Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations
Abstract
1. Introduction
2. Methodology
2.1. Magnetic Field Calculation
2.2. Critical Current Anisotropy Model
2.3. Inductance Calculation Model
2.4. Genetic Algorithm Optimization Design
- (1)
- Dual-Module Chromosome Encoding
- (2)
- Adaptive Mechanism
- (3)
- Acceleration Strategies
3. Optimization Strategy and Framework
- (1)
- Single Solenoid Size Optimization
- (2)
- Single Solenoid Gap Distribution Optimization
- (3)
- Multi-Solenoid Parallel Array
4. Optimization of the Single-Solenoid
4.1. Single Solenoid Size Optimization
4.2. Single Solenoid Gap Optimization
5. Optimization of the Multi-Solenoid Parallel Configuration
5.1. Multi-Solenoid Modeling
5.2. Optimized Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Full Expressions for Core Functions and
References
- Zhang, R.; Wang, L.; Hu, X.; Zhou, W.; Yang, S.; Li, Z.; Cheng, Z.; Su, C. Protection and Power Smoothing of a DFIG/DC Microgrid Hybrid Power System with SMES-Based Unified Power Quality Conditioner. IEEE Trans. Appl. Supercond. 2024, 34, 5401005. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, G. MMC-Based PV Grid-Connected System with SMES-Battery Hybrid Energy Storage System. IEEE Trans. Appl. Supercond. 2024, 34, 5702004. [Google Scholar] [CrossRef]
- Zhao, J.; Li, F.; Zhang, Q. Impacts of Renewable Energy Resources on the Weather Vulnerability of Power Systems. Nat. Energy 2024, 9, 1407–1414. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.-F.; Vera, A.; Lesser, O.; Yi, H.; Kumari, S. Proximity-Induced Superconductivity in Epitaxial Topological Insulator/Graphene/Gallium Heterostructures. Nat. Mater. 2023, 22, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gou, H.; Chen, Y.; Jiang, S.; Zhang, M.; Pang, Z.; Shen, B. Superconducting fault current limiter (SFCL) for a power electronic circuit: Experiment and numerical modelling. Supercond. Sci. Technol. 2022, 35, 045010. [Google Scholar] [CrossRef]
- Rogacki, K.; Los, A.; Dabrowski, B. Raising Critical Currents in YBaCuO-Type High-Temperature Superconductors by Mo Substitution. Low Temp. Phys. 2023, 49, 364–374. [Google Scholar] [CrossRef]
- Fang, S.; Lv, Z.; Chao, G. Method to Improve the Optimized Calculation Speed of Superconducting Magnetic Coil. IEEE Trans. Appl. Supercond. 2021, 31, 4901705. [Google Scholar] [CrossRef]
- Chen, X.; Pang, Z.; Gou, H.; Xie, Q.; Zhao, R.; Shi, Z.; Shen, B. Intelligent design of large-size HTS magnets for SMES and high-field applications: Using a self-programmed GUI tool. Supercond. Sci. Technol. 2021, 34, 095008. [Google Scholar] [CrossRef]
- Conway, J.T. Trigonometric Integrals for the Magnetic Field of the Coil of Rectangular Cross Section. IEEE Trans. Magn. 2006, 42, 1538–1548. [Google Scholar] [CrossRef]
- Hajiri, G.; Berger, K.; Trillaud, F.; Lévêque, J. Electromagnetic-Thermal Finite Element Model Coupled to Reduced Electrical Circuit for Simulating Inductive HTS Coils in Overcurrent Regimes. Cryogenics 2025, 148, 104068. [Google Scholar] [CrossRef]
- Li, K.; Li, K.; Fu, Y.; Zou, L.; Yang, L.; Peng, W.; Wang, Y. AC Loss Optimization of High Temperature Superconducting Magnetic Energy Storage Considering Energy Management Strategies in a Hydrogen-Battery System. J. Energy Storage 2024, 101, 113728. [Google Scholar] [CrossRef]
- Xue, C.; Ren, H.-X.; Jia, P.; Wang, Q.-Y.; Liu, W.; Ou, X.-J.; Sun, L.-T.; Silhanek, A.V. Holistic Numerical Simulation of a Quenching Process on a Real-Size Multifilamentary Superconducting Coil. Nat. Commun. 2024, 15, 10454. [Google Scholar] [CrossRef]
- Kim, S.K.; Shousha, R.; Yang, S.M.; Hu, Q.; Hahn, S.H.; Jalalvand, A.; Park, J.-K.; Logan, N.C.; Nelson, A.O.; Na, Y.-S.; et al. Highest Fusion Performance without Harmful Edge Energy Bursts in Tokamak. Nat. Commun. 2024, 15, 3990. [Google Scholar] [CrossRef]
- ALICE Collaboration; Acharya, S.; Agarwal, A.; Aglieri Rinella, G.; Aglietta, L.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; et al. Proton Emission in Ultraperipheral Pb-Pb Collisions at √sNN=5.02 TeV. Phys. Rev. C 2025, 111, 054906. [Google Scholar] [CrossRef]
- Liu, W.; Dai, S.; Ma, T.; Shi, Y.; Song, M. Electromagnetic Optimization of a Hybrid Toroidal Magnet for 10 MJ HTS SMES System. Phys. C Supercond. Its Appl. 2024, 626, 1354589. [Google Scholar] [CrossRef]
- Li, W.; Ding, Y.; Yang, Y.; Sherratt, R.S.; Park, J.H.; Wang, J. Parameterized Algorithms of Fundamental NP-Hard Problems: A Survey. Hum.-Centric Comput. Inf. Sci. 2020, 10, 29. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Z.; Liu, Q.; Zhang, X.; Strickland, N.; Suo, H.; Wang, L.; Liu, J.; Wang, Q. Anisotropic In-Plane Field Angle Dependence of Critical Current in Commercial REBCO Tapes and Its Impact on Toroidal Field Magnet for Compact Tokamak Fusion Device. Supercond. Sci. Technol. 2025, 38, 015016. [Google Scholar] [CrossRef]
- Wang, D.; Ding, Y.; Mao, H.-K. Future Study of Dense Superconducting Hydrides at High Pressure. Materials 2021, 14, 7563. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, J.; Xia, W.; Xu, Z.; Yang, P.; Wang, A. Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa. Materials 2022, 15, 7372. [Google Scholar] [CrossRef]
- Strickland, N.M.; Wimbush, S.C.; Soman, A.A.; Long, N.J.; Rupich, M.W.; Knibbe, R.; Li, M.; Notthoff, C.; Kluth, P. Near-Isotropic Enhancement of the 20 K Critical Current of REBa2Cu3O7 Coated Conductors from Columnar Defects. Supercond. Sci. Technol. 2023, 36, 055001. [Google Scholar] [CrossRef]
- Boran, Y.; Kara, H.; Inanir, F.; Yildiz, S. Conceptual Design and Sensitivity Analysis of MRI Magnets from REBCO HTS Tapes. IEEE Trans. Appl. Supercond. 2022, 32, 4605908. [Google Scholar] [CrossRef]
- Shi, S.; Liang, R. Numerical Analysis of REBCO High-Temperature Superconducting (HTS) Coils Based on Screening Effect. J. Supercond. Nov. Magn. 2022, 35, 3487–3496. [Google Scholar] [CrossRef]
- Zhang, H.; Suo, H.; Wang, L.; Ma, L.; Liu, J.; Zhang, Z.; Wang, Q. Database of the Effect of Stabilizer on the Resistivity and Thermal Conductivity of 20 Different Commercial REBCO Tapes. Supercond. Sci. Technol. 2022, 35, 045016. [Google Scholar] [CrossRef]
- Taheri, B.; Pinto, V.; Cemmi, A.; Di Sarcina, I.; Scifo, J.; Masi, A.; Verna, A.; Celentano, G. Sensitivity of REBCO Tapes and Thin Film to γ-Irradiation. IEEE Trans. Appl. Supercond. 2024, 34, 6600105. [Google Scholar] [CrossRef]
- Pi, W.; Li, B.; Zhao, Y.; Li, Z.; Guo, L.; Wang, Y.; Shi, Q. Self-Shielding HTS DC Cable Made by REBCO Tapes with Different Widths. IEEE Trans. Appl. Supercond. 2024, 34, 4802306. [Google Scholar] [CrossRef]
- Cai, C.-B.; Guo, Y.-Q.; Zhao, Y. The New Power Transmission Material—REBaCuO High-Temperature Superconducting Coated Conductor. Physics 2020, 49, 747–754. [Google Scholar] [CrossRef]
- Qian, L.; Chen, M.; Cui, K.; Shi, G.; Wang, J.; Xia, Y. Modeling of Mutual Inductance Between Two Misalignment Planar Coils in Wireless Power Transfer. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 814–817. [Google Scholar] [CrossRef]
- Kwak, S.; Park, M.; Kim, W.; Hahn, S.; Lee, S.; Lee, J.; Choi, K.; Han, J.; Bae, J.; Kim, S. The Optimal Design of 600 kJ SMES Magnet Based on Stress and Magnetic Field Analysis. IEEE Trans. Appl. Supercond. 2008, 18, 713–716. [Google Scholar] [CrossRef]
- Robert, B.C.; Fareed, M.U.; Ruiz, H.S. How to Choose the Superconducting Material Law for the Modelling of 2G-HTS Coils. Materials 2019, 12, 2679. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, M.; Wang, D.; Yang, M.; Liang, C. Hybrid Gaussian Quantum Particle Swarm Optimization and Adaptive Genetic Algorithm for Flexible Job-Shop Scheduling Problem. Eng. Appl. Artif. Intell. 2025, 154, 110882. [Google Scholar] [CrossRef]
- Tang, P.-H.; Tseng, M.-H. Adaptive Directed Mutation for Real-Coded Genetic Algorithms. Appl. Soft Comput. 2013, 13, 600–614. [Google Scholar] [CrossRef]
- Yan, L.; Deng, H. Adaptive Genetic Algorithm for Computer Course Scheduling System under the Background of Educational Informatization. Syst. Soft Comput. 2025, 7, 200324. [Google Scholar] [CrossRef]
- Garkki, B.; Revathi, S. Double-Pancake Superconducting Coil Integrated with DFIG-Based Wind Power Systems under Voltage-Dip Events: Design and Performance Analysis Study. Phys. C Supercond. Its Appl. 2024, 626, 1354601. [Google Scholar] [CrossRef]
- Hong, Y.; Zheng, J.; Liao, H. Modeling of High-Tc Superconducting Bulk Using Different Jc–T Relationships over Dynamic Permanent Magnet Guideway. Materials 2019, 12, 2915. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Fu, L.; Jiang, S.; Shen, B. Superconducting Hydrogen-Electricity Multi-Energy System for Transportation Hubs: Modeling, Technical Study and Economic-Environmental Assessment. Appl. Energy 2025, 126823. [Google Scholar]
- Gabriel, L.M.N.; Adebisi, J.A.; Ndjuluwa, L.N.P.; Chembe, D.K. Investigation of Smart Grid Technologies Deployment for Energy Reliability Enhancement in Electricity Distribution Networks. Frankl. Open 2025, 10, 100227. [Google Scholar] [CrossRef]
- Bai, J.; Wu, X.; Chen, X.; Zhang, Z.; Fu, L.; Zhao, C.; Qing, K.; Luo, Q.; Gong, S.; Shen, B. Combined space cooling/heating and domestic hot water supply driven by data center waste heat: Complementary energy conservation, economic capacity optimization and generic analysis framework. Build. Environ. 2025, 283, 113402. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Xin, Y.; Li, B. Electromagnetic Interaction between the Closed Superconducting Coil and the Moving Permanent Magnet: The State of the Art. Supercond. Sci. Technol. 2025, 38, 013001. [Google Scholar] [CrossRef]
- Liang, S.; Ren, L.; Ma, T.; Xu, Y.; Tang, Y.; Tan, X. Study on Quenching Characteristics and Resistance Equivalent Estimation Method of Second-Generation High Temperature Superconducting Tape under Different Overcurrent. Materials 2019, 12, 2374. [Google Scholar] [CrossRef]
- Ma, D.X.; Matsumoto, S.; Teranishi, R.; Ohmura, T.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H. Degradation Analysis of REBCO Coils. Supercond. Sci. Technol. 2014, 27, 085014. [Google Scholar] [CrossRef]
- Trillaud, F.; dos Santos, G.; Gonçalves Sotelo, G. Essential Material Knowledge and Recent Model Developments for REBCO-Coated Conductors in Electric Power Systems. Materials 2021, 14, 1892. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.H.; Chen, X.Y.; Qiu, Z.C. Modeling of Mutual Inductance Between Superconducting Pancake Coils Used in Wireless Power Transfer (WPT) Systems. IEEE Trans. Appl. Supercond. 2019, 29, 5500904. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Superconducting core width Whts | 4 mm |
Encapsulated tape width Wtape | 5 mm |
Encapsulated tape thickness Thts | 0.3 mm |
Tape insulation thickness Tins | 0.05 mm |
Total tape length S | 5000 m |
Anisotropy parameter α | 0.88 |
Anisotropy parameter B1 | 1.59 |
Anisotropy parameter γ | 3.38 |
Initial critical current Ic0 | 1736 A |
Number of Ic segments per turn n | 40 |
Maximum number of pancakes | 100 |
Minimum number of pancakes | 20 |
Maximum inner radius | 500 mm |
Minimum inner radius | 300 mm |
Outer radius limit | 1000 mm |
Pancake gap | 1 mm |
Movable Pancakes per Side (m) | Critical Current (A) | Inductance (H) | Energy Storage (MJ) |
---|---|---|---|
9 | 866 | 2.77 | 1.04 |
10 | 880 | 2.75 | 1.07 |
11 | 886 | 2.74 | 1.07 |
12 | 899 | 2.71 | 1.09 |
13 | 900 | 2.71 | 1.10 |
14 | 915 | 2.67 | 1.12 |
15 | 917 | 2.64 | 1.11 |
16 | 915 | 2.62 | 1.10 |
17 | 923 | 2.57 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, H.; Li, H.; Fu, L.; Shen, B.; Tang, M.; Chen, X. Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations. Materials 2025, 18, 4567. https://doi.org/10.3390/ma18194567
You H, Li H, Fu L, Shen B, Tang M, Chen X. Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations. Materials. 2025; 18(19):4567. https://doi.org/10.3390/ma18194567
Chicago/Turabian StyleYou, Haojie, Houkuan Li, Lin Fu, Boyang Shen, Miangang Tang, and Xiaoyuan Chen. 2025. "Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations" Materials 18, no. 19: 4567. https://doi.org/10.3390/ma18194567
APA StyleYou, H., Li, H., Fu, L., Shen, B., Tang, M., & Chen, X. (2025). Optimal Design of High-Critical-Current SMES Magnets: From Single to Multi-Solenoid Configurations. Materials, 18(19), 4567. https://doi.org/10.3390/ma18194567