Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,320)

Search Parameters:
Keywords = optimal capacity of energy storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 848 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
29 pages, 5471 KB  
Article
Game Theory-Based Bi-Level Capacity Allocation Strategy for Multi-Agent Combined Power Generation Systems
by Zhiding Chen, Yang Huang, Yi Dong and Ziyue Ni
Energies 2025, 18(20), 5338; https://doi.org/10.3390/en18205338 - 10 Oct 2025
Abstract
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) [...] Read more.
The wind–solar–storage–thermal combined power generation system is one of the key measures for China’s energy structure transition, and rational capacity planning of each generation entity within the system is of critical importance. First, this paper addresses the uncertainty of wind and photovoltaic (PV) power outputs through scenario-based analysis. Considering the diversity of generation entities and their complex interest demands, a bi-level capacity optimization framework based on game theory is proposed. In the upper-level framework, a game-theoretic method is designed to analyze the multi-agent decision-making process, and the objective function of capacity allocation for multiple entities is established. In the lower-level framework, multi-objective optimization is performed on utility functions and node voltage deviations. The Nash equilibrium of the non-cooperative game and the Shapley value of the cooperative game are solved to study the differences in the capacity allocation, economic benefits, and power supply stability of the combined power generation system under different game modes. The case study results indicate that under the cooperative game mode, when the four generation entities form a coalition, the overall system achieves the highest supply stability, the lowest carbon emissions at 30,195.29 tons, and the highest renewable energy consumption rate at 53.93%. Moreover, both overall and individual economic and environmental performance are superior to those under the non-cooperative game mode. By investigating the capacity configuration and joint operation strategies of the combined generation system, this study effectively enhances the enthusiasm of each generation entity to participate in the energy market; reduces carbon emissions; and promotes the development of a more efficient, environmentally friendly, and economical power generation model. Full article
Show Figures

Figure 1

46 pages, 3067 KB  
Article
Optimization of Green Hydrogen Production via Direct Seawater Electrolysis Powered by Hybrid PV-Wind Energy: Response Surface Methodology
by Sandile Mtolo, Emmanuel Kweinor Tetteh, Nomcebo Happiness Mthombeni, Katleho Moloi and Sudesh Rathilal
Energies 2025, 18(19), 5328; https://doi.org/10.3390/en18195328 - 9 Oct 2025
Abstract
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational [...] Read more.
This study explored the optimization of green hydrogen production via seawater electrolysis powered by a hybrid photovoltaic (PV)-wind system in KwaZulu-Natal, South Africa. A Box–Behnken Design (BBD), adapted from Response Surface Methodology (RSM), was utilized to address the synergistic effect of key operational factors on the integration of renewable energy for green hydrogen production and its economic viability. Addressing critical gaps in renewable energy integration, the research evaluated the feasibility of direct seawater electrolysis and hybrid renewable systems, alongside their techno-economic viability, to support South Africa’s transition from a coal-dependent energy system. Key variables, including electrolyzer efficiency, wind and PV capacity, and financial parameters, were analyzed to optimize performance metrics such as the Levelized Cost of Hydrogen (LCOH), Net Present Cost (NPC), and annual hydrogen production. At 95% confidence level with regression coefficient (R2 > 0.99) and statistical significance (p < 0.05), optimal conditions of electricity efficiency of 95%, a wind-turbine capacity of 4960 kW, a capital investment of $40,001, operational costs of $40,000 per year, a project lifetime of 29 years, a nominal discount rate of 8.9%, and a generic PV capacity of 29 kW resulted in a predictive LCOH of 0.124$/kg H2 with a yearly production of 355,071 kg. Within the scope of this study, with the goal of minimizing the cost of production, the lowest LCOH observed can be attributed to the architecture of the power ratios (Wind/PV cells) at high energy efficiency (95%) without the cost of desalination of the seawater, energy storage and transportation. Electrolyzer efficiency emerged as the most influential factor, while financial parameters significantly affected the cost-related responses. The findings underscore the technical and economic viability of hybrid renewable-powered seawater electrolysis as a sustainable pathway for South Africa’s transition away from coal-based energy systems. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

18 pages, 2243 KB  
Article
Small-Micro Park Network Reconfiguration for Enhancing Grid Connection Flexibility
by Fei Liu, Zhenguo Gao, Zikai Li, Dezhong Li, Xueshan Bao and Chuanliang Xiao
Processes 2025, 13(10), 3202; https://doi.org/10.3390/pr13103202 - 9 Oct 2025
Abstract
With the integration of a large number of flexible distributed resources, microgrids have become an important form for supporting the coordinated operation of power sources, grids, loads, and energy storage. The flexibility provided by the point of common coupling is also a crucial [...] Read more.
With the integration of a large number of flexible distributed resources, microgrids have become an important form for supporting the coordinated operation of power sources, grids, loads, and energy storage. The flexibility provided by the point of common coupling is also a crucial regulating resource in power systems. However, due to the complex network constraints within microgrids, such as voltage security and branch capacity limitations, the flexibility of distributed resources cannot be fully reflected at the point of common coupling. Moreover, the flexibility that can be provided externally by different network reconfiguration strategies shows significant differences. Therefore, this paper focuses on optimizing reconfiguration strategies to enhance grid-connected flexibility. Firstly, the representation methods of grid-connected power flexibility and voltage regulation flexibility based on aggregation are introduced. Next, a two-stage robust optimization model aimed at maximizing grid-connected power flexibility is constructed, which comprehensively considers the aggregation of distributed resource flexibility and reconfiguration constraints. The objective is to maximize the grid-connected power flexibility of the small-micro parks. In the first stage of the model, the topology of the small-micro parks is optimized, and the maximum flexibility of all distributed resources is aggregated at the PCC. In the second stage, the feasibility of the solution for the PCC flexible operation range obtained in the first stage is verified. Subsequently, based on strong duality theory and using the column-and-constraint generation algorithm, the model is effectively solved. Case studies show that the proposed method can fully exploit the flexibility of distributed resources through reconfiguration, thereby significantly enhancing the power flexibility and voltage support capability of the small-micro parks network at the PCC. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 4283 KB  
Article
Synergistic Regulation of δ-MnO2 Cathode via Crystal Engineering and pH Buffering for Long-Cycle Aqueous Zinc-Ion Batteries
by Fan Zhang, Haotian Yu, Qiongyue Zhang, Yahao Wang, Haodong Ren, Huirong Liang, Jinrui Li, Yuanyuan Feng, Bin Zhao and Xiaogang Han
Materials 2025, 18(19), 4632; https://doi.org/10.3390/ma18194632 - 8 Oct 2025
Abstract
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity [...] Read more.
Aqueous zinc-ion batteries (ZIBs) have emerged as a promising candidate for large-scale energy storage due to their inherent safety, low cost, and environmental friendliness. However, manganese dioxide (MnO2)-based cathodes, which are widely studied for ZIBs owing to their high theoretical capacity and low cost, face severe capacity fading issues that hinder the commercialization of ZIBs. This performance degradation mainly stems from the weak van der Waals forces between MnO2 layers leading to structural collapse during repeated Zn2+ insertion and extraction; it is also exacerbated by irreversible Mn dissolution via Mn3+ disproportionation that depletes active materials, and further aggravated by dynamic electrolyte pH fluctuations promoting insulating zinc hydroxide sulfate (ZHS) formation to block ion diffusion channels. To address these interconnected challenges, in this study, a synergistic strategy was developed combining crystal engineering and pH buffer regulation. We synthesized three MnO2 polymorphs (α-, δ-, γ-MnO2), identified δ-MnO2 with flower-like microspheres as optimal, and introduced sodium dihydrogen phosphate (NaH2PO4) as a pH buffer (stabilizing pH at 2.8 ± 0.2). The modified electrolyte improved δ-MnO2 wettability (contact angle of 17.8° in NaH2PO4-modified electrolyte vs. 26.1° in base electrolyte) and reduced charge transfer resistance (Rct = 78.17 Ω), enabling the optimized cathode to retain 117.25 mAh g−1 (82.16% retention) after 2500 cycles at 1 A g−1. This work provides an effective strategy for stable MnO2-based ZIBs, promoting their application in renewable energy storage. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

18 pages, 1311 KB  
Article
Thermo-Energetic Analysis of Electrolytic Oxygen Valorization via Biomass Oxy-Fuel Combustion: A Case Study Applied to a Power-to-Liquid Route for Methanol Synthesis
by Flávio S. Pereira, Argimiro R. Secchi and Alexandre Szklo
Thermo 2025, 5(4), 41; https://doi.org/10.3390/thermo5040041 - 7 Oct 2025
Viewed by 168
Abstract
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of [...] Read more.
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of synthetic fuels, via electrolytic hydrogen and CO2 capture. However, the high energy demand inherent to these routes poses significant challenges to large-scale implementation. Moreover, PtL routes are usually at most neutral in terms of CO2 emissions. This study evaluates, from a thermo-energetic perspective, the optimization potential of an e-methanol synthesis route through integration with a biomass oxy-fuel combustion process, making use of electrolytic oxygen as the oxidizing agent and the captured CO2 as the carbon source. From the standpoint of a first-law thermodynamic analysis, mass and energy balances were developed considering the full oxygen supply for oxy-fuel combustion to be met through alkaline electrolysis, thus eliminating the energy penalty associated with conventional oxygen production via air separation units. The balance closure was based on a small-scale plant with a capacity of around 100 kta of methanol. In this integrated configuration, additional CO2 surpluses beyond methanol synthesis demand can be directed to geological storage, which, when combined with bioenergy with carbon capture and storage (BECCS) strategies, may lead to net negative CO2 emissions. The results demonstrate that electrolytic oxygen valorization is a promising pathway to enhance the efficiency and climate performance of PtL processes. Full article
Show Figures

Figure 1

25 pages, 3199 KB  
Article
Challenges in Aquaculture Hybrid Energy Management: Optimization Tools, New Solutions, and Comparative Evaluations
by Helena M. Ramos, Nicolas Soehlemann, Eyup Bekci, Oscar E. Coronado-Hernández, Modesto Pérez-Sánchez, Aonghus McNabola and John Gallagher
Technologies 2025, 13(10), 453; https://doi.org/10.3390/technologies13100453 - 7 Oct 2025
Viewed by 101
Abstract
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. [...] Read more.
A novel methodology for hybrid energy management in aquaculture is introduced, aimed at enhancing self-sufficiency and optimizing grid-related cash flows. Wind and solar energy generation are modeled using calibrated turbine performance curves and PVGIS data, respectively, with a photovoltaic capacity of 120 kWp. The system also incorporates a 250 kW small hydroelectric plant and a wood drying kiln that utilizes surplus wind energy. This study conducts a comparative analysis between HY4RES, a research-oriented simulation model, and HOMER Pro, a commercially available optimization tool, across multiple hybrid energy scenarios at two aquaculture sites. For grid-connected configurations at the Primary site (base case, Scenarios 1, 2, and 6), both models demonstrate strong concordance in terms of energy balance and overall performance. In Scenario 1, a peak power demand exceeding 1000 kW is observed in both models, attributed to the biomass kiln load. Scenario 2 reveals a 3.1% improvement in self-sufficiency with the integration of photovoltaic generation, as reported by HY4RES. In the off-grid Scenario 3, HY4RES supplies an additional 96,634 kWh of annual load compared to HOMER Pro. However, HOMER Pro indicates a 3.6% higher electricity deficit, primarily due to battery energy storage system (BESS) losses. Scenario 4 yields comparable generation outputs, with HY4RES enabling 6% more wood-drying capacity through the inclusion of photovoltaic energy. Scenario 5, which features a large-scale BESS, highlights a 4.7% unmet demand in HY4RES, whereas HOMER Pro successfully meets the entire load. In Scenario 6, both models exhibit similar load profiles; however, HY4RES reports a self-sufficiency rate that is 1.3% lower than in Scenario 1. At the Secondary site, financial outcomes are closely aligned. For instance, in the base case, HY4RES projects a cash flow of 54,154 EUR, while HOMER Pro estimates 55,532 EUR. Scenario 1 presents nearly identical financial results, and Scenario 2 underscores HOMER Pro’s superior BESS modeling capabilities during periods of reduced hydroelectric output. In conclusion, HY4RES demonstrates robust performance across all scenarios. When provided with harmonized input parameters, its simulation results are consistent with those of HOMER Pro, thereby validating its reliability for hybrid energy management in aquaculture applications. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
Show Figures

Figure 1

17 pages, 2509 KB  
Article
Feasibility Study of Flywheel Mitigation Controls Using Hamiltonian-Based Design for E3 High-Altitude Electromagnetic Pulse Events
by Connor A. Lehman, Rush D. Robinett, David G. Wilson and Wayne W. Weaver
Energies 2025, 18(19), 5294; https://doi.org/10.3390/en18195294 - 7 Oct 2025
Viewed by 193
Abstract
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel [...] Read more.
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel system presents the advantage of employing custom optimal control laws, in contrast to the conventional approach of utilizing passive blocking capacitors. A Hamiltonian-based optimal control law for energy storage is derived and integrated into models of both the transformer and the flywheel energy storage system. This Hamiltonian-based feedback control law is subsequently compared against an energy-optimal feedforward control law to validate its optimality. The analysis reveals that the required energy storage capacity is 13Wh, the necessary power output is less than 5kW at any given time during the insult, and the required bandwidth for the controller is around 5Hz. These specifications can be met by commercially available flywheel devices. This methodology can be extended to other energy storage devices to ensure that their specifications adequately address the requirements for HEMP mitigation. Full article
Show Figures

Figure 1

18 pages, 3531 KB  
Article
Heat, Cold and Power Supply with Thermal Energy Storage in Battery Electric Vehicles: A Holistic Evaluated Concept with High Storage Density, Performance and Scalability
by Volker Dreißigacker
Energies 2025, 18(19), 5287; https://doi.org/10.3390/en18195287 - 6 Oct 2025
Viewed by 189
Abstract
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths [...] Read more.
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths for heat and cold supply with excellent scalability and cost efficiency. Previous TES concepts have largely focused on heat during cold seasons, but storage-based air conditioning systems for all seasons are still missing. To fill this gap, a concept based on a Brayton cycle allowing heat and cold supply and, simultaneously, an output of electrical energy at times when no air conditioning is needed was investigated. Central thermal components include water-based cold storage and electrically heated, high-temperature, solid-medium storage, both with innovative TPMS structures and flexible operation managements. With transient simulation studies a system was identified with effective storage densities of up to 100 Wh/kg, reaching a constant heat and cold supply of 5 kW and 2.5 kW, respectively, over 41 min. In addition, the underlying cycle allows an electrical output of up to 1.7 kW during times of inactive air conditioning requirements. Compared to a reference system designed only for winter operation, the moderately lower storage densities are compensated by proportionately longer discharging times. By combining a compact and dynamic Brayton cycle with a TES in BEVs, a storage-based air conditioning system with high utilization potential and high operational flexibility was developed. In addition to further optimizations, the knowledge for TES solutions can also be transferred to today’s air conditioning systems, extending the solution space for storage-supported thermomanagement options in BEVs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

13 pages, 9165 KB  
Communication
Optimizing Volumetric Ratio and Supporting Electrolyte of Tiron-A/Tungstosilicic Acid Derived Redox Flow Battery
by Yong Jin Cho, Jun-Hee Jeong and Byeong Wan Kwon
Materials 2025, 18(19), 4614; https://doi.org/10.3390/ma18194614 - 5 Oct 2025
Viewed by 280
Abstract
Redox flow batteries (RFBs) are a promising technology for large-scale energy storage due to their safety, scalability, and design flexibility. This study investigated a tiron-A (4,5-dihydroxybenzene-1,3-disulfonic acid)/tungstosilicic acid (TSA) RFB system, focusing on optimizing the supporting electrolyte and the volumetric ratio of the [...] Read more.
Redox flow batteries (RFBs) are a promising technology for large-scale energy storage due to their safety, scalability, and design flexibility. This study investigated a tiron-A (4,5-dihydroxybenzene-1,3-disulfonic acid)/tungstosilicic acid (TSA) RFB system, focusing on optimizing the supporting electrolyte and the volumetric ratio of the catholyte (tiron-A) to anolyte (TSA). Electrochemical characteristics, confirmed by CV and EIS, showed that sulfuric acid was the most suitable supporting electrolyte due to its excellent cell potential and lower ohmic resistance compared to sodium chloride and sodium hydroxide electrolytes. To address the inherent electron capacity imbalance between tiron-A (two electrons) and TSA (four electrons), various volumetric ratios were evaluated. The cell with the 3:1 tiron-A:TSA ratio exhibited optimal performance, achieving the highest discharge capacity, excellent cycle stability, and consistent energy efficiency. The electrochemical impedance spectroscopy results revealed that the ohmic resistance was minimized at the 3:1 ratio. This stable, low-ohmic resistance, coupled with a significant reduction in charge transfer resistance after cycling, was confirmed as the dominant factor for the improved long-term performance. These findings demonstrate an effective strategy for developing a high-performance performance tiron-A/TSA RFB system. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

31 pages, 4177 KB  
Article
Techno-Economic Analysis of Peer-to-Peer Energy Trading Considering Different Distributed Energy Resources Characteristics
by Morsy Nour, Mona Zedan, Gaber Shabib, Loai Nasrat and Al-Attar Ali
Electricity 2025, 6(4), 57; https://doi.org/10.3390/electricity6040057 - 4 Oct 2025
Viewed by 168
Abstract
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic [...] Read more.
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic (PV) systems and energy storage systems (ESS) within a community-based P2P energy trading framework in Aswan, Egypt, under a time-of-use (ToU) electricity tariff. Eight distinct cases are evaluated to assess the impact of different DER characteristics on P2P energy trading performance and an unbalanced low-voltage (LV) distribution network by varying the PV capacity, ESS capacity, and ESS charging power. To the best of the authors’ knowledge, this is the first study to comprehensively examine the effects of different DER characteristics on P2P energy trading and the associated impacts on an unbalanced distribution network. The findings demonstrate that integrating PV and ESS can substantially reduce operational costs—by 37.19% to 68.22% across the analyzed cases—while enabling more effective energy exchanges among peers and with the distribution system operator (DSO). Moreover, DER integration reduced grid energy imports by 30.09% to 63.21% and improved self-sufficiency, with 30.10% to 63.21% of energy demand covered by community DERs. However, the analysis also reveals that specific DER characteristics—particularly those with low PV capacity (1.5 kWp) and high ESS charging rates (e.g., ESS 13.5 kWh with 2.5 kW inverter)—can significantly increase transformer and line loading, reaching up to 19.90% and 58.91%, respectively, in Case 2. These setups also lead to voltage quality issues, such as increased voltage unbalance factors (VUFs), peaking at 1.261%, and notable phase voltage deviations, with the minimum Vb dropping to 0.972 pu and maximum Vb reaching 1.083 pu. These findings highlight the importance of optimal DER sizing and characteristics to balance economic benefits with technical constraints in P2P energy trading frameworks. Full article
Show Figures

Figure 1

17 pages, 3617 KB  
Article
Sol–Gel Synthesis of Carbon-Containing Na3V2(PO4)3: Influence of the NASICON Crystal Structure on Cathode Material Properties
by Oleg O. Shichalin, Zlata E. Priimak, Alina Seroshtan, Polina A. Marmaza, Nikita P. Ivanov, Anton V. Shurygin, Danil K. Tsygankov, Roman I. Korneikov, Vadim V. Efremov, Alexey V. Ognev and Eugeniy K. Papynov
J. Compos. Sci. 2025, 9(10), 543; https://doi.org/10.3390/jcs9100543 - 3 Oct 2025
Viewed by 293
Abstract
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is [...] Read more.
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is given to developing NASICON -sodium (Na) super ionic conductor, type cathode materials, especially Na3V2(PO4)3, which exhibits high thermal and structural stability. This study focuses on the sol–gel synthesis of Na3V2(PO4)3 using citric acid and ethylene glycol, as well as investigating the effect of annealing temperature (400–1000 °C) on its structural and electrochemical properties. Phase composition, morphology, textural characteristics, and electrochemical performance were systematically analyzed. Above 700 °C, a highly crystalline NASICON phase free of secondary impurities was formed, as confirmed by X-ray diffraction (XRD). Microstructural evolution revealed a transition from a loose amorphous structure to a dense granular morphology, accompanied by changes in specific surface area and porosity. The highest surface area (67.40 m2/g) was achieved at 700 °C, while increasing the temperature to 1000 °C caused pore collapse due to sintering. X-ray photoelectron spectroscopy (XPS) confirmed the predominant presence of V3+ ions and the formation of V4+ at the highest temperature. The optimal balance of high crystallinity, uniform elemental distribution, and stable texture was achieved at 900 °C. Electrochemical testing in a Na/NVP half-cell configuration delivered an initial capacity of 70 mAh/g, which decayed to 55 mAh/g by the 100th cycle, attributed to solid-electrolyte interphase (SEI) formation and irreversible Na+ trapping. These results demonstrate that the proposed approach yields high-quality Na3V2(PO4)3 cathode materials with promising potential for sodium-ion battery applications. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

24 pages, 2293 KB  
Article
The Path Towards Decarbonization: The Role of Hydropower in the Generation Mix
by Fabio Massimo Gatta, Alberto Geri, Stefano Lauria, Marco Maccioni and Ludovico Nati
Energies 2025, 18(19), 5248; https://doi.org/10.3390/en18195248 - 2 Oct 2025
Viewed by 238
Abstract
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro [...] Read more.
The evolution of the generation mix towards deep decarbonization poses pressing questions about the role of hydropower and its possible share in the future mix. Most technical–economic analyses of deeply decarbonized systems either rule out hydropower growth due to lack of additional hydro resources or take it into account in terms of additional reservoir capacity. This paper analyzes a generation mix made of photovoltaic, wind, open-cycle gas turbines, electrochemical storage and hydroelectricity, focusing on the optimal generation mix’s reaction to different methane gas prices, hydroelectricity availabilities, pumped hydro reservoir capacities, and mean filling durations for hydro reservoirs. The key feature of the developed model is the sizing of both optimal peak power and reservoir energy content for hydropower. The results of the study point out two main insights. The first one, rather widely accepted, is that cost-effective decarbonization requires the greatest possible amount of hydro reservoirs. The second one is that, even in the case of totally exploited reservoirs, there is a strong case for increasing hydro peak power. Application of the model to the Italian generation mix (with 9500 MWp and 7250 MWp of non-pumped and pumped hydro fleets, respectively) suggests that it is possible to achieve methane shares of less than 10% if the operating costs of open-cycle gas turbines exceed 160 EUR/MWh and with non-pumped and pumped hydro fleets of at least 9200 MWp and 28,400 MWp, respectively. Full article
Show Figures

Figure 1

15 pages, 2071 KB  
Article
Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations
by Haojie You, Houkuan Li, Lin Fu, Boyang Shen, Miangang Tang and Xiaoyuan Chen
Materials 2025, 18(19), 4567; https://doi.org/10.3390/ma18194567 - 1 Oct 2025
Viewed by 293
Abstract
Advanced energy storage solutions are required to mitigate grid destabilization caused by high-penetration renewable energy integration. Superconducting Magnetic Energy Storage (SMES) offers ultrafast response (<1 ms), high efficiency (>95%), and almost unlimited cycling life. However, its commercialization is hindered by the complex modeling [...] Read more.
Advanced energy storage solutions are required to mitigate grid destabilization caused by high-penetration renewable energy integration. Superconducting Magnetic Energy Storage (SMES) offers ultrafast response (<1 ms), high efficiency (>95%), and almost unlimited cycling life. However, its commercialization is hindered by the complex modeling of critical current with anisotropic behaviors and the computational inefficiency of high-dimensional optimization for megajoule (MJ)-class magnets. This paper proposes an integrated design framework synergizing a two-dimensional axisymmetric magnetic field model based on Conway’s current-sheet theory, a critical current anisotropy characterization model, and an adaptive genetic algorithm (AGA). A superconducting magnet optimization model incorporating co-calculation of electromagnetic parameters is established. A dual-module chromosome encoding strategy (discrete gap index + nonlinear increment) and parallel acceleration techniques were developed. This approach achieved efficient optimization of MJ-class magnets. For a single solenoid, the critical current increased by 22.6% (915 A) and energy storage capacity grew by 41.8% (1.12 MJ). A 20-unit array optimized by coordinated gap adjustment achieved a matched inductance/current of 0.15 H/827 A (20 MJ), which can enhance transient stability control capability in smart grids. The proposed method provides a computationally efficient design paradigm and user-friendly teaching software tool for high-current SMES magnets, supporting the development of large-scale High-Temperature Superconducting (HTS) magnets, promoting the deployment of large-scale HTS magnets in smart grids and high-field applications. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

Back to TopTop