Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (826)

Search Parameters:
Keywords = optical attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1738 KiB  
Article
Evaluation of Optimal Visible Wavelengths for Free-Space Optical Communications
by Modar Dayoub and Hussein Taha
Telecom 2025, 6(3), 57; https://doi.org/10.3390/telecom6030057 - 4 Aug 2025
Abstract
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly [...] Read more.
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly wavelength-dependent under varying atmospheric conditions. This study presents an experimental evaluation of three visible laser diodes at 650 nm (red), 532 nm (green), and 405 nm (violet), focusing on their optical output power, quantum efficiency, and modulation behavior across a range of driving currents and frequencies. A custom laboratory testbed was developed using an Atmega328p microcontroller and a Visual Basic control interface, allowing precise control of current and modulation frequency. A silicon photovoltaic cell was employed as the optical receiver and energy harvester. The results demonstrate that the 650 nm red laser consistently delivers the highest quantum efficiency and optical output, with stable performance across electrical and modulation parameters. These findings support the selection of 650 nm as the most energy-efficient and versatile wavelength for short-range, cost-effective visible-light FSO communication. This work provides experimentally grounded insights to guide wavelength selection in the development of energy-efficient optical wireless systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

17 pages, 1702 KiB  
Article
Mobile and Wireless Autofluorescence Detection Systems and Their Application for Skin Tissues
by Yizhen Wang, Yuyang Zhang, Yunfei Li and Fuhong Cai
Biosensors 2025, 15(8), 501; https://doi.org/10.3390/bios15080501 - 3 Aug 2025
Viewed by 46
Abstract
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the [...] Read more.
Skin autofluorescence (SAF) detection technology represents a noninvasive, convenient, and cost-effective optical detection approach. It can be employed for the differentiation of various diseases, including metabolic diseases and dermatitis, as well as for monitoring the treatment efficacy. Distinct from diffuse reflection signals, the autofluorescence signals of biological tissues are relatively weak, making them challenging to be captured by photoelectric sensors. Moreover, the absorption and scattering properties of biological tissues lead to a substantial attenuation of the autofluorescence of biological tissues, thereby worsening the signal-to-noise ratio. This has also imposed limitations on the development and application of compact-sized autofluorescence detection systems. In this study, a compact LED light source and a CMOS sensor were utilized as the excitation and detection devices for skin tissue autofluorescence, respectively, to construct a mobile and wireless skin tissue autofluorescence detection system. This system can achieve the detection of skin tissue autofluorescence with a high signal-to-noise ratio under the drive of a simple power supply and a single-chip microcontroller. The detection time is less than 0.1 s. To enhance the stability of the system, a pressure sensor was incorporated. This pressure sensor can monitor the pressure exerted by the skin on the detection system during the testing process, thereby improving the accuracy of the detection signal. The developed system features a compact structure, user-friendliness, and a favorable signal-to-noise ratio of the detection signal, holding significant application potential in future assessments of skin aging and the risk of diabetic complications. Full article
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
The Role of Ocean Penetrative Solar Radiation in the Evolution of Mediterranean Storm Daniel
by John Karagiorgos, Platon Patlakas, Vassilios Vervatis and Sarantis Sofianos
Remote Sens. 2025, 17(15), 2684; https://doi.org/10.3390/rs17152684 - 3 Aug 2025
Viewed by 60
Abstract
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. [...] Read more.
Air–sea interactions play a pivotal role in shaping cyclone development and evolution. In this context, this study investigates the role of ocean optical properties and solar radiation penetration in modulating subsurface heat content and their subsequent influence on the intensity of Mediterranean cyclones. Using a regional coupled ocean–wave–atmosphere model, we conducted sensitivity experiments for Storm Daniel (2023) comparing two solar radiation penetration schemes in the ocean model component: one with a constant light attenuation depth and another with chlorophyll-dependent attenuation based on satellite estimates. Results show that the chlorophyll-driven radiative heating scheme consistently produces warmer sea surface temperatures (SSTs) prior to cyclone onset, leading to stronger cyclones characterized by deeper minimum mean sea-level pressure, intensified convective activity, and increased rainfall. However, post-storm SST cooling is also amplified due to stronger wind stress and vertical mixing, potentially influencing subsequent local atmospheric conditions. Overall, this work demonstrates that ocean bio-optical processes can meaningfully impact Mediterranean cyclone behavior, highlighting the importance of using appropriate underwater light attenuation schemes and ocean color remote sensing data in coupled models. Full article
Show Figures

Figure 1

11 pages, 1758 KiB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 (registering DOI) - 1 Aug 2025
Viewed by 120
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

25 pages, 25022 KiB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 - 31 Jul 2025
Viewed by 119
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1917 KiB  
Article
Influence of Energetic Xe132 Ion Irradiation on Optical, Luminescent and Structural Properties of Ce-Doped Y3Al5O12 Single Crystals
by Ruslan Assylbayev, Gulnur Tursumbayeva, Guldar Baubekova, Zhakyp T. Karipbayev, Aleksei Krasnikov, Evgeni Shablonin, Gulnara M. Aralbayeva, Yevheniia Smortsova, Abdirash Akilbekov, Anatoli I. Popov and Aleksandr Lushchik
Crystals 2025, 15(8), 683; https://doi.org/10.3390/cryst15080683 - 27 Jul 2025
Viewed by 645
Abstract
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are [...] Read more.
The impact of 230-MeV Xe132 ion irradiation on the structural, optical, and luminescent properties of YAG:Ce single crystals is investigated over a fluence range of 1011–1014 ions/cm2. Optical absorption; cathodo-, X-ray, and photoluminescence; and X-ray diffraction are employed to analyze radiation-induced changes. Irradiation leads to the formation of Frenkel (F, F+) and antisite defects and attenuates Ce3+ emission (via enhanced nonradiative processes and Ce3+ → Ce4+ recharging). A redistribution between the fast and slow components of the Ce3+-emission is considered. Excitation spectra show the suppression of exciton-related emission bands, as well as a shift of the excitation onset due to increased lattice disorder. XRD data confirm partial amorphization and a high level of local lattice disordering, both increasing with irradiation fluence. These findings provide insight into radiation-induced processes in YAG:Ce, which are relevant for its application in radiation–hard scintillation detectors. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

31 pages, 5037 KiB  
Article
Evaluation and Improvement of Ocean Color Algorithms for Chlorophyll-a and Diffuse Attenuation Coefficients in the Arctic Shelf
by Yubin Yao, Tao Li, Qing Xu, Xiaogang Xing, Xingyuan Zhu and Yubao Qiu
Remote Sens. 2025, 17(15), 2606; https://doi.org/10.3390/rs17152606 - 27 Jul 2025
Viewed by 436
Abstract
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ) [...] Read more.
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ)). These retrieval biases contribute to substantial uncertainties in estimates of primary productivity and upper-ocean heat flux in the Arctic Ocean. However, the performance and constraints of existing ocean color algorithms in Arctic shelf environments remain insufficiently characterized, particularly under seasonally variable and optically complex conditions. In this study, we present a systematic multi-year evaluation of commonly used empirical and semi-analytical ocean color algorithms across the western Arctic shelf, based on seven expeditions and 240 in situ observation stations. Building on these evaluations, regionally optimized retrieval schemes were developed to enhance algorithm performance under Arctic-specific bio-optical conditions. The proposed OCx-AS series for Chl-a and Κd-DAS models for Κd(λ) significantly reduce retrieval errors, achieving RMSE improvements of over 50% relative to global standard algorithms. Additionally, we introduce QAA-LS, a modified semi-analytical model specifically adapted for the Laptev Sea, which addresses the strong absorption effects of CDOM and corrects the significant overestimation observed in previous QAA versions. Full article
Show Figures

Graphical abstract

13 pages, 1718 KiB  
Article
Accurate Dual-Channel Broadband RF Attenuation Measurement System with High Attenuation Capability Using an Optical Fiber Assembly for Optimal Channel Isolation
by Anton Widarta
Electronics 2025, 14(15), 2963; https://doi.org/10.3390/electronics14152963 - 24 Jul 2025
Viewed by 177
Abstract
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage [...] Read more.
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage divider (IVD) that provides precise voltage ratios at a 1 kHz operating IF, serving as the primary attenuation standard. To ensure optimal inter-channel isolation, essential for accurate high-attenuation measurements, an optical fiber assembly, consisting of a laser diode, a wideband external electro-optic modulator, and a photodetector, is integrated between the channels. A comprehensive performance evaluation is presented, with particular emphasis on the programmable IVD calibration technique, which achieves an accuracy better than 0.001 dB across all attenuation levels, and on the role of the optical fiber assembly in enhancing isolation, demonstrating levels exceeding 120 dB across the entire frequency range. The system demonstrates measurement capabilities with expanded uncertainties (k = 2) of 0.004 dB, 0.008 dB, and 0.010 dB at attenuation levels of 20 dB, 60 dB, and 100 dB, respectively. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 214
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 7840 KiB  
Article
Systemic and Retinal Protective Effects of Butyrate in Early Type 2 Diabetes via Gut Microbiota–Lipid Metabolism Interaction
by Haijun Gong, Haoyu Zuo, Keling Wu, Xinbo Gao, Yuqing Lan and Ling Zhao
Nutrients 2025, 17(14), 2363; https://doi.org/10.3390/nu17142363 - 18 Jul 2025
Viewed by 417
Abstract
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study [...] Read more.
Background: Early neurovascular unit (NVU) impairment plays a critical role in the pathogenesis of diabetic retinopathy (DR), often preceding clinically detectable changes. Butyrate, a short-chain fatty acid (SCFA) derived from gut microbiota, has shown promising metabolic and anti-inflammatory effects. Methods: This study investigated the protective potential of oral butyrate supplementation in a mouse model of early type 2 diabetes mellitus (T2DM) induced by a high-fat diet and streptozotocin. Mice (C57BL/6J) received sodium butyrate (5 g/L in drinking water) for 12 weeks. Retinal NVU integrity was assessed using widefield swept-source optical coherence tomography angiography (WF SS-OCTA), alongside evaluations of systemic glucose and lipid metabolism, hepatic steatosis, visual function, and gut microbiota composition via 16S rRNA sequencing. Results: Butyrate supplementation significantly reduced body weight, fasting glucose, serum cholesterol, and hepatic lipid accumulation. Microbiome analysis demonstrated a partial reversal of gut dysbiosis, characterized by increased SCFA-producing taxa (Ruminococcaceae, Oscillibacter, Lachnospiraceae) and decreased pro-inflammatory, lipid-metabolism-related genera (Rikenella, Ileibacterium). KEGG pathway analysis further revealed enrichment in microbial lipid metabolism functions (fabG, ABC.CD.A, and transketolase). Retinal vascular and neurodegenerative alterations—including reduced vessel density and retinal thinning—were markedly attenuated by butyrate, as revealed by WF SS-OCTA. OKN testing indicated partial improvement in visual function, despite unchanged ERG amplitudes. Conclusions: Butyrate supplementation mitigates early NVU damage in the diabetic retina by improving glucose and lipid metabolism and partially restoring gut microbial balance. This study also underscores the utility of WF SS-OCTA as a powerful noninvasive tool for detecting early neurovascular changes in DR. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

21 pages, 3223 KiB  
Article
Roles of 670 nm Photobiomodulation on Rat Anterior Ischemic Optic Neuropathy: Enhancing RGC Survival, Mitochondrial Function, and Anti-Inflammatory Response
by Tu-Wen Chen, Yao-Tseng Wen, Pei-Kang Liu, Monir Hossen and Rong-Kung Tsai
Antioxidants 2025, 14(7), 886; https://doi.org/10.3390/antiox14070886 - 18 Jul 2025
Viewed by 432
Abstract
Non-arteritic anterior ischemic optic neuropathy (NAION) leads to retinal ganglion cell (RGC) loss and visual impairment, with no effective treatment. This study investigated the neuroprotective effect of 670 nm photobiomodulation (PBM) in a rat NAION model (rNAION). Wistar rats received 670 nm light [...] Read more.
Non-arteritic anterior ischemic optic neuropathy (NAION) leads to retinal ganglion cell (RGC) loss and visual impairment, with no effective treatment. This study investigated the neuroprotective effect of 670 nm photobiomodulation (PBM) in a rat NAION model (rNAION). Wistar rats received 670 nm light exposure (10-min, 3000 lux) twice daily for 3 days after rAION injury, followed by 4 days of light treatment once a day. This study evaluated the neuroprotective effects of 670 nm light in an rNAION model. Rats received 670 nm light therapy (10 min/day, 3000 lux) for seven days post-injury. Treatment improved visual function (a 3.36-fold increase in FVEP amplitude), enhanced RGC survival (1.55-fold), and reduced apoptosis (a 15.86-fold reduction in TUNEL-positive cells). Inflammatory cytokines and ED1+ macrophage infiltration were significantly decreased. Oxidative stress was attenuated, with increased ATP, Nrf2, and PGC-1α levels and improved mitochondrial dynamics. These findings support 670 nm light as a potential therapy for NAION. Full article
Show Figures

Figure 1

20 pages, 16378 KiB  
Article
Ice Avalanche-Triggered Glacier Lake Outburst Flood: Hazard Assessment at Jiongpuco, Southeastern Tibet
by Shuwu Li, Changhu Li, Zhengzheng Li, Lei Li and Wei Wang
Water 2025, 17(14), 2102; https://doi.org/10.3390/w17142102 - 15 Jul 2025
Viewed by 506
Abstract
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, [...] Read more.
With ongoing global warming, glacier lake outburst floods (GLOFs) and associated debris flows pose increasing threats to downstream communities and infrastructure. Glacial lakes differ in their triggering factors and breach mechanisms, necessitating event-specific analysis. This study investigates the GLOF risk of Jiongpuco Lake, located in the southeastern part of the Tibetan Plateau, using an integrated approach combining remote sensing, field surveys, and numerical modeling. Results show that the lake has expanded significantly—from 2.08 km2 in 1990 to 5.43 km2 in 2021—with the most rapid increase observed between 2015 and 2016. InSAR data and optical imagery indicate that surrounding moraine deposits remain generally stable. However, ice avalanches from the glacier terminus are identified as the primary trigger for lake outburst via wave-induced overtopping. Mechanical and geomorphological analyses suggest that the moraine dam is resistant to downcutting erosion, reinforcing overtopping as the dominant failure mode. To assess potential impacts, three numerical simulation scenarios were conducted based on different avalanche volumes. Under the extreme scenario involving a 5-million m3 ice avalanche, the modeled peak discharge at the dam site reaches approximately 19,000 m3/s. Despite the high flood magnitude, the broad and gently sloped downstream terrain facilitates rapid attenuation of flood peaks, resulting in limited impact on downstream settlements. These findings offer critical insights for GLOF hazard assessment, disaster preparedness, and risk mitigation under a changing climate. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Visual Neuroplasticity: Modulating Cortical Excitability with Flickering Light Stimulation
by Francisco J. Ávila
J. Imaging 2025, 11(7), 237; https://doi.org/10.3390/jimaging11070237 - 14 Jul 2025
Viewed by 663
Abstract
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular [...] Read more.
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular (M) and parvocellular (P) pathways, which provide a useful model to study cortical excitability using non-invasive visual flicker stimulation. We present an Arduino-driven non-image forming system to deliver controlled flickering light stimuli at different frequencies and wavelengths. By triggering the critical flicker fusion (CFF) frequency, we attempt to modulate the M-pathway activity and attenuate P-pathway responses, in parallel with induced optical scattering. EEG recordings were used to monitor cortical excitability and oscillatory dynamics during visual stimulation. Visual stimulation in the CFF, combined with induced optical scattering, selectively enhanced magnocellular activity and suppressed parvocellular input. EEG analysis showed a modulation of cortical oscillations, especially in the high frequency beta and gamma range. Our results support the hypothesis that visual flicker in the CFF, in addition to spatial degradation, initiates detectable neuroplasticity and regulates cortical excitation and inhibition. These findings suggest new avenues for therapeutic manipulation through visual pathways in diseases such as Alzheimer’s disease, epilepsy, severe depression, and schizophrenia. Full article
Show Figures

Figure 1

19 pages, 2610 KiB  
Article
Influence of Flow Field on the Imaging Quality of Star Sensors for Hypersonic Vehicles in near Space
by Siyao Wu, Ting Sun, Fei Xing, Haonan Liu, Kang Yang, Jiahui Song, Shijie Yu and Lianqing Zhu
Sensors 2025, 25(14), 4341; https://doi.org/10.3390/s25144341 - 11 Jul 2025
Viewed by 219
Abstract
When hypersonic vehicles fly in near space, the flow field near the optical window leads to light displacement, jitter, blurring, and energy attenuation of the star sensor. This ultimately affects the imaging quality and navigation accuracy. In order to investigate the impact of [...] Read more.
When hypersonic vehicles fly in near space, the flow field near the optical window leads to light displacement, jitter, blurring, and energy attenuation of the star sensor. This ultimately affects the imaging quality and navigation accuracy. In order to investigate the impact of aerodynamic optical effects on imaging, the fourth-order Runge–Kutta and the fourth-order Adams–Bashforth–Moulton (ABM) predictor-corrector methods are used for ray tracing on the density data. A comparative analysis of the imaging quality results from the two methods reveals their respective strengths and limitations. The influence of the optical system is included in the image quality calculations to make the results more representative of real data. The effects of altitude, velocity, and angle of attack on the imaging quality are explored when the optical window is located at the tail of the vehicle. The results show that altitude significantly affects imaging results, and higher altitudes reduce the impact of the flow field on imaging quality. When the optical window is located at the tail of the vehicle, the relationship between velocity and offset is no longer simply linear. This research provides theoretical support for analyzing the imaging quality and navigation accuracy of a star sensor when a vehicle is flying at hypersonic speeds in near space. Full article
Show Figures

Figure 1

15 pages, 5107 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Aerosol Optical Depth in Zhejiang Province: Insights from Land Use Dynamics and Transportation Networks Based on Remote Sensing
by Qi Wang, Ben Wang, Wanlin Kong, Jiali Wu, Zhifeng Yu, Xiwen Wu and Xiaohong Yuan
Sustainability 2025, 17(13), 6126; https://doi.org/10.3390/su17136126 - 3 Jul 2025
Viewed by 296
Abstract
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road [...] Read more.
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road network density metrics (2014–2020), to investigate the spatiotemporal evolution of AOD in Zhejiang Province and its synergistic correlations with urbanization patterns and transportation infrastructure. By integrating MODIS_1KM AOD product, grid-based road network density mapping, land use dynamic degree modeling, and transfer matrix analysis, this study systematically evaluates the interdependencies among aerosol loading, impervious surface expansion, and transportation network intensification. The results indicate that during the study period (2000–2020), the provincial AOD level shows a significant declining trend, with obvious spatial heterogeneity: the AOD values in eastern coastal industrial zones and urban agglomerations continue to increase, with lower values dominating southwestern forested highlands. Meanwhile, statistical analyses confirm highly positive correlations between AOD, impervious surface coverage, and road network density, emphasizing the dominant role of anthropogenic activities in aerosol accumulation. These findings provide actionable insights for enhancing land-use zoning, minimizing vehicular emissions, and developing spatially targeted air quality management strategies in rapidly urbanizing regions. This study provides a solid scientific foundation for advancing environmental sustainability by supporting policy development that balances urban expansion and air quality. It contributes to building more sustainable and resilient cities in Zhejiang Province. Full article
Show Figures

Figure 1

Back to TopTop