Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization
Abstract
1. Introduction
2. Integrating Heuristics and Machine Learning
2.1. Heuristics and Metaheuristics
2.2. Machine Learning
2.3. Hybrid Approaches
3. Research Methodology: Exploring Heuristics and Machine Learning for Optimization
4. Exploring Cluster Grouping: Patterns and Insights
4.1. Segment A: Multi-Domain Feature Engineering and Uncertainty Quantification
4.2. Segment B: Data-Driven Modeling and Uncertainty Management—Cross-Domain Applications
4.3. Segment C: Energy Demand and Wind Power Forecasting
4.4. Segment D: Energy Efficiency and Thermal Performance in Building Systems
4.5. Segment E: Advanced Materials and Manufacturing
4.6. Segment F: Control Strategies for Energy Systems and Autonomous Vehicles
4.7. Segment G: Management of Renewable Energy Systems
4.8. Segment H: Supply Chain and Logistics Management
4.9. Segment I: Algorithms for Complex Operational Problems
4.10. Segment J: Cloud and Edge Computing for Internet of Things (IoT) and Mobile Systems
4.11. Segment K: Unmanned Aerial Vehicle (UAV) and Wireless Sensor Networks
5. Optimization in SMEs: Optimization Strategy Implementation and Impact Assessment
5.1. Key Optimization Strategies
5.2. Potential Business Impact
5.3. Implementation Feasibility
5.4. Recommendations and Managerial Insights
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Strategy | Key Algorithms | Advantages for SMEs |
---|---|---|
Evolutionary and Multi-Objective Optimization | Genetic Algorithm (GA), NSGA-II, NSGA-III [53,61] | Flexible and robust for multi-objective problems and handles large nonlinear decision spaces [59] |
Swarm Intelligence | Particle Swarm Optimization (PSO) and variants [80,112] | Fast convergence, Minimal fine-tuning required, and low computational cost [81] |
Other Bio-inspired Metaheuristics | Ant Lion Optimizer (ALO), Grey Wolf Optimizer (GWO), Cuckoo Search (CS), Firefly Algorithm [52,113] | Manages nonlinear, high-dimensional, or constrained problems, and robust under complex constraints [54] |
Hybrid and Surrogate-based Methods | Metaheuristics, Kriging, grid search, and Mathematical programming [63,65,67] | Balances exploration and exploitation; improves convergence rates and reduces expensive objective calls |
Parameter-Light Algorithms | Teaching–Learning-Based Optimization (TLBO) [71] | Minimal dependence on algorithm-specific parameters and quick to implement without deep prior expertise |
ML-Integrated/Auto-tuning Approaches | Stochastic Gradient Descent (SGD); grid search for hyper-parameters and Metaheuristics with ML modules [35,36] | Automates model selection and parameter tuning and lowers barriers to entry for resource-constrained SMEs |
Aspect and Description | Examples from the Literature | Implications for SMEs |
---|---|---|
Common business objectives: Performance goals aimed at improving operations and decision quality. | Cost reduction, quality enhancement, risk mitigation, efficiency, sustainability, customer satisfaction | Focus on objectives that are measurable, strategic, and aligned with core SME needs. |
Key performance indicators (KPIs): Metrics used to evaluate progress toward goals. | MAE, RMSE, MAPE, F1 score, Dice coefficient, exergy efficiency, network lifetime | Prioritize interpretable and actionable KPIs to enable process optimization |
Optimization frameworks: Structures for balancing conflicting business goals through multi-objective analysis. | Pareto front analysis, hypervolume indicators, solution convergence/diversity | Clarifies trade-offs and supports transparent decision-making. |
Domain-specific KPIs: Tailored metrics that reflect industry-specific operations and constraints. | Exergy efficiency (energy), Dice/Jaccard (image analysis), makespan/energy (scheduling), latency/lifetime (cyber–physical systems) | Choose KPIs aligned with the SME’s sector and operational focus. |
Application benefits: Strategic advantages gained from the structured use of objectives and KPIs. | Better decisions, goal alignment, performance benchmarking, financial discipline | Fosters agility, continuous improvement, and competitiveness. |
Strategic recommendations: Key practices for effective use of metrics and goals in SMEs. | Prioritize profitability-related goals, standardize metrics, use multi-objective approaches | Enables scalable, cost-effective optimization initiatives. |
Aspect | Details | References |
---|---|---|
Common Conditions | High-quality comprehensive data essential for model reliability and training, particularly in ML-based optimization. Robust computational resources required to manage high-dimensional and real-time problems. Clear operational parameters and boundary conditions are foundational for effective and safe optimization, especially in industrial contexts. Alignment of domain expertise and algorithmic models improves interpretability and parameter tuning. | [35,36,46,47,49,83,105] |
Potential Barriers | High computational and annotation costs and lack of infrastructure challenge feasibility and scalability. Data that is scarce, noisy, or redundant can hurt how accurate and stable a model is. Limited technical expertise and organizational resistance slow adoption of optimization approaches. Complexity and opacity of models reduce managerial trust and hinder implementation. Conflicting objectives such as cost vs. safety complicate optimization. | [34,36,43,58,83,104] |
Strategic Objectives for SMEs | Invest in high-quality data infrastructure to enable accurate and adaptable models. Upskill personnel to bridge domain knowledge and advanced modeling. Adopt modular, interpretable, and scalable tools, tailored to SME constraints. Address trade-offs with multi-objective frameworks, ensuring transparency and alignment with strategic goals. Design resource-adaptive systems for uncertain and dynamic contexts. | [37,105] |
Recommendations | Benefit for SMEs | References |
---|---|---|
Multi-objective and hybrid optimization strategies: Application of metaheuristics (e.g., Genetic Algorithms or Particle Swarm Optimization) to address complex decision-making with multiple competing objectives. | Versatile and effective across diverse decision contexts with limited resources. | [40,80] |
Model-based and data-driven integration: Combining physical expert models with ML (e.g., neural networks or ensembles) for improved accuracy and adaptability. | Improves predictive power under uncertainty; supports informed decisions with limited historical data. | [37,43,44,45] |
Uncertainty quantification and robust modeling: Developing solutions that remain reliable under variability and incomplete knowledge. | Promotes resilience and reduces risk in dynamic or volatile environments. | [37,43,44,45] |
Advanced decision aggregation and fuzzy logic: Use of fuzzy systems and aggregation operators to handle ambiguity and partial information in decision processes. | Provides accessible interpretable decision support for non-expert users. | [32,33] |
Heuristic and surrogate-assisted methods: Use of simplified or approximate models to reduce computational cost while maintaining solution quality. | Enables faster resource-efficient optimization, suitable for SMEs with limited computational capacity. | [60,66] |
Implementation-oriented design: Emphasis on modular, rule-based, and low-complexity systems for cost-effective deployment. | Ensures practical applicability, ease of integration, and short learning curves in SME environments. | [63,78] |
References
- Bianchini, M.; Sancho, M.L. SME Digitalisation for Competitiveness: The 2025 OECD D4SME Survey; Technical Report 68; OECD Publishing: Paris, France, 2025. [Google Scholar] [CrossRef]
- Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011. [Google Scholar]
- Naradda Gamage, S.K.; Ekanayake, E.M.S.; Abeyrathne, G.; Prasanna, R.; Jayasundara, J.; Rajapakshe, P.S.K. A Review of Global Challenges and Survival Strategies of Small and Medium Enterprises (SMEs). Economies 2020, 8, 79. [Google Scholar] [CrossRef]
- Frey, S.; Am, J.B.; Doshi, V.; Malik, A.; Noble, S. Consumers Care About Sustainability—And Back It up with Their Wallets; Mckinsey and Company: New York, NY, USA, 2023. [Google Scholar]
- Juan, A.A.; Keenan, P.; Martí, R.; McGarraghy, S.; Panadero, J.; Carroll, P.; Oliva, D. A review of the role of heuristics in stochastic optimisation: From metaheuristics to learnheuristics. Ann. Oper. Res. 2023, 320, 831–861. [Google Scholar] [CrossRef]
- Guzmán-Ortiz, B.E.; Poler, R.; Andres, B. A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and distribution planning in the supply chain. Adv. Prod. Eng. Manag. 2023, 18, 19–31. [Google Scholar] [CrossRef]
- Arabsheybani, A.; Paydar, M.M.; Safaei, A.S. Sustainable supplier selection and order allocation applying metaheuristic algorithms. Int. J. Supply Oper. Manag. 2020, 7, 164–177. [Google Scholar]
- Pourkhodabakhsh, N.; Mamoudan, M.M.; Bozorgi-Amiri, A. Effective machine learning, meta-heuristic algorithms and multi-criteria decision making to minimizing human resource turnover. Appl. Intell. 2023, 53, 16309–16331. [Google Scholar] [CrossRef]
- Anju, K.; Avanish, K. An advanced approach to the employee recruitment process through genetic algorithm. Int. J. Inf. Technol. 2021, 13, 313–319. [Google Scholar] [CrossRef]
- Doering, J.; Kizys, R.; Juan, A.A.; Fito, A.; Polat, O. Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends. Oper. Res. Perspect. 2019, 6, 100121. [Google Scholar] [CrossRef]
- Hadjinicolaou, N.; Kader, M.; Abdallah, I. Strategic innovation, foresight and the deployment of project portfolio management under mid-range planning conditions in medium-sized firms. Sustainability 2021, 14, 80. [Google Scholar] [CrossRef]
- Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422. [Google Scholar] [CrossRef]
- Artinger, F.M.; Petersen, M.; Gigerenzer, G.; Weibler, J. Heuristics as adaptive decision strategies in management. J. Organ. Behav. 2015, 36, S33–S52. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision Under Risk. In Handbook of the Fundamentals of Financial Decision Making; Econometrica: New Haven, CT, USA, 1979; Chapter 6; pp. 99–127. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Advances in Prospect Theory: Cumulative Representation of Uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Monteiro, A.C.B.; França, R.P.; Arthur, R.; Iano, Y. The fundamentals and potential of heuristics and metaheuristics for multiobjective combinatorial optimization problems and solution methods. Multi-Object. Comb. Optim. Probl. Solut. Methods 2022, 9–29. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Li, H.; Wen, Y.; Han, Z. Reinforcement learning-based resource allocation for cloud native applications. In Proceedings of the Conference on Computer Communications, Honolulu, HI, USA, 15–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1383–1391. [Google Scholar]
- Moody, J.; Saffell, M. Reinforcement learning for trading. In Proceedings of the Conference on Advances in Neural Information Processing Systems, Denver, CO, USA, 30 November–5 December 1998; pp. 917–923. [Google Scholar]
- Calvet, L.; de Armas, J.; Masip, D.; Juan, A.A. Learnheuristics: Hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Math. 2017, 15, 261–280. [Google Scholar] [CrossRef]
- Azevedo, B.F.; Rocha, A.M.A.; Pereira, A.I. Hybrid approaches to optimization and machine learning methods: A systematic literature review. Mach. Learn. 2024, 113, 4055–4097. [Google Scholar] [CrossRef]
- Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar] [CrossRef]
- Mitchell, M. Genetic Algorithms and Simulated Annealing; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Zhang, Z.; Zhang, Y.; Zhao, C. Deep Reinforcement Learning for Optimization: A Comprehensive Survey. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3561–3578. [Google Scholar]
- Prasanna, R.M.; Bhat, M.K.; Raghunathan, S. Supply Chain Optimization Using Hybrid Genetic Algorithm. Oper. Res. Perspect. 2017, 4, 109–119. [Google Scholar]
- Oliner, S.J.; Kauffman, R.J.; Wei, K. Machine Learning for Scheduling in Production Systems. IEEE Trans. Autom. Sci. Eng. 2015, 12, 778–785. [Google Scholar]
- Mühleisen, H.; Raasveldt, M. duckdb: DBI Package for the DuckDB Database Management System. R Package Version 1.2.0.9000. 2025. Available online: https://github.com/duckdb/duckdb-r (accessed on 16 July 2025).
- Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- Healy, J.; McInnes, L. Uniform manifold approximation and projection. Nat. Rev. Methods Prim. 2024, 4, 82. [Google Scholar] [CrossRef]
- Ashraf, S.; Abdullah, S.; Mahmood, T. Spherical fuzzy Dombi aggregation operators and their application in group decision making problems. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2731–2749. [Google Scholar] [CrossRef]
- Akram, M.; Martino, A. Multi-attribute group decision making based on T-spherical fuzzy soft rough average aggregation operators. Granul. Comput. 2023, 8, 171–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, D.w.; Cheng, J. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xue, B.; Liang, J.; Zhang, M. Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution. Inf. Sci. 2023, 626, 586–606. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, R.; Liao, Q.; Li, D.; Zhang, J. Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation. Artif. Intell. Med. 2023, 138, 102476. [Google Scholar] [CrossRef]
- Xiao, Z.; Su, Y.; Deng, Z.; Zhang, W. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation. Comput. Methods Programs Biomed. 2022, 226, 107099. [Google Scholar] [CrossRef]
- Gao, W.; Coley, C.W. The Synthesizability of Molecules Proposed by Generative Models. J. Chem. Inf. Model. 2020, 60, 5714–5723. [Google Scholar] [CrossRef]
- Abbasi, M.; Santos, B.P.; Pereira, T.C.; Sofia, R.; Monteiro, N.R.C.; Simões, C.J.V.; Brito, R.; Ribeiro, B.; Oliveira, J.L.; Arrais, J.P. Designing optimized drug candidates with Generative Adversarial Network. J. Cheminform. 2022, 14, 40. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z.; Xu, M.; Li, Y. Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters. Appl. Math. Model. 2017, 47, 573–586. [Google Scholar] [CrossRef]
- Yoo, K.; Bacarreza, O.; Aliabadi, M.H.F. A novel multi-fidelity modelling-based framework for reliability-based design optimisation of composite structures. Eng. Comput. 2022, 38, 595–608. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, J.L.; Wang, J.X.; Sun, R.; Roy, C. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. J. Comput. Phys. 2016, 324, 115–136. [Google Scholar] [CrossRef]
- Geneva, N.; Zabaras, N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks. J. Comput. Phys. 2019, 383, 125–147. [Google Scholar] [CrossRef]
- Bandara, R.P.; Chan, T.H.; Thambiratnam, D.P. Frequency response function based damage identification using principal component analysis and pattern recognition technique. Eng. Struct. 2014, 66, 116–128. [Google Scholar] [CrossRef]
- Yin, X.; Huang, Z.; Liu, Y. Bridge damage identification under the moving vehicle loads based on the method of physics-guided deep neural networks. Mech. Syst. Signal Process. 2023, 190, 110123. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Yafouz, A.; Birima, A.H.; Kisi, O.; Huang, Y.F.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Water level prediction using various machine learning algorithms: A case study of Durian Tunggal river, Malaysia. Eng. Appl. Comput. Fluid Mech. 2022, 16, 422–440. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qiao, Q.; Tavares, A.; Liang, Y. Water Quality Prediction Based on Machine Learning and Comprehensive Weighting Methods. Entropy 2023, 25, 1186. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Zhao, G.; Yang, B.; Wang, R.; Huang, D.; Xiang, B. Intelligent decision method for main control parameters of tunnel boring machine based on multi-objective optimization of excavation efficiency and cost. Tunn. Undergr. Space Technol. 2021, 116, 104054. [Google Scholar] [CrossRef]
- Liu, W.; Li, A.; Fang, W.; Love, P.E.; Hartmann, T.; Luo, H. A hybrid data-driven model for geotechnical reliability analysis. Reliab. Eng. Syst. Saf. 2023, 231, 108985. [Google Scholar] [CrossRef]
- Mohammadi, F. Lithium-ion battery State-of-Charge estimation based on an improved Coulomb-Counting algorithm and uncertainty evaluation. J. Energy Storage 2022, 48, 104061. [Google Scholar] [CrossRef]
- Wu, M.; Zhong, Y.; Wu, J.; Wang, Y.; Wang, L. State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network. Energy 2023, 283, 129061. [Google Scholar] [CrossRef]
- Wang, J.; Du, P.; Lu, H.; Yang, W.; Niu, T. An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting. Appl. Soft Comput. 2018, 72, 321–337. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, X.; Ma, Y.; Zhao, X. A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting. Appl. Energy 2019, 237, 896–909. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Zhang, L.; Niu, X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137. [Google Scholar] [CrossRef]
- Nie, Y.; Liang, N.; Wang, J. Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme. Appl. Energy 2021, 301, 117452. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Jia, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy Build. 2015, 88, 135–143. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Zhang, L.; Wu, X. Optimizing energy efficiency and thermal comfort in building green retrofit. Energy 2021, 237, 121509. [Google Scholar] [CrossRef]
- Behzadi, A.; Gholamian, E.; Houshfar, E.; Habibollahzade, A. Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran’s waste-to-energy plant integrated with an ORC unit. Energy 2018, 160, 1055–1068. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, T.; Yang, K. An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization. Energy 2022, 247, 123566. [Google Scholar] [CrossRef]
- Arie, M.; Shooshtari, A.; Dessiatoun, S.; Al-Hajri, E.; Ohadi, M. Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger. Int. J. Heat Mass Transf. 2015, 81, 478–489. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Attarzadeh-Niaki, S.H.; Duwig, C. Multi-objective optimization of TPMS-based heat exchangers for low-temperature waste heat recovery. Appl. Therm. Eng. 2022, 212, 118448. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Amiri, H.; Azadi, S.; Karimaei, M.; Sadeghi, H.; Dabbaghi, F. Multi-objective optimization of coal waste recycling in concrete using response surface methodology. J. Build. Eng. 2022, 45, 103472. [Google Scholar] [CrossRef]
- Younas, M.; Jaffery, S.H.I.; Khan, M.; Khan, M.A.; Ahmad, R.; Mubashar, A.; Ali, L. Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP). Int. J. Adv. Manuf. Technol. 2019, 105, 1175–1188. [Google Scholar] [CrossRef]
- Khan, M.A.; Jaffery, S.H.I.; Khan, M.; Younas, M.; Butt, S.I.; Ahmad, R.; Warsi, S.S. Multi-objective optimization of turning titanium-based alloy Ti-6Al-4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). Int. J. Adv. Manuf. Technol. 2020, 106, 3897–3911. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, G.; Sun, G.; Liu, Q.; Li, G.; Li, Q. On design of multi-cell thin-wall structures for crashworthiness. Int. J. Impact Eng. 2016, 88, 102–117. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Lin, J.; Lu, Y. Theoretical analysis and crashworthiness optimization of hybrid multi-cell structures. Thin-Walled Struct. 2019, 142, 116–131. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhu, X.; Quan, L.; Du, Y.; Zhang, C.; Fan, D. Multilevel Design Optimization and Operation of a Brushless Double Mechanical Port Flux-Switching Permanent-Magnet Motor. IEEE Trans. Ind. Electron. 2016, 63, 6042–6054. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, X.; Xu, L.; Xiang, Z.; Quan, L.; Yu, B. Multi-Objective Optimization Design of a Multi-Permanent-Magnet Motor Considering Magnet Characteristic Variation Effects. IEEE Trans. Ind. Electron. 2022, 69, 3428–3438. [Google Scholar] [CrossRef]
- Lu, K.; Zhou, W.; Zeng, G.; Zheng, Y. Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system. Int. J. Electr. Power Energy Syst. 2019, 105, 249–271. [Google Scholar] [CrossRef]
- Annamraju, A.; Nandiraju, S. Robust frequency control in a renewable penetrated power system: An adaptive fractional order-fuzzy approach. Prot. Control Mod. Power Syst. 2019, 4, 16. [Google Scholar] [CrossRef]
- Kang, E.; Qiao, H.; Chen, Z.; Gao, J. Tracking of Uncertain Robotic Manipulators Using Event-Triggered Model Predictive Control With Learning Terminal Cost. IEEE Trans. Autom. Sci. Eng. 2022, 19, 2801–2815. [Google Scholar] [CrossRef]
- Chen, G.; Dong, J. Approximate Optimal Adaptive Prescribed Performance Control for Uncertain Nonlinear Systems With Feature Information. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 2298–2308. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, Z. Eco-Approach with Traffic Prediction and Experimental Validation for Connected and Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1562–1572. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Xu, M.; Liu, Y. Deep reinforcement learning and reward shaping based eco-driving control for automated HEVs among signalized intersections. Energy 2022, 251, 123924. [Google Scholar] [CrossRef]
- Yang, C.; Wang, M.; Wang, W.; Pu, Z.; Ma, M. An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm. Energy 2021, 219, 119595. [Google Scholar] [CrossRef]
- Yuan, H.B.; Zou, W.J.; Jung, S.; Kim, Y.B. A Real-Time Rule-Based Energy Management Strategy with Multi-Objective Optimization for a Fuel Cell Hybrid Electric Vehicle. IEEE Access 2022, 10, 102618–102628. [Google Scholar] [CrossRef]
- Li, D.; Zouma, A.; Liao, J.T.; Yang, H.T. An energy management strategy with renewable energy and energy storage system for a large electric vehicle charging station. eTransportation 2020, 6, 100076. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Wu, N.; Zhu, J.; Li, H.; Yang, J. Optimal scheduling of electric vehicle charging operations considering real-time traffic condition and travel distance. Expert Syst. Appl. 2023, 213, 118941. [Google Scholar] [CrossRef]
- Biswas, P.P.; Mallipeddi, R.; Suganthan, P.; Amaratunga, G.A. A multiobjective approach for optimal placement and sizing of distributed generators and capacitors in distribution network. Appl. Soft Comput. 2017, 60, 268–280. [Google Scholar] [CrossRef]
- Wu, H.; Dong, P.; Liu, M. Distribution Network Reconfiguration for Loss Reduction and Voltage Stability with Random Fuzzy Uncertainties of Renewable Energy Generation and Load. IEEE Trans. Ind. Inform. 2020, 16, 5655–5666. [Google Scholar] [CrossRef]
- Sedighizadeh, M.; Esmaili, M.; Mohammadkhani, N. Stochastic multi-objective energy management in residential microgrids with combined cooling, heating, and power units considering battery energy storage systems and plug-in hybrid electric vehicles. J. Clean. Prod. 2018, 195, 301–317. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, W.; Liu, M.; Yang, F.; Kong, X. Energy storage optimization method for microgrid considering multi-energy coupling demand response. J. Energy Storage 2022, 45, 103521. [Google Scholar] [CrossRef]
- Khalid, A.; Javaid, N.; Guizani, M.; Alhussein, M.; Aurangzeb, K.; Ilahi, M. Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. IEEE Access 2018, 6, 19509–19529. [Google Scholar] [CrossRef]
- Waseem, M.; Lin, Z.; Liu, S.; Sajjad, I.A.; Aziz, T. Optimal GWCSO-based home appliances scheduling for demand response considering end-users comfort. Electr. Power Syst. Res. 2020, 187, 106477. [Google Scholar] [CrossRef]
- Sang, M.; Ding, Y.; Bao, M.; Li, S.; Ye, C.; Fang, Y. Resilience-based restoration strategy optimization for interdependent gas and power networks. Appl. Energy 2021, 302, 117560. [Google Scholar] [CrossRef]
- Xu, M.; Li, G.; Chen, A. Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments. Reliab. Eng. Syst. Saf. 2024, 241, 109599. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, J.; Han, Y.; Zheng, H.; Ma, D.; Chen, M. A chaos-coupled multi-objective scheduling decision method for liner shipping based on the NSGA-III algorithm. Comput. Ind. Eng. 2022, 174, 108732. [Google Scholar] [CrossRef]
- Elmi, Z.; Li, B.; Liang, B.; yip Lau, Y.; Borowska-Stefańska, M.; Wiśniewski, S.; Dulebenets, M.A. An epsilon-constraint-based exact multi-objective optimization approach for the ship schedule recovery problem in liner shipping. Comput. Ind. Eng. 2023, 183, 109472. [Google Scholar] [CrossRef]
- Sadeghi Rad, R.; Nahavandi, N. A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. J. Clean. Prod. 2018, 196, 1549–1565. [Google Scholar] [CrossRef]
- Mohebalizadehgashti, F.; Zolfagharinia, H.; Amin, S.H. Designing a green meat supply chain network: A multi-objective approach. Int. J. Prod. Econ. 2020, 219, 312–327. [Google Scholar] [CrossRef]
- Bozorgi-Amiri, A.; Khorsi, M. A dynamic multi-objective location–routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters. Int. J. Adv. Manuf. Technol. 2016, 85, 1633–1648. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, H.; Zhang, D.; Wu, Z. Robust optimization for relief logistics planning under uncertainties in demand and transportation time. Appl. Math. Model. 2018, 55, 262–280. [Google Scholar] [CrossRef]
- Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. Test Problems for Large-Scale Multiobjective and Many-Objective Optimization. IEEE Trans. Cybern. 2017, 47, 4108–4121. [Google Scholar] [CrossRef]
- Qu, B.; Li, G.; Yan, L.; Liang, J.; Yue, C.; Yu, K.; Crisalle, O.D. A grid-guided particle swarm optimizer for multimodal multi-objective problems. Appl. Soft Comput. 2022, 117, 108381. [Google Scholar] [CrossRef]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robot.-Comput.-Integr. Manuf. 2019, 59, 143–157. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, Z.; Liu, W.; Suo, Y.; Chen, K.; Xu, X.; Li, Z. Energy-efficient scheduling of flexible job shops with complex processes: A case study for the aerospace industry complex components in China. J. Ind. Inf. Integr. 2022, 27, 100293. [Google Scholar] [CrossRef]
- Guo, Y.N.; Cheng, J.; Luo, S.; Gong, D.; Xue, Y. Robust Dynamic Multi-Objective Vehicle Routing Optimization Method. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1891–1903. [Google Scholar] [CrossRef]
- Hu, C.; Lu, J.; Liu, X.; Zhang, G. Robust vehicle routing problem with hard time windows under demand and travel time uncertainty. Comput. Oper. Res. 2018, 94, 139–153. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, L.; Yang, H.; Zhou, H.; Gao, Z. Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling. Transp. Res. Part B Methodol. 2023, 168, 27–55. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.; Wang, Y.; Zhang, H.; Wei, Y.; Yang, L. Robust metro train scheduling integrated with skip-stop pattern and passenger flow control strategy under uncertain passenger demands. Comput. Oper. Res. 2023, 151, 106116. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Masdari, M.; Gharehchopogh, F.S. Energy and Cost-Aware Workflow Scheduling in Cloud Computing Data Centers Using a Multi-objective Optimization Algorithm. J. Netw. Syst. Manag. 2021, 29, 31. [Google Scholar] [CrossRef]
- Alsadie, D. A Metaheuristic Framework for Dynamic Virtual Machine Allocation With Optimized Task Scheduling in Cloud Data Centers. IEEE Access 2021, 9, 74218–74233. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Zhou, L.; Rezaeipanah, A. Solving the Multi-Objective Problem of IoT Service Placement in Fog Computing Using Cuckoo Search Algorithm. Neural Process. Lett. 2022, 54, 1823–1854. [Google Scholar] [CrossRef]
- Mahboubeh Salimian, M.G.A.; Shahidinejad, A. An Evolutionary Multi-objective Optimization Technique to Deploy the IoT Services in Fog-enabled Networks: An Autonomous Approach. Appl. Artif. Intell. 2022, 36, 2008149. [Google Scholar] [CrossRef]
- Ning, Z.; Dong, P.; Kong, X.; Xia, F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things. IEEE Internet Things J. 2019, 6, 4804–4814. [Google Scholar] [CrossRef]
- You, Q.; Tang, B. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things. J. Cloud Comput. 2021, 10, 41. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Qin, J. Robust Beamforming for Nonorthogonal Multiple-Access Systems in MISO Channels. IEEE Trans. Veh. Technol. 2016, 65, 10231–10236. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Yang, Z.; Chen, M. Resource Allocation for D2D Communications Underlaying a NOMA-Based Cellular Network. IEEE Wirel. Commun. Lett. 2018, 7, 130–133. [Google Scholar] [CrossRef]
- Fu, Z.; Mao, Y.; He, D.; Yu, J.; Xie, G. Secure Multi-UAV Collaborative Task Allocation. IEEE Access 2019, 7, 35579–35587. [Google Scholar] [CrossRef]
- Zhu, S.; Gui, L.; Cheng, N.; Sun, F.; Zhang, Q. Joint Design of Access Point Selection and Path Planning for UAV-Assisted Cellular Networks. IEEE Internet Things J. 2020, 7, 220–233. [Google Scholar] [CrossRef]
- Rao, P.C.S.; Jana, P.K.; Banka, H. A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wirel. Netw. 2017, 23, 2005–2020. [Google Scholar] [CrossRef]
- Mosavvar, I.; Ghaffari, A. Data Aggregation in Wireless Sensor Networks Using Firefly Algorithm. Wirel. Pers. Commun. 2019, 104, 307–324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Abril, G.; Calvet, L.; Juan, A.A.; Riera, D. Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization. Computation 2025, 13, 173. https://doi.org/10.3390/computation13070173
Molina-Abril G, Calvet L, Juan AA, Riera D. Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization. Computation. 2025; 13(7):173. https://doi.org/10.3390/computation13070173
Chicago/Turabian StyleMolina-Abril, Gines, Laura Calvet, Angel A. Juan, and Daniel Riera. 2025. "Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization" Computation 13, no. 7: 173. https://doi.org/10.3390/computation13070173
APA StyleMolina-Abril, G., Calvet, L., Juan, A. A., & Riera, D. (2025). Strategic Decision-Making in SMEs: A Review of Heuristics and Machine Learning for Multi-Objective Optimization. Computation, 13(7), 173. https://doi.org/10.3390/computation13070173