Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = optical purity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10145 KiB  
Article
Wavefront-Corrected Algorithm for Vortex Optical Transmedia Wavefront-Sensorless Sensing Based on U-Net Network
by Shangjun Yang, Yanmin Zhao, Binkun Liu, Shuguang Zou and Chenghu Ke
Photonics 2025, 12(8), 780; https://doi.org/10.3390/photonics12080780 (registering DOI) - 1 Aug 2025
Viewed by 99
Abstract
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured [...] Read more.
Atmospheric and oceanic turbulence can severely degrade the orbital angular momentum (OAM) mode purity of vortex beams in cross-media optical links. Here, we propose a hybrid correction framework that fuses multiscale phase-screen modeling with a lightweight U-Net predictor for phase-distortion—driven solely by measured optical intensity—and augments it with a feed-forward, Gaussian-reference subtraction scheme for iterative compensation. In our experiments, this approach boosts the l = 3 mode purity from 38.4% to 98.1%. Compared to the Gerchberg–Saxton algorithm, the Gaussian-reference feed-forward method achieves far lower computational complexity and greater robustness, making real-time phase recovery feasible for OAM-based communications over heterogeneous channels. Full article
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 280
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

18 pages, 6590 KiB  
Article
Synthesis of ZnS Nano-Powders and Fabrication of ZnS Thin Films via Electron-Beam Evaporation: Structural and Optical Characterization
by Ahmed Al-Mobydeen, Ehab AlShamaileh, Bashar Lahlouh, Mariam Al-Qderat, Ahmed N. AL-Masri, Wadah Mahmoud, Imad Hamadneh, Muayad Esaifan and Iessa Sabbe Moosa
Coatings 2025, 15(7), 796; https://doi.org/10.3390/coatings15070796 - 7 Jul 2025
Viewed by 458
Abstract
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, [...] Read more.
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, and laboratory-prepared Na2S. The obtained ZnS was studied using an SEM coupled with EDS, XRD analysis, UV–Visible spectroscopy, and FTIR techniques. The XRD results showed that the synthesized nanoscale ZnS powder was approximately 2.26 nm. Meanwhile, the EDS and XRD patterns confirmed the high purity of the obtained ZnS powder. In addition, the ZnS powder was compacted and sintered in an argon atmosphere at 400 °C for 8 h to prepare the required pellets for thin-film deposition via E-beam evaporation. The microscopic structure of the sintered pellets was investigated using the SEM/EDS. Furthermore, the optical properties of the deposited thin films were studied using UV–Visible spectroscopy in the wavelength range of 190–1100 nm and the FTIR technique. The bandgap energies of the deposited thin films with thicknesses of 111 nm and 40 nm were determined to be around 4.72 eV and 5.82 eV, respectively. This article offers a facile production route of high-purity ZnS powder, which can be compacted and sintered as a suitable source for thin-film deposition. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

12 pages, 3918 KiB  
Review
Sucrose-Based Macrocycles: An Update
by Sławomir Jarosz and Zbigniew Pakulski
Molecules 2025, 30(13), 2721; https://doi.org/10.3390/molecules30132721 - 24 Jun 2025
Viewed by 410
Abstract
Sucrose is by far the most abundant disaccharide found in nature, consisting of two simple hexose units: d-glucose and d-fructose. This exceptionally inexpensive and widely accessible raw material is produced in virtually limitless quantities. The vast majority is consumed in the [...] Read more.
Sucrose is by far the most abundant disaccharide found in nature, consisting of two simple hexose units: d-glucose and d-fructose. This exceptionally inexpensive and widely accessible raw material is produced in virtually limitless quantities. The vast majority is consumed in the food industry either in its native form—as commercial table sugar—or, to a lesser extent, as the basis for artificial sweeteners such as palatinose and sucralose. Beyond its dietary use, sucrose serves as a feedstock for the production of bioethanol, liquid crystals, biodegradable surfactants, and polymers. However, the application of this valuable and extremely cheap raw material (100% optical purity and eight stereogenic centers with precisely defined stereochemistry) in the synthesis of more sophisticated products remains surprisingly limited. In this short review, we focus on the strategic use of the sucrose scaffold in the design and synthesis of fine chemicals. Special attention will be paid to macrocyclic derivatives incorporating the sucrose backbone. These water-soluble structures show promise as molecular receptors within biological environments, offering unique advantages in terms of solubility, biocompatibility, and stereochemical precision. Full article
Show Figures

Graphical abstract

17 pages, 17692 KiB  
Article
An Exploration of Manufacturing Technology to Refine the Grain Size and Improve the Properties of Welded TA1 Titanium Plates for Cathode Rollers
by Lin Qi, Jing Hu, Dayue Wang, Jingyi Gu, Weiju Jia, Xulong An and Wei Wei
Coatings 2025, 15(6), 687; https://doi.org/10.3390/coatings15060687 - 6 Jun 2025
Viewed by 474
Abstract
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode [...] Read more.
Electrolytic copper foil is one of the core materials in the fields of electronics, communications, and power. The cathode roller is the key component of the complete set of electrolytic copper foil equipment, and the quality of the titanium cylinder of the cathode roller directly determines the quality of the electrolytic copper foil. There typically exists a longitudinal weld on the surface of the cathode roller’s titanium cylinder sleeve manufactured by the welding method, which leads to the degradation of the quality of the electrolytic copper foil. Refining the grains in the weld zone and the heat-affected zone to close to those of the base material is a key solution for the manufacturing of welded cathode rollers. In order to effectively modify the microstructure and obtain an optimal refining effect in the weld zone of a TA1 cathode roller, a novel composite technology consisting of low-energy and fewer-pass welding combined with multi-pass rolling deformation and vacuum annealing treatment was primarily explored for high-purity TA1 titanium plates in this study. The microstructure of each area of the weld was observed using the DMI-3000M optical microscope, and the hardness was measured using the HVS-30 Vickers hardness tester. The research results show that the microstructure of each area of the weld can be effectively refined by using the novel composite technology of low-energy and fewer-pass welding, multi-pass rolling deformation, and vacuum annealing treatment. Among the explored experimental conditions, the optimal grain refinement effect is obtained with a V-shaped welding groove and four passes of welding with a welding current of 90 A and a voltage of 8–9 V, followed by 11 passes of rolling deformation with a total deformation rate of 45% and, finally, vacuum annealing at 650 °C for 1 h. The grain size grades in the weld zone and the heat-affected zone are close to those of the base material, namely grade 7.5~10, grade 7.5~10, and grade 7.5~10 for the weld zone, heat-affected zone, and base material, respectively. Meanwhile, this technology can also refine the grains of the base material, which is conducive to improving the overall mechanical properties of the titanium plate. Full article
Show Figures

Figure 1

30 pages, 4630 KiB  
Article
Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach
by Iyiade G. Alalade, Javier E. Morales-Mendoza, Alma B. Jasso-Salcedo, Jorge L. Domínguez-Arvizu, Blanca C. Hernández-Majalca, Hammed A. Salami, José L. Bueno-Escobedo, Luz I. Ibarra-Rodriguez, Alejandro López-Ortiz and Virginia H. Collins-Martínez
C 2025, 11(2), 37; https://doi.org/10.3390/c11020037 - 5 Jun 2025
Viewed by 1929
Abstract
This study investigates a novel approach to moderate-temperature carbon capture by examining the enhanced performance of thermally pre-treated dolomite. To obtain mixed oxides, dolomite samples were prepared via calcination in a quartz cylindrical furnace under an ambient atmosphere at 900 °C, and subsequently [...] Read more.
This study investigates a novel approach to moderate-temperature carbon capture by examining the enhanced performance of thermally pre-treated dolomite. To obtain mixed oxides, dolomite samples were prepared via calcination in a quartz cylindrical furnace under an ambient atmosphere at 900 °C, and subsequently thermally pre-treated under an inert (argon) stream at 650 °C. Characterization of the as-prepared samples involved morphological, structural, textural, and optical features examined through XRD, BET, SEM-EDS, FT-IR, and RAMAN, XPS, and UV-vis spectroscopy, whereas TGA and subsequent multicyclic tests were used to study the CO2 sorption. The dolomite sample calcined at 900 °C for 60 min, and after being activated under an inert atmosphere (argon), labeled PCD60Act, exhibited the highest CO2 uptake of 0.477 gCO2/gsorbent; after 15 sorption–regeneration cycles, it still retained a CO2 uptake of 0.38 gCO2/gsorbent at 650 °C, and it was also successfully regenerated at this moderate temperature, demonstrating 84% capture capacity retention. These remarkable results are explained by the crystalline defects generated during the thermal pre-treatments of the dolomite. This research offers valuable perspectives on the viability of employing thermally pre-treated dolomite as an inexpensive, thermally stable, and moderate-temperature regenerable CaO-based sorbent for applications in CO2 removal in the context of integrated carbon capture and conversion (ICCC) for the production of high-purity hydrogen. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

15 pages, 6396 KiB  
Article
Evolution Mechanism and Mechanical Response of Tungsten Surface Damage Under Pulsed Heat Load and Helium Plasma Irradiation
by Xiaoxuan Huang, Jianjun Wei, Zongbiao Ye and Fujun Gou
Processes 2025, 13(6), 1711; https://doi.org/10.3390/pr13061711 - 30 May 2025
Viewed by 457
Abstract
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled [...] Read more.
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled single-pulse heat loads (32–124 MW·m−2) and helium plasma fluxes (7.76 × 1022–2.40 × 1023 ions·m−2·s−1). SEM and XRD analyses revealed a progressive damage mechanism involving helium bubble formation, pit collapse, coral-like nanostructure evolution, and melting-induced restructuring. These surface changes were accompanied by grain refinement, lattice contraction, and peak shifts in the (110) diffraction plane. Mechanical testing showed a flux-dependent variation in hardness, with initial hardening followed by softening due to crack propagation. Surface reflectivity significantly declined with increasing load, indicating severe optical degradation. This work demonstrates the nonlinear coupling between thermal and irradiation effects in tungsten, offering new insights into damage accumulation under realistic reactor conditions. The findings highlight the dominant role of transient heat loads in driving structural and property changes and emphasize the importance of accounting for synergistic effects in material design. These results provide essential experimental data for optimizing PFMs in divertor and first-wall applications and suggest directions for future research into cyclic loading, long-term exposure, and microstructural recovery mechanisms. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 2407 KiB  
Article
Study of the Effect of Tin Addition in Aluminum–Copper Alloys Obtained from Elemental Powders
by Pedro José Olendski Elias Junior, Ederson Bitencourt das Neves, Luciano Volcanoglo Biehl, Ismael Cristofer Baierle, Carlos Otávio Damas Martins and Jorge Luis Braz Medeiros
Metals 2025, 15(5), 559; https://doi.org/10.3390/met15050559 - 19 May 2025
Viewed by 423
Abstract
Powder metallurgy enables the production of composite materials, which are of great interest to different branches of the automotive, aerospace, and medical industries. This work investigated the sintering of an Al-xCu and Al-xCu-0.1Sn alloy, with copper concentration between 3.5 and 4.5% and tin [...] Read more.
Powder metallurgy enables the production of composite materials, which are of great interest to different branches of the automotive, aerospace, and medical industries. This work investigated the sintering of an Al-xCu and Al-xCu-0.1Sn alloy, with copper concentration between 3.5 and 4.5% and tin added in the range of 0.1%. Compressibility curves were drawn, and the samples were sintered in a high-purity nitrogen-controlled atmosphere furnace. The composites were subjected to subsequent solubilization heat treatment, with cooling in low concentration polymer solutions and artificial aging (T6). The samples were studied using optical, scanning electron, Vickers microhardness, and X-ray diffraction techniques. The results indicated the effectiveness of cooling the samples after solubilization in polymer solutions, the influence of the addition of tin on the aging time, and the mechanical properties of the alloys as a function of the T6 cycles applied. Full article
(This article belongs to the Special Issue Fabricating Advanced Metallic Materials)
Show Figures

Graphical abstract

15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 644
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 503
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

18 pages, 4287 KiB  
Article
Plasma–Liquid Synthesis of Titanium- and Molybdenum-Containing MXenes and Their Photocatalytic Properties
by Nikolay Sirotkin, Anna Khlyustova, Valeriya Shibaeva and Alexander Agafonov
Catalysts 2025, 15(5), 445; https://doi.org/10.3390/catal15050445 - 2 May 2025
Viewed by 580
Abstract
Previous studies have demonstrated that underwater low-temperature plasma is effective for synthesizing nanomaterials by generating plasma discharges between metal electrodes submerged in water. This study extends this approach to the one-step synthesis of MXenes containing titanium, molybdenum, and titanium–molybdenum composites through pulsed discharges [...] Read more.
Previous studies have demonstrated that underwater low-temperature plasma is effective for synthesizing nanomaterials by generating plasma discharges between metal electrodes submerged in water. This study extends this approach to the one-step synthesis of MXenes containing titanium, molybdenum, and titanium–molybdenum composites through pulsed discharges in carbon tetrachloride, an oxygen-free, non-flammable solvent characterized by a high boiling point and low permittivity. By employing titanium and molybdenum electrodes in various configurations, three MXene samples were synthesized: Ti2CTX, Mo2CTX, and Mo2TiC2TX. Characterization techniques, including UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, confirmed the successful synthesis of high-purity MXenes with distinct structural and optical properties. Notably, the bandgap values of the synthesized MXenes were determined as 1.71 eV for Ti2CTX, 1.42 eV for Mo2TiC2TX, and 1.07 eV for Mo2CTX. The photocatalytic performance of the synthesized MXenes was evaluated, showing a removal efficiency of 65% to 98% for dye mixtures, with methylene blue showing the highest degradation rate. This plasma-assisted method offers a scalable, precursor-free route for the synthesis of MXenes with potential applications in energy storage, environmental remediation, and optoelectronics due to their tunable bandgaps and high catalytic activity. Full article
Show Figures

Figure 1

16 pages, 3462 KiB  
Article
Plasma–Chemical Low-Temperature Reduction of Aluminum with Methane Activated in Microwave Plasma Discharge
by Alexander Logunov, Andrey Vorotyntsev, Igor Prokhorov, Alexey Maslov, Artem Belousov, Ivan Zanozin, Evgeniya Logunova, Sergei Zelentsov, Anton Petukhov and Sergey Suvorov
Metals 2025, 15(5), 514; https://doi.org/10.3390/met15050514 - 1 May 2025
Viewed by 654
Abstract
High-purity aluminum is widely used in metallurgy, microelectronics and chemical synthesis. In this work, the method of carbothermic reduction of aluminum powder in a microwave plasma discharge with the formation of valuable organic products such as synthesis gas, acetylene and benzene was used. [...] Read more.
High-purity aluminum is widely used in metallurgy, microelectronics and chemical synthesis. In this work, the method of carbothermic reduction of aluminum powder in a microwave plasma discharge with the formation of valuable organic products such as synthesis gas, acetylene and benzene was used. Al powder was studied by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The yield of by-products was studied by gas chromatography equipped with a mass spectrometer, as well as optical emission spectroscopy of plasma discharge. High-purity aluminum powder reduced with the plasma was used to synthesize oxygen-free trimethylaluminum (TMA). For the first time, TMA was synthesized in one vacuum cycle without the system depressurizing to improve the purity of the final product. Trimethylaluminum was analyzed by gas chromatography, which confirmed that the main substance is ≥99.99% pure. Gas chromatography with a mass spectrometer was used to determine by-products and residual reaction products. Additionally, ICP-MS was used to confirm trace metal concentrations, achieving the 7N standard for ultra-high-purity materials. Full article
Show Figures

Figure 1

12 pages, 16015 KiB  
Article
Compact Nonvolatile Reconfigurable Mode Converter by Sb2S3 Embedded in 4H-Silicon-Carbide-on-Insulator Platform
by Danfeng Zhu, Junbo Chen, Shaobin Qiu, Dingnan Deng and Jinming Luo
Nanomaterials 2025, 15(9), 689; https://doi.org/10.3390/nano15090689 - 1 May 2025
Viewed by 429
Abstract
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an [...] Read more.
Nonvolatile switching is emerging and shows potential in integrated optics. A compact nonvolatile reconfigurable mode converter implemented on a 4H-silicon-carbide-on-insulator (4H-SiCOI) platform with a footprint of 0.5 × 1 × 1.8 μm3 is proposed in this study. The functional region features an Sb2S3 film embedded in a 4H-SiC strip waveguide. The functionality is achieved through manipulating the phase state of the Sb2S3. The high refractive index contrast between the crystalline Sb2S3 and 4H-SiC enables high-efficiency mode conversion within a compact footprint. The incident TM0 mode is converted to the TM1 mode with a high transmittance (T) beyond 0.91 and a mode purity (MP) over 91.72% across the 1500–1600 nm waveband. Additionally, when the Sb2S3 transitions to its amorphous state, the diminished refractive index contrast efficiently mitigates the mode conversion effect. In this state, the TM0 mode propagates through the functional region with minimal perturbation, exhibiting T ≥ 0.99 and MPTM0 ≥ 97.65% within a 1500–1600 nm waveband. Furthermore, the device performances were investigated under partially crystallized states of Sb2S3. The proposed structure offers a broad range of transmittance differences (−16.42 dB ≤ ΔT ≤ 17.1 dB) and mode purity differences (−90.91% ≤ ΔMP ≤ 96.11%) between the TM0 mode and TM1 mode. The proposed device exhibits a high robustness within ±20 nm Δl and ±10 nm Δw. We believe that the proposed multi-level manipulation can facilitate a large communication capacity and that it can be deployed in neuromorphic optical computing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

15 pages, 5164 KiB  
Article
Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials
by Lu Wang, Enwang Du, Zhi Liu and Zhiqiang Liu
Materials 2025, 18(9), 2043; https://doi.org/10.3390/ma18092043 - 29 Apr 2025
Viewed by 440
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess [...] Read more.
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet–visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l’Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Dy3+ and Mn4+ Ions Co-Doped Stannate Phosphors for Applications in Dual-Mode Optical Thermometry
by Zaifa Yang, Zhide Wang, Yi Su, Wenyue Zhang and Yu Zheng
Molecules 2025, 30(7), 1569; https://doi.org/10.3390/molecules30071569 - 31 Mar 2025
Cited by 1 | Viewed by 375
Abstract
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga [...] Read more.
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga2SnO8 fluorescent materials were prepared successfully, and the crystal structure, phase purity, and morphology of the synthesized phosphors were comprehensively investigated, as well as their photoluminescence properties, energy transfer, and high-temperature thermal stability. The two pairs of independent thermally coupled energy levels of Dy3+ ions and Mn4+ ions in Mg3Ga2SnO8 are utilized to realize the dual-mode optical temperature detection with excellent performance. On the one hand, based on the different ionic energy level transitions of 4F9/26H13/2 and 2Eg4A2g responding differently to temperature, two emission bands of 577 nm and 668 nm were chosen to construct the fluorescence intensity ratio thermometry, and the maximum sensitivity of 1.82 %K−1 was achieved at 473 K. On the other hand, based on the strong temperature dependence of the lifetime of Mn4+ in Mg3Ga2SnO8:0.06Dy3+,0.009Mn4+, fluorescence lifetime thermometry was constructed and a maximum sensitivity of 2.75 %K−1 was achieved at 473 K. Finally, the Mg3Ga2SnO8: 0.06Dy3+,0.009Mn4+ sample realizes dual-mode optical temperature measurement with high sensitivity and a wide temperature detection range, indicating that the sample has promising applications in optical temperature measurement. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop