaneously enhance both PFA and PM, despite their inverse correlation, by adopting adaptive decision rules. To further strengthen system adaptability, fuzzy data are introduced, which effectively model imprecision and ambiguity. This enhances robustness, particularly in scenarios where rapid and accurate classification is essential. The proposed methods are validated through both real and synthetic simulations of radar measurements, demonstrating their ability to enhance detection reliability across diverse conditions. The findings confirm the applicability of fuzzy hypothesis testing for modern radar systems in both civilian and military contexts, providing a statistically sound and operationally applicable approach for reducing detection errors and optimizing system performance. Full article
(This article belongs to the Special Issue New Advance in Applied Probability and Statistical Inference)
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

27 pages, 49290 KiB  
Review
AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making
by Lei Li, Li Li, Mantian Li and Ke Liang
Machines 2025, 13(7), 615; https://doi.org/10.3390/machines13070615 - 17 Jul 2025
Abstract
Robots are increasingly being used across industries, healthcare, and service sectors to perform a wide range of tasks. However, as these tasks become more complex and environments more unpredictable, the need for adaptable robots continues to grow—bringing with it greater technological challenges. Artificial [...] Read more.
Robots are increasingly being used across industries, healthcare, and service sectors to perform a wide range of tasks. However, as these tasks become more complex and environments more unpredictable, the need for adaptable robots continues to grow—bringing with it greater technological challenges. Artificial intelligence (AI), driven by large datasets and advanced algorithms, plays a pivotal role in addressing these challenges and advancing robotics. AI enhances robot design by making it more intelligent and flexible, significantly improving robot perception to better understand and respond to surrounding environments and empowering more intelligent control and decision-making. In summary, AI contributes to robotics through design optimization, environmental perception, and intelligent decision-making. This article explores the driving role of AI in robotics and presents detailed examples of its integration with fields such as embodied intelligence, humanoid robots, big data, and large AI models, while also discussing future prospects and challenges in this rapidly evolving field. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

26 pages, 2989 KiB  
Article
Studying Homoclinic Chaos in a Class of Piecewise Smooth Oscillators: Melnikov’s Approach, Symmetry Results, Simulations and Applications to Generating Antenna Factors Using Approximation and Optimization Techniques
by Nikolay Kyurkchiev, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev and Asen Rahnev
Symmetry 2025, 17(7), 1144; https://doi.org/10.3390/sym17071144 - 17 Jul 2025
Abstract
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. [...] Read more.
In this paper, we provide a novel extended mixed differential model that is appealing to users because of its numerous free parameters. The motivation of this research arises from the opportunity for a general investigation of some outstanding classical and novel dynamical models. The higher energy levels known in the literature can be governed by appropriately added correction factors. Furthermore, the different applications of the considered model can be achieved only after a proper parameter calibration. All these necessitate the use of diverse optimization and approximation techniques. The proposed extended model is especially useful in the important field of decision making, namely the antenna array theory. This is due to the possibility of generating high-order Melnikov polynomials. The work is a natural continuation of the authors’ previous research on the topic of chaos generation via the term x|x|a1. Some specialized modules for investigating the dynamics of the proposed oscillators are provided. Last but not least, the so-defined dynamical model can be of interest for scientists and practitioners in the area of antenna array theory, which is an important part of the decision-making field. The stochastic control of oscillations is also the subject of our consideration. The underlying distributions we use may be symmetric, asymmetric or strongly asymmetric. The same is true for the mass in the tails, too. As a result, the stochastic control of the oscillations we purpose may exhibit a variety of possible behaviors. In the final section, we raise some important issues related to the methodology of teaching Master’s and PhD students. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Back to TopTop